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Abstract:-In the real world problems, we are always dealing with uncertainty in almost all fields of approach. Neutrosophic sets helps 

us to deal with problems where inconsistent data are available. Application of Neutrosophic sets to real world problems, which are the 

generalized form of fuzzy sets is a platform where we can overcome this concept of uncertainty and obtain optimal results which can 

be relied on. In this paper, interval valued neutrosophic numbers are used to take into account the uncertainty in a still deeper way 

and Interval valued neutrosophic linear programming problem is solved with the help of the proposed ranking function and optimal 

results are obtained. 

Keywords-Neutrosophic set, trapezoidal Neutrosophic number, Interval valued neutrosophic linear programming, membership 

degree(truth, falsity, indeterminacy). 

I.INTRODUCTION: 

Linear Programming has found its usage in solving many real world problems. A linear programming 

problem consists of a objective function, one or more constraints with the variables being non-negative integers. The 

constraints may be either in equality or inequality form. Rather than just considering the cost objectives, coefficients 

of constraints as just mere crisp values, we consider as neutrosophic numbers. Zadeh first introduced the concept of 

fuzzy set theory. Later fuzzy sets were generalized as intuitionistic sets by Atanassov and intuitionistic fuzzy set 

theory came into existence which was then further generalized as neutrosophic sets. In neutrosophic sets, each 

neutrosophic number is assigned a truth membership degree, a falsity membership degree and an indeterminacy 

membership degree. Hence, indeterministic data can be easily dealt with. Moreover, using interval values for the 

truth, indeterminacy and falsity membership degree helps us to deal with riskiness in data in an easier way. 

Therefore, interval valued linear programming problem with neutrosophic trapezoidal numbers is used in this paper 

inorder to obtain good optimal results. 

II. LITERATURE REVIEW: 

L.A.Zadeh[22] introduced the concept of fuzzy sets where crisp values were fuzzified and membership 

values were assigned to the crisp values. This was further generalized by Atanassov[6] who brought in a new 

concept of intuitionistic fuzzy sets where crisp values were assigned membership and non-membership values . 

Together with Gargov, Atanassov[7] introduced interval valued intuitionistic fuzzy sets, where the membership and 

non-membership degree were given interval values ranging from [0,1]. In order to deal with the indeterminacy the 

lies in a problem, Smarandache[17],[18],[19] put forward the concept of neutrosophy, which is a generalized form 
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of the intuitionistic fuzzy set, which takes into consideration the truth, false and indeterminacy membership degree. 

This led to some more accuracy to work with real world problems. Many researchers have worked using the concept 

of intuitionistic fuzzy sets and neutrosophic sets and have proposed ranking functions in order to find the best 

optimal solution possible. Wang et.al[23] proposed the concept of Single valued neutrosophic sets and further 

Deli.et.al[9],[10] proposed a ranking method and applied to multi attribute decision making problems. J Chen[8] 

worked on single valued neutrosophic weighted aggregation operators to find the optimal solution in the case of 

multiple attribute decision making. A lot of ranking methods were proposed to get the optimal solution. 

Li[13],[14]proposed ranking methods taking into use the triangular intuitionistic fuzzy numbers. In the same way, 

Abdel Basset et.al[1],[2],[3],[4]researched on triangular neutrosophic numbers and trapezoidal neutrosophic 

numbers and applied linear programming to solve decisions. Rezvani[16] introduced a new ranking method with 

trapezoidal fuzzy numbers. Akyar et.al[5] discussed about ranking triangular fuzzy numbers. A Kumar et.al[12] 

found a new method to solve fully fuzzy linear programming problem. Umamageswari et.al[21] introduced a 

ranking function for single valued neutrosophic trapezoidal numbers to solve transportation problems. Kiran 

Khatter[11] discussed on interval trapezoidal neutrosophic set for prioritization of non- functional requirements. 

A.H.Nafei et.al[15] discussed about a new method for solving interval neutrosophic linear programming problem 

using triangular numbers. 

 This paper introduces interval valued trapezoidal numbers in a neutrosophic environment and we solve the 

interval valued neutrosophic linear programming problem (IVNLPP). A new ranking function is proposed to convert 

the interval valued trapezoidal neutrosophic number to its crisp form to solve IVNLPP. In section 2, some basic 

definitions are discussed. In section 3, a new ranking function is proposed and the algorithm to solve the IVNLPP is 

presented. In section 4, some numerical examples are presented to assure that the proposed ranking method is the 

best. The examples were taken from the research article by A.H.Nafei et.al. In section 5, the optimal results obtained 

are compared with the existing method and the efficiency of this method is put forth. In section 6. Conclusions are 

discussed.  

III. PRELIMINARIES AND BASIC DEFINITIONS 

Definition 1:[4] A single valued neutrosophic set A through X taking the form A= {x, TA(x), IA(x), FA(x); x ∈ X } 

where X be a space of discourse, TA(x): X → [0,1], IA(x): X → [0,1] and FA(x): X → [0,1] with 0 <TA(x) + IA(x) + 

FA(x) < 3 for all x ∈ X. TA(x), IA(x) and FA(x) represent the truth membership degree, indeterminacy membership 

degree and falsity membership degree respectively. 

 Definition 2: A neutrosophic number A is an extended version of the fuzzy set on R with the following truth, falsity 

and indeterminacy membership functions. 
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where 𝛿 is the maximum degree of indeterminacy and a1< a2< a3< a4 and 𝛿 ∈ (0,1). a1, a2, a3, a4are the upper bound, 

first median, second median and lower bound of the trapezoidal neutrosophic number respectively. 

Definition 3:Let ],,);,,,[( 4321 AAAaaaaA  and ],,);,,,[( 4321 BBBbbbbB  be two trapezoidal 

neutrosophic numbers, where AAA  ,, and BBB  ,, are the truth membership degree, indeterminacy 

membership degree and falsity membership degree of the trapezoidal neutrosophic number A and B respectively. 

The mathematical operations between A and B are defined as: 
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Definition4:A ranking function R on A(R) is a mapping from A(R) to the real line, where natural ordering exists. 

Let ],,);,,,[( 4321 AAAaaaaA  and ],,);,,,[( 4321 BBBbbbbB   be two trapezoidal neutrosophic 

numbers, then ranking between them is defined as 

BA then R(B),R(A) If iii)

BA then R(B), R(A) If ii)

BA then R(B), R(A) If i)







 

Definition 5:[23] Let X be a space of discourse, an interval neutrosophic set (INS) A through X taking the form
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Definition 6:An interval valued trapezoidal neutrosophic set ],[],,[],,[);,,,[( 4321
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indeterminacy and falsity membership degrees for the sets A and B. The mathematical operations between A and B 

can be represented as: 
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IV. PROPOSED METHOD AND ALGORITHM 

In this section, we propose a new ranking method to solve interval valued trapezoidal neutrosophic linear 

programming problems. To obtain the optimum solution, the following steps are to be followed. 

Step 1:The Linear programming problem can be of maximization or minimization problems. Also, either the cost or 

the coefficients aij or the constants on the right hand side can be neutrosophic numbers or else, all the cost 

objectives, coefficients and right hand side values can be trapezoidal neutrosophic numbers. 

 The TA, IA, FA i.e., the truth, indeterminacy and falsity membership values are taken as interval valued and 

we need to take care that in most of the cases, we adopt the maximum degree for truth membership and the 

minimum degree for indeterminacy and falsity membership. 

Step 2: Using the proposed ranking function, we convert the interval valued trapezoidal neutrosophic number to its 

crisp value using the function defined below: 

Let ],[],,[],,[);,,,[( 4321
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U
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L
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U
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L

AaaaaA   where 4321 ,,, aaaa are the lower bound, first 

median, second median and upper bound respectively. The ranking function for interval valued neutrosophic number 

A is defined as follows:  
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Step 3: Making use of the proposed ranking function, the trapezoidal interval valued neutrosophic numbers are 

converted to its crisp form. Thus the interval valued linear programming problem is converted into a linear 

programming problem. 

Step 4: The linear programming problem is solved using the standard methods and the optimal solution is obtained. 

V.NUMERICAL EXAMPLE: 

 In this section, inorder to prove that the proposed ranking function gives an optimized result, we consider 

two examples that has been already worked out by Amir Hossein Nafei et.al. Nafei worked on interval valued 

neutrosophic linear programming with triangular numbers. Here, the interval neutrosophic numbers are taken as 

trapezoidal interval neutrosophic numbers by taking the values as lower bound, first median, second median and 

upper bound in order.  

Example 1: 

 In this example, we consider a fully interval valued neutrosophic linear programming problem. Here, the 

cost objectives, the constraints and the values on the right hand side of the constraints are taken as interval valued 

neutrosophic numbers. The interval valued neutrosophic numbers are denoted by a tilde ( a~ ) on the top of the 

number. 
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]3.0,1.0[],2.0,1.0[],7.0,3.0[),8,6,2,0(4
~

]9.0,6.0[],9.0,4.0[],8.0,6.0[),14,12,9,8(1
~

1

]8.0,7.0[],5.0,3.0[],9.0,5.0[),33,26,12,5(9
~

1

]6.0,4.0[],9.0,1.0[],6.0,3.0[),3,5.2,5.1,1(2
~

]6.0,1.0[],6.0,5.0[],8.0,7.0[),10,9,7,6(8
~

]4.0,3.0[],5.0,4.0[],9.0,1.0[),7,5,2,1(4
~

]8.0,4.0[],8.0,5.0[],5.0,4.0[),14,11,6,4(9
~

]9.0,6.0[],4.0,1.0[],5.0,1.0[),15,12,7,5(0
~

1

]9.0,8.0[],6.0,1.0[],7.0,2.0[),2,5.1,5.0,0(1
~

]9.0,4.0[],4.0,1.0[],8.0,6.0[),16,5.15,5.14,14(5
~

1

]4.0,3.0[],6.0,4.0[],7.0,5.0[),21,20,8,7(4
~

1

]8.0,1.0[,5.0,2.0[],6.0,2.0[),10,9,3,2(6
~

]4.0,2.0[],4.0,1.0[],9.0,7.0[),13,10,3,1(7
~








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Using the proposed ranking function, the given interval neutrosophic linear programming problem is converted into 

crisp LPP as follows: 
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The above LPP is converted into standard form by adding slack variables to the constraints and is solved using 

simplex method. The optimal solution thus obtained is: 

1x =0.2428, 2x =0.2105, 3x =0, Z=2.9945 

Example 2: 

 In a computer manufacturing plant, we need to produce four basic units, such as RAMs, graphics cards, hard 

drives and CPUs to produce each computer. All productions have to get through four parts. These four parts include 

design, fabrication, probe and assembly. The favorable time for each unit manufactured and its profit is presented in 

Table 1. The minimum production amount for supplementing monthly products is given in Table 2. The purpose of 

the company is producing products in this limit for maximizing the general profit.  
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TABLE 1 

PRODUCTS DESIGN FABRICATION PROBE ASSEMBLY 

 

UNIT PROFIT 

P1 0.2 0.5 0.1 0.1 4
~

1 $ 

P2 0.5 3 2 0.6 7
~

$ 

P3 0.4 4 4 0.8 5
~

$ 

P4 1 2 0.2 0.2 8
~

$ 

 

TABLE 2 

SECTOR CAPACITY PRODUCTS MINIMUM PRODUCTION LEVEL 

DESIGN 0
~

130  P1 0
~

10  

FABRICATION 0
~

334  P2 0
~

28  

PROBE 0
~

180  P3 4
~

19  

ASSEMBLY 0
~

210  P4 0
~

40  

 

The trapezoidal values and the degrees of the truth, indeterminacy and falsity membership functions for each 

interval neutrosophic number is given as: 

]9.0,4.0[],7.0,2.0[],9.0,7.0[),3465,5.3402,5.3277,3215(0
~

334

]8.0,3.0[],7.0,2.0[],6.0,1.0[),1600,1450,1150,1000(0
~

130

]9.0,6.0[],8.0,3.0[],5.0,2.0[),13,5.10,5.5,3(8
~

]4.0,3.0[],9.0,4.0[],6.0,2.0[),6,5.5,5.4,4(5
~

]8.0,6.0[],7.0,4.0[],6.0,1.0[),12,5.9,5.4,2(7
~

]9.0,2.0[],8.0,2.0[],7.0,3.0[),16,15,13,12(4
~

1













 

]8.0,4.0[],6.0,2.0[],4.0,1.0[),600,500,300,200(0
~

40

]7.0,1.0[],7.0,3.0[],6.0,1.0[),204,199,189,184(4
~

19

]5.0,2.0[],2.0,1.0[],9.0,7.0[),330,305,255,230(0
~

28

]4.0,3.0[],6.0,2.0[],7.0,1.0[),101,5.100,5.99,99(0
~

10

]8.0,4.0[],6.0,1.0[],7.0,3.0[),2510,2305,1959,1818(0
~

210

]2.0,1.0[],6.0,2.0[],1,4.0[),2210,2005,1595,1390(0
~

180













 

Here, let us consider that 321 ,, xxx and 4x are the number of RAMs, graphics cards, hard drives, CPUs produced 

respectively. Here, the cost objectives and the values on the right hand side of the constraints are taken as interval 

valued trapezoidal neutrosophic numbers. The interval valued neutrosophic linear programming problem is 

formulated as follows: 
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After converting into standard form, the LPP is solved using simplex method and the solution is found. 
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The optimal results obtained are: 1x =2920, 2x =168, 3x =291, 4x =440, Z=75999. 

VI.RESULTS: 

A new ranking method is proposed in this paper and making use of the interval valued trapezoidal 

neutrosophic number, the interval valued neutrosophic linear programming problem is solved using the simplex 

method. This method gave the best optimal result. In order to exhibit the efficiency of the proposed ranking method, 

comparison was made with the existing models and is tabulated as follows: 
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TABLE 3 

METHOD EXAMPLE 1 EXAMPLE 2 

EXISTING METHOD x1=0, x2=0, x3=0.18, Z=2.54 x1=1853, x2=280.3, x3=193.45, x4=399.25, 

Z=30298.57 

PROPOSED METHOD x1=0.24, x2=0.21, x3=0, Z=2.99 x1=2920, x2=168, x3=291, x4=440, Z=75999 

 

VII. CONCLUSION: 

 In this paper, we have considered interval valued neutrosophic linear programming problem with 

trapezoidal numbers. Having taken into account the truth membership, indeterminacy membership and falsity 

membership degree of the trapezoidal neutrosophic number, we have dealt with the uncertainty. The proposed 

ranking function is desirable as it promotes an optimized result compared to the existing methods. Hence, this 

method can be used easily to convert the interval trapezoidal neutrosophic number to its crisp form and solve the 

IVNLPP using simplex method. This proposed method is efficient than the existing models. 
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