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�e concept of the neutrosophic hypersoft set (NHSS) is a parameterized family that deals with the subattributes of the parameters
and is a proper extension of the neutrosophic soft set to accurately assess the deficiencies, anxiety, and uncertainty in decision-
making. Compared with existing research, NHSS can accommodate more uncertainty, which is the most significant technique for
describing fuzzy information in the decision-making process. �e main objective of the follow-up study is to develop the theory of
neutrosophic hypersoft matrix (NHSM).�eNHSM is the generalized form of a neutrosophic soft matrix (NSM). Some fundamental
operations and score function for NHSMs have been introduced with their desirable properties. Furthermore, we introduce the
logical operators such as OR-operator and AND-operator with their fundamental properties in the following research.�e necessity
and possibility operations for NHSMs have been established. Utilizing the developed score function, a decision-makingmethodology
has been developed to solve the multiattribute decision-making (MADM) problem. To ensure the validity of the proposed approach,
a numerical illustration has been described for the selection of competent faculty member. �e practicality and effectiveness of the
current approach are proved through comparative analysis with the assistance of some existing studies.

1. Introduction

Decision-making (DM) is one of the most interesting
problems today, choosing the right alternative for any
particular purpose. Primarily, it was supposed that evidence
about possible choices was collected in crisp numbers, but in
real life, collective facts and data are always composed of
inappropriate and erroneous information. A fuzzy set is like
a set whose components have a degree of membership
(Mem). In the classical set theory, the Mem degree of the
elements in the set is patterned in binary form conferring to

the bivalent condition of whether the elements belong to the
set entirely. In distinction, the fuzzy set theory permits
contemporary assessments of the remembrance of elements
in the set. �is is signified by the Mem function, and the
actual unit interval of the Mem function is [0, 1]. �e fuzzy
set is a simplification of the classic set since the indicator
function of the classic set is a special case of the Mem
function of the fuzzy set (if the latter only takes the value 0 or
1). In the fuzzy set theory, the classical bivalent set is
generally named the crisp set. Fuzzy set theory can be used in
a wide range of fields with imperfect or vague information.
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In some situations, decision-makers consider the Mem and
nonmembership (Nmem) values of objects. In such cases,
Zadeh’s FS is unable to handle the imprecise and vague
information. Atanassov [2] developed the notion of intui-
tionistic fuzzy sets (IFSs) to deal with the abovementioned
difficulties. �e IFS accommodates the imprecise and in-
accurate information using Mem and Nmem values.

Atanassov’s IFS is unable to solve those problems in
which decision-makers considered the membership degree
(MD) and nonmembership degree (NMD) such as MD� 0.5
and NDM� 0.8, then 0.5 + 0.8≰1. Yager [3, 4] extended the
notion of IFS to Pythagorean fuzzy sets (PFSs) to overcome
the abovediscussed complications by modifying
MD + NMD≤ 1 to MD2 + NMD2 ≤ 1. After the develop-
ment of PFSs, Zhang and Xu [5] proposed operational laws
for PFSs and established a DM approach to resolve the
MCDM problem. Wei and Lu [6] planned some power
aggregation operators (AOs) and proposed a DM technique
to solve multiattribute decision-making (MADM) problems
under the Pythagorean fuzzy environment. Wang and Li [7]
presented power Bonferroni mean operators for PFSs with
their basic properties using interaction. Gao et al. [8] pre-
sented several aggregation operators by considering the
interaction and proposed a DM approach to solving MADM
difficulties by utilizing the developed operators. Wei [9]
developed the interaction operational laws for Pythagorean
fuzzy numbers (PFNs) by considering interaction and
established interaction aggregation operators by using the
developed interaction operations. Zhang [10] developed the
accuracy function and presented a DM approach to solving
multiple criteria group decision-making (MCGDM) prob-
lems using PFNs. Wang et al. [11] extended the PFSs and
introduced interactive Hamacher operation with some novel
AOs. �ey also established a DM method to solve MADM
problems by using their proposed operators. Wang and Li
[12] developed some operators for interval-valued PFSs and
utilized their operators to resolve multiattribute group de-
cision-making (MAGDM) problems. Peng and Yuan [13]
established some novel operators such as Pythagorean fuzzy
point operators and developed a DM technique using their
proposed operators. Peng and Yang [14] introduced some
operations with their desirable properties under PFSs and
planned DM methodology to solve the MAGDM problem.
Garg [15] developed the logarithmic operational laws for
PFSs and proposed some AOs. Arora and Garg [16] pre-
sented the operational laws for linguistic IFS and developed
prioritized AOs. Ma and Xu [17] presented some innovative
AOs for PFSs and proposed the score and accuracy functions
for PFNs.

�e abovementioned theories and their DM method-
ologies have been used in several fields of life, but these
theories are unable to deal with the parametrization of the
alternatives. Molodtsov [18] developed the soft sets (SSs) to
overcome the abovementioned complications. Molodtsov’s
SS competently deals with imprecise, vague, and unclear
information of objects considering their parametrization.
Maji et al. [19] prolonged the concept of SS and introduced
basic operations with their properties. Maji et al. [20]
established a DM technique using their developed

operations for SS. �ey also merged two well-known the-
ories such as FS and SS and established the concept of fuzzy
soft sets (FSSs) [21]. �ey also proposed the notion of an
intuitionistic fuzzy soft set (IFSS) [22] and discussed their
basic operations. Garg and Arora [23] extended the notion of
IFSS and presented a generalized form of IFSS with AOs.
�ey also planned a DM technique to resolve undefined and
inaccurate information under IFSS information. Garg and
Arora [24] presented the correlation and weighted corre-
lation coefficients for IFSS and extended the TOPSIS
technique using developed correlationmeasures. Zulqarnain
et al. [25] introduced some AOs and correlation coefficients
for interval-valued IFSS. �ey also extended the TOPSIS
technique using their developed correlation measures and
utilized them to solve the MADM problem. Peng et al. [26]
proposed the Pythagorean fuzzy soft sets (PFSSs) and
presented fundamental operations of PFSSs with their de-
sirable properties by merging PFS and SS. Athira et al. [27]
extended the notion of PFSSs and proposed entropy mea-
sures for PFSSs.�ey also presented some distance measures
for PFSSs and utilized their developed distance measures to
solve DM [28] issues. Zulqarnain et al. [29] introduced
operational laws for Pythagorean fuzzy soft numbers
(PFSNs) and developed AOs such as Pythagorean fuzzy soft
weighted average and geometric by using defined opera-
tional laws for PFSNs. �ey also planned a DM approach to
solveMADMproblems with the help of presented operators.
Riaz et al. [30] prolonged the idea of PFSSs and developed
the m polar PFSSs.�ey also established the TOPSIS method
under the considered hybrid structure and proposed a DM
methodology to solve the MCGDM problem. Riaz et al. [31]
developed the similarity measures for PFSS with their
fundamental properties. Han et al. [32] protracted the
TOPSIS method under PFSS environment and utilized their
developed approach to solving the MAGDM problem.
Zulqarnain et al. [33] planned the TOPSIS methodology in
the PFSS environment based on the correlation coefficient.
�ey also established a DM methodology to resolve the
MCGDM concerns and utilized the developed approach in
green supply chain management.

All the above studies only deal the inadequate infor-
mation because of membership and nonmembership values;
however, these theories cannot handle the overall incom-
patible and imprecise information. To address such in-
compatible and imprecise records, the idea of the
neutrosophic set (NS) was developed by Smarandache [34].
Maji [35] offered the concept of a neutrosophic soft set (NSS)
with necessary operations and properties. �e idea of the
possibility NSS was developed by Karaaslan [36] and in-
troduced a possibility of neutrosophic soft DM method to
solve those problems which contain uncertainty based on
AND-product. Broumi [37] developed the generalized NSS
with some operations and properties and used the projected
concept for DM. Deli and Subas [38] developed the single-
valued neutrosophic numbers (SVNNs) to solve MCDM
problems. �ey also established the cut sets for SVNNs.
Wang et al. [39] proposed the correlation coefficient (CC)
for SVNSs. Ye [40] introduced the simplified NSs with some
operational laws and AOs such as weighted arithmetic and
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weighted geometric average operators and constructed an
MCDMmethod based on his proposed AOs. Masooma et al.
[41] progressed a new concept through combining the
multipolar fuzzy set and NS which is known as the multi-
polar NS, and they also established various characterization
and operations with examples. Zulqarnain et al. [42, 43]
presented the generalized neutrosophic TOPSIS and an
integrated model of neutrosophic TOPSIS, respectively, and
used their presented technique for supplier selection in the
production industry.

All the abovementioned studies have some limitations,
such as when any attribute from a set of attributes contains
further subattribute, and then the abovepresented theories
fail to solve such types of problems. To overcome the
aforementioned limitations, Smarandache [44] protracted
the idea of SS to hypersoft sets (HSSs) by substituting the
one-parameter function f to a multiparameter (subattribute)
function. Samarandache claimed that the established HSS is
competently dealing with uncertain objects comparative to
SS. Nowadays, HSS theory and its extensions have been
arising unexpectedly. Several investigators go through
progressed distinctive operators along with characteristics
under HSS and its extensions [45, 46]. Zulqarnain et al. [47]
presented the IFHSS which is the generalized version of
IFSS. �ey established the TOPSIS method to resolve the
MADM problem utilizing the developed correlation coef-
ficient. Zulqarnain et al. [48] introduced the notion of the
Pythagorean fuzzy hypersoft set (PFHSS) with some fun-
damental operations and discussed their desirable proper-
ties. �ey also proposed the CC for PFHSS and established a
decision-making approach to solve decision-making com-
plications utilizing their developed CC. Zulqarnain et al. [49]
proposed the AOs for PFHSS and correlation coefficients.
�ey also established the TOPSIS technique using their
developed correlation coefficient and utilized the presented
approach for the selection of appropriate antivirus face
masks because the above work is considered to examine the
environment of linear inequality between the MD and NMD
of subattributes of the considered attributes. Samad et al.
[50] extended the TOPSIS technique under NHSS based on
CC and utilized their presented decision-making technique
to solve the MADM problem. Zulqarnain et al. [51, 52]
extended the NHSS to interval-valued NHSS with some
fundamental operations and a decision-making technique to
solve DM issues utilizing their developed CC.

Matrices perform a significant role in a wide area of
science, engineering, and medical. Cagman et al. [53] pre-
sented soft matrices and applied them to the decision-
making issue. �ey also presented fuzzy soft matrices [54]
with fundamental operations and discussed their desirable
properties. Furthermore, Saikia et al. [55] characterized
fuzzy soft matrices with four unique results of generalized
intuitionistic fuzzy soft matrices and introduced an appli-
cation in medical diagnosis. Next, Broumi et al. [56] con-
templated a fuzzy soft matrix dependent on reference work
and characterized some new operations, for example, fuzzy
soft compliment matrix, a trace of fuzzy soft matrix de-
pendent on reference work. Another fuzzy soft matrix de-
cision technique dependent on reference work is exhibited.

Mondal et al. [57] presented a fuzzy and intuitionistic fuzzy
soft matrix and multicriteria decision-making dependent on
three fundamental t-norms operators. Kalaichelvi and
Kanimozhi [58] presented the intuitionistic fuzzy soft ma-
trices by extending the fuzzy soft matrices. Since uncertainty
helps in the detailing of genuine logical numerical problems,
we tackle uncertainty with multiattribute decision-making
(MADM) problems. In MADM problems, we have different
attributes and we select the perfect match but if we have a
complex selection like multiargument problems, then we use
the concept of hypersoft set. It is observed that fuzzy
numbers can only measure uncertainty and intuitionistic
fuzzy numbers can measure the truth and falsity member-
ship values. But if we want to measure the membership
values of truth, indeterminacy, and falsity, we need to work
in the neutrosophic environment because it is more reliable,
logical, and practical for the decision-makers. Dealing with
neutrosophic hypersoft set is difficult because of its com-
plicated framework. From this aspect, we will attempt to
convert neutrosophic hypersoft set to neutrosophic hyper-
soft matrix in this article.

�e rest of the article can be summarized like this. In
Section 2, we presented some basic notions such as soft set,
neutrosophic soft set, hypersoft set, and neutrosophic
hypersoft sets, which are used to develop the structure of the
current research. In Section 3, we planned the NHSM with
some fundamental operations and score function with their
desirable properties. Also, we presented some logical op-
erations, necessity, and possibility operators for NHSM with
their properties in Section 4. To solve the MADM problem,
an algorithm is established by using the presented score
function provided in Section 5. Moreover, the planned DM
method is used for the selection of the most suitable faculty
position. Also, we apply some available techniques to pro-
pose a comparative analysis of our planned approach in
Section 6.

2. Preliminaries

In the following section, we recalled fundamental concepts
that help us to develop the structure of the current article
such as SS, NS, NSS, HSS, and NHSS.

Definition 1 (see [18]). Let U be the universal set and E be
the set of attributes with respect toU. Let (U) be the power
set ofU andA⊆E. A pair (F,A) is called a soft set overU,
and its mapping is given as

F: A⟶ P(U). (1)

It is also defined as

(F,A) � F(e) ∈ P(U): e ∈ E,F(e) � ∅, if e ∉ A{ }.

(2)

Definition 2 (see [34]). LetU be a universe andA be an NS
on U defined as A � v, (TA(v),IA(v),CA(v)): v ∈ U􏼈 􏼉,
where T, I, C: U⟶ ]0− , 1+[, and 0− ≤TA(v) +

IA(v) + CA(v)≤ 3+.
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Definition 3 (see [35]). Let U be the universal set and E be
the set of attributes with respect to U. Let (U) be the set of
neutrosophic values ofU andA⊆E. A pair (F,A) is called a
neutrosophic soft set over U, and its mapping is given as

F: A⟶ P(U). (3)

Definition 4 (see [43]). LetU be the universal set and(U) be
the power set of U. Consider ℓ1, ℓ2, ℓ3, . . . , ℓnfor n≥ 1 be n

well-defined attributes, whose corresponding attributive
values are, respectively, the set L1,L2,L3, . . . ,Ln with
Li ∩Lj � ∅, for i≠ j and i, jε 1, 2, 3, . . . , n{ }, then the pair
(F,L1 × L2 × L3, . . . ,Ln) is said to be hypersoft set over
U, where

F: L
1

× L
2

× L
3
, . . . ,L

n⟶ P(U). (4)

Definition 5 (see [43]). LetU be the universal set and (U) be
the power set of E. Consider ℓ1, ℓ2, ℓ3, . . . , ℓnfor n≥ 1, be n

well-defined attributes, whose corresponding attributive
values are, respectively, the set L1,L2,L3, . . . ,Ln with
Li ∩Lj � ∅, for i≠ j and i, jε 1, 2, 3, . . . , n{ } and their re-
lationL1,L2,L3, . . . ,Ln � S, then the pair (F,S) is said
to be neutrosophic hypersoft set (NHSS) over U, where

F: L
1
,L

2
,L

3
, . . . ,L

n⟶ P(U),

F L
1
,L

2
,L

3
, . . . ,L

n
􏼐 􏼑 � x,T(F(S)),I(F(S)),F(F(S)), x ∈ U{ },

(5)

where T is the membership value of truthiness, I is the
membership value of indeterminacy, and F is the mem-
bership value of falsity such thatT,I,F: U⟶ [0, 1] also
0≤T(F(S)) + I(F(S)) + F(F(S))≤ 3.

3. Development of Neutrosophic Hypersoft
Matrix with Their Fundamental Operators

In this section, we introduced the notion of a neutrosophic
hypersoft matrix with some basic operations and discuss
their desirable properties.

Definition 6 Let U � u1, u2, . . . , uα􏼈 􏼉 and (U) be the uni-
versal set and power set of universal set, respectively, and
also consider L1,L2, . . . ,Lβ for β≥ 1, β well-defined at-
tributes, whose corresponding attributive values are, re-
spectively, the set La

1 ,Lb
2, . . . ,Lz

β and their relation
La

1 × Lb
2 × · · · × Lz

β, where a, b, c, . . . , z � 1, 2, . . . , n, then
the pair (F,La

1 × Lb
2 × · · · × Lz

β) is said to be neutrosophic
hypersoft set over U, where F: (La

1 × Lb
2 × · · · × Lz

β)

⟶ P(U), and it is defined as

F L
a
1 × L

b
2 × · · · × L

z
β􏼐 􏼑 � u, TL(u), IL(u), FL(u): u ∈ U,L ∈La

1 × L
b
2 × · · · × L

z
β􏽮 􏽯. (6)

Let RL � La
1 × Lb

2 × · · · × Lz
β be the relation, and its

characteristic function is XRL
: La

1 × Lb
2 × · · · × Lz

β⟶
P(U); it is defined as XRL

� u, TL(u), IL(u), FL(u):􏼈

u ∈ U, L ∈La
1 × Lb

2 × · · · ×Lz
β} and can be a representation

of RL as given in Table 1.
If Oij � XRL

(ui,Lk
j), where i � 1, 2, 3, . . . , α, j � 1, 2, 3

, . . . , β, k � a, b, c, . . . , z, then a matrix is defined as

Oij􏽨 􏽩α×β �

O11 O12 · · · O1β

O21 O22 · · · O2β

⋮ ⋮ ⋱ ⋮

Oα1 Oα2 · · · Oαβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where Oij � (TLk
j
(ui), ILk

j
(ui), FLk

j
(ui), ui ∈ U,Lk

j ∈L
a
1 ×

Lb
2 × · · · × Lz

β) � (To
ijk,Io

ijk,Fo
ijk).

�us, we can represent any neutrosophic hypersoft set in
terms of neutrosophic hypersoft matrix (NHSM), and it
means that they are interchangeable.

Example 1. LetU be the set of candidates for the teaching at
the college level:

U � T
1
,T

2
,T

3
,T

4
,T

5
􏽮 􏽯, (8)

and also consider the set of attributes as

A1 � Qualification,

A2 � Experience,

A3 � Gender,

A4 � Publications.

(9)

�eir respective attributes are given as

Table 1: Tabular representation of the characteristic function.

La
1 Lb

2 . . . Lz
β

u1 XRL
(u1,La

1) XRL
(u1,Lb

2) . . . XRL
(u1,Lz

β)

u2 XRL
(u2,La

1) XRL
(u2,Lb

2) . . . XRL
(u2,Lz

β)

⋮ ⋮ ⋮ ⋱ ⋮
uα XRL

(uα,La
1) XRL

(uα,Lb
2) . . . XRL

(uα,Lz
β)
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A
a
1 � Qualification � BSHons.,

MS
Mphill

, Phd,Post Doctorate􏼨 􏼩,

A
b
2 � Experience � 5 yr, 8 yr, 10 yr, 15 yr􏼈 􏼉,

A
c
3 � Gender � Male, Female{ },

A
d
4 � Publications � 3, 5, 8, 10+{ }.

(10)

Let the function be F: Aa
1 × Ab

2 × Ac
3 × Ad

4⟶ P(U).

�e tabular representation is given in Tables 2–5 with
their neutrosophic values from different decision-makers.

Neutrosophic hypersoft set is defined as

F: A
a
1 × A

b
2 × A

c
3 × A

d
4􏼐 􏼑⟶ P(U). (11)

Let us assume F(Aa
1 × Ab

2 × Ac
3 × Ad

4) � F(Mphill,
5 yr,male, 3) � T1,T2,T4,T5􏼈 􏼉.

�en, the neutrosophic hypersoft set of aboveassumed
relation is

F A
a
1 × A

b
2 × A

c
3 × A

d
4􏼐 􏼑

� F(Mphill, 5 yr,male, 3)

�

T
1
, 0.5, 0.3, 0.6{ }, 0.3, 0.4, 0.7{ }, 0.5, 0.6, 0.9{ }, 0.6, 0.4, 0.5{ }􏼐 􏼑,

T
2
, 0.3, 0.2, 0.1{ }, 0.6, 0.5, 0.3{ }, 0.7, 0.8, 0.3{ }, 0.7, 0.5, 0.3{ }􏼐 􏼑,

T
4
, 0.7, 0.3, 0.6{ }, 0.6, 0.4, 0.8{ }, 0.8, 0.5, 0.4{ }, 0.6, 0.2, 0.1{ }􏼐 􏼑,

T
5
, 0.5, 0.4, 0.5{ }, 0.3, 0.6, 0.7{ }, 0.9, 0.2, 0.1{ }, 0.4, 0.5, 0.3{ }􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(12)

�e tabular representation of a characteristic function is
given in Table 6.

Also, it can be represented in matrix form as follows:

[O]4×4 �

(0.5, 0.3, 0.6) (0.3, 0.4, 0.7) (0.5, 0.6, 0.9) (0.6, 0.4, 0.5)

(0.3, 0.2, 0.1) (0.6, 0.5, 0.3) (0.7, 0.8, 0.3) (0.7, 0.5, 0.3)

(0.7, 0.3, 0.6) (0.6, 0.4, 0.8) (0.8, 0.5, 0.4) (0.6, 0.2, 0.1)

(0.5, 0.4, 0.5) (0.3, 0.6, 0.7) (0.9, 0.2, 0.1) (0.4, 0.5, 0.3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Definition 7 Let O � [Oij] be the NHSM of order α × β,
where Oij � (To

ijk,Io
ijk,Fo

ijk), then O is said to be square
NHSM if α � β. It means that if an NHSM has the same
number of rows (attributes) and columns (alternatives), then
it is a square NHSM.

Definition 8 Let O � [Oij] be the square NHSM of order
α × β, where Oij � (To

ijk,Io
ijk,Fo

ijk), then Ot is said to be
the transpose of square NHSM if rows and columns of O are
interchanged. It is denoted as

O
t

� Oij􏽨 􏽩
t

� T
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑

t
� T

o
jki,I

o
jki,F

o
jki􏼐 􏼑 � Oji􏽨 􏽩.

(14)

Definition 9 Let O � [Oij] be the square NHSM of order
α × β, where Oij � (To

ijk,Io
ijk,Fo

ijk), then O is said to be
symmetric NHSM if Ot � O, i.e.,
(To

ijk,Io
ijk,Fo

ijk) � (To
jki,I

o
jki,F

o
jki).

Definition 10 Let O � [Oij] be the NHSM of order α × β,
where Oij � (To

ijk,Io
ijk,Fo

ijk) and s be any scalar, then the
product of matrix O and a scalar s is a matrix formed by
multiplying each element of matrix O by s. It is denoted as
sO � [sOij], where 0≤ s≤ 1.

Example 2. Let us consider an NHSM [O]4×4.

[O]4×4 �

(0.5, 0.3, 0.6) (0.3, 0.4, 0.7) (0.5, 0.6, 0.9) (0.6, 0.4, 0.5)

(0.3, 0.2, 0.1) (0.6, 0.5, 0.3) (0.7, 0.8, 0.3) (0.7, 0.5, 0.3)

(0.7, 0.3, 0.6) (0.6, 0.4, 0.8) (0.8, 0.5, 0.4) (0.6, 0.2, 0.1)

(0.5, 0.4, 0.5) (0.3, 0.6, 0.7) (0.9, 0.2, 0.1) (0.4, 0.5, 0.3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)
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and 0.1 be the scalar, then scalar multiplication of NHSM
[O]4×4 is given as

[(0.1)O]4×4 �

(0.05, 0.03, 0.06) (0.03, 0.04, 0.07) (0.03, 0.04, 0.07) (0.06, 0.04, 0.05)

(0.03, 0.02, 0.01) (0.06, 0.05, 0.03) (0.07, 0.08, 0.03) (0.07, 0.05, 0.03)

(0.07, 0.03, 0.06) (0.06, 0.04, 0.08) (0.08, 0.05, 0.04) (0.06, 0.02, 0.01)

(0.05, 0.04, 0.05) (0.03, 0.06, 0.07) (0.09, 0.02, 0.01) (0.04, 0.05, 0.03)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Proposition 1. Let O � [Oij] and M � [Mij] be two
NHSMs, where Oij � (To

ijk,Io
ijk,Fo

ijk) and Mij � (TM
ijk,

IM
ijk,FM

ijk). For two scalars s, t ∈ [0, 1], then

(1) s(tO) � (st)O

(2) If s< t, then sO< tO.
(3) If O⊆M, then sO⊆sM.

Proof

s(tO) � s tOij􏽨 􏽩 � s tT
o
ijk, tI

o
ijk, tF

o
ijk􏼐 􏼑􏽨 􏽩

� stT
o
ijk, stI

o
ijk, stF

o
ijk􏼐 􏼑􏽨 􏽩 � st T

o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑􏽨 􏽩

� st Oij􏽨 􏽩 � (st)O.

(17)

Since To
ijk,Io

ijk,Fo
ijk ∈ [0, 1], then sTo

ijk ≤ tTo
ijk,

sIo
ijk ≤ tIo

ijk, sFo
ijk ≤ tFo

ijk.
Now,

Table 3: Opinion of decision-makers for all alternatives against Ab
2.

Ab
2(Experience (yr)) T1 T2 T3 T4 T5

5 (0.3,0.4,0.7) (0.6,0.5,0.3) (0.5,0.6,0.8) (0.6,0.4,0.8) (0.3,0.6,0.7)
8 (0.4,0.2,0.5) (0.8,0.1,0.2) (0.4,0.7,0.3) (0.4,0.8,0.7) (0.7,0.5,0.6)
10 (0.7,0.2,0.3) (0.9,0.3,0.1) (0.8,0.3,0.2) (0.5,0.4,0.3) (0.5,0.2,0.1)
15 (0.8,0.2,0.1) (0.6,0.4,0.3) (0.9,0.4,0.1) (0.6,0.2,0.3) (0.5,0.3,0.2)

Table 2: Opinion of decision-makers for all alternatives against Aa
1.

Aa
1(Qualification) T1 T2 T3 T4 T5

BS Hons. (0.4,0.5,0.8) (0.7,0.6,0.4) (0.4,0.5,0.7) (0.5,0.3,0.7) (0.5,0.3,0.8)
MS/MPhil. (0.5,0.3,0.6) (0.3,0.2,0.1) (0.3,0.6,0.2) (0.7,0.3,0.6) (0.5,0.4,0.5)
Ph.D. (0.8,0.2,0.4) (0.9,0.5,0.3) (0.9,0.4,0.1) (0.6,0.3,0.2) (0.6,0.1,0.2)
Postdoctorate (0.9,0.3,0.1) (0.5,0.2,0.1) (0.8,0.5,0.2) (0.8,0.2,0.1) (0.7,0.4,0.2)

Table 5: Opinion of decision-makers for all alternatives against Ad
4 .

Ad
4(Publication) T1 T2 T3 T4 T5

3 (0.6, 0.4, 0.5) (0.7, 0.5, 0.3) (0.6, 0.4, 0.3) (0.6, 0.2, 0.1) (0.4, 0.5, 0.3)
5 (0.8, 0.2, 0.4) (0.7, 0.3, 0.2) (0.8, 0.3, 0.1) (0.3, 0.4, 0.5) (0.3, 0.5, 0.8)
8 (0.5, 0.3, 0.4) (0.6, 0.3, 0.4) (0.5, 0.7, 0.2) (0.8, 0.4, 0.1) (0.7, 0.4, 0.3)
10 + (0.4, 0.9, 0.6) (0.8, 0.4, 0.2) (0.2, 0.6, 0.5) (0.7, 0.5, 0.2) (0.6, 0.4, 0.7)

Table 4: Opinion of decision-makers for all alternatives against Ac
3.

Ac
3(Gender) T1 T2 T3 T4 T5

Male (0.5, 0.6, 0.9) (0.7, 0.8, 0.3) (0.6, 0.4, 0.3) (0.8, 0.5, 0.4) (0.9, 0.2, 0.1)
Female (0.6, 0.4, 0.7) (0.3, 0.6, 0.4) (0.8, 0.2, 0.1) (0.4, 0.5, 0.6) (0.8, 0.4, 0.2)

Table 6: Characteristic function of NHSS.

Aa
1 Ab

2 Ac
3 Ad

4

T1 (0.5, 0.3, 0.6) (0.3, 0.4, 0.7) (0.5, 0.6, 0.9) (0.6, 0.4, 0.5)

T2 (0.3, 0.2, 0.1) (0.6, 0.5, 0.3) (0.7, 0.8, 0.3) (0.7, 0.5, 0.3)

T4 (0.7, 0.3, 0.6) (0.6, 0.4, 0.8) (0.8, 0.5, 0.4) (0.6, 0.2, 0.1)

T5 (0.5, 0.4, 0.5) (0.3, 0.6, 0.7) (0.9, 0.2, 0.1) (0.4, 0.5, 0.3)
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sO � sOij􏽨 􏽩 � sT
o
ijk, sI

o
ijk, sF

o
ijk􏼐 􏼑􏽨 􏽩≤ tT

o
ijk, tI

o
ijk, tF

o
ijk􏼐 􏼑􏽨 􏽩 � tOij􏽨 􏽩 � tO,

O⊆M⇒ Oij􏽨 􏽩⊆ Mij􏽨 􏽩

⇒To
ijk ≤T

M
ijk,I

o
ijk ≤I

M
ijk,F

o
ijk ≥F

M
ijk

⇒sT
o
ijk ≤ sT

M
ijk, sI

o
ijk ≤ sI

M
ijk, sF

o
ijk ≥ sF

M
ijk

⇒s Oij􏽨 􏽩⊆s Mij􏽨 􏽩

⇒sO⊆sM.

(18)

Similarly, we can prove assertions 1 and 2. □

Theorem 1. Let O � [Oij] be the NHSM of order α × β,
where Oij � (To

ijk,Io
ijk,Fo

ijk). >en,

(1) (sO)t � sOt, where s ∈ [0, 1].
(2) (Ot)t � O.
(3) If O � [Oij] is the upper triangular NHSM, then Ot is

lower triangular NHSM and vice versa.

Proof. Here, (sO)t, sOt ∈ NHSMα×β, so

(sO)
t

� sT
o
ijk, sI

o
ijk, sF

o
ijk􏼐 􏼑􏽨 􏽩

t

� sT
o
jki, sI

o
jki, sF

o
jki􏼐 􏼑􏽨 􏽩

� s T
o
jki,I

o
jki,F

o
jki􏼐 􏼑􏽨 􏽩

� s T
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑􏽨 􏽩

t
� sO

t
.

(19)

□

Proof. Since Ot ∈ NHSMα×β, then(Ot)t ∈ NHSMα×β. Now,

O
t

􏼐 􏼑
t

� T
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑􏽨 􏽩

t
􏼒 􏼓

t

� T
o
jki,I

o
jki,F

o
jki􏼐 􏼑􏽨 􏽩􏼐 􏼑

t

� T
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑􏽨 􏽩 � O.

(20)

□

Definition 11. Let O � [Oij] be the square NHSM of order
α × β, where Oij � (To

ijk,Io
ijk,Fo

ijk) and α � β. �en, the
trace of NHSM is denoted as tr(O) and is defined as
tr(O) � 􏽐

α,z
i�1,k�a[To

iik − (Io
iik + Fo

iik)].

Example 3. Let us consider an NHSM [O]4×4.

[O]4×4 �

(0.5, 0.3, 0.6) (0.3, 0.4, 0.7) (0.5, 0.6, 0.9) (0.6, 0.4, 0.5)

(0.3, 0.2, 0.1) (0.6, 0.5, 0.3) (0.7, 0.8, 0.3) (0.7, 0.5, 0.3)

(0.7, 0.3, 0.6) (0.6, 0.4, 0.8) (0.8, 0.5, 0.4) (0.6, 0.2, 0.1)

(0.5, 0.4, 0.5) (0.3, 0.6, 0.7) (0.9, 0.2, 0.1) (0.4, 0.5, 0.3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

�en, tr(O) � (0.5 − 0.3 − 0.6) + (0.6 − 0.5 − 0.3) +

(0.8 − 0.5 − 0.4)+ (0.4 − 0.5 − 0.3) � − 1.1.

Proposition 2. Let O � [Oij] be the square NHSM of order
α × β, where Oij � (To

ijk,Io
ijk,Fo

ijk) and α � β, and s be any

scalar, then tr(sO) � str(O).

Proof

tr(sO) � 􏽘
α,z

i�1,k�a

sT
o
iik − sI

o
iik + sF

o
iik( 􏼁􏼂 􏼃

� s 􏽘
α,z

i�1,k�a

T
o
iik − I

o
iik + F

o
iik( 􏼁􏼂 􏼃

� str(O).

(22)

□
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Definition 12. Let O � [Oij] and M � [Mjm] be two
NHSMs, where Oij � (To

ijk,Io
ijk,Fo

ijk) and Mjm � (TM
jkm,

IM
jkm,FM

jkm). �en, O and M are said to be conformable if
their dimensions are equal to each other (the number of

columns of O is equal to several rows of M ). If
O � [Oij]α×βand M � [Mjm]β×c, then OM � [Sim]α×c,
where

Sim􏼂 􏼃 � maxjk min T
o
ijk,T

M
jkm􏼐 􏼑,minjk max I

o
ijk,I

M
jkm􏼐 􏼑,minjk max F

o
ijk,F

M
jkm􏼐 􏼑􏼐 􏼑. (23)

Theorem 2. Let O � [Oij]α×βand M � [Mjm]β×c be two
NHSMs, where Oij � (To

ijk,Io
ijk,Fo

ijk) and Mjm � (TM
jkm,

IM
jkm,FM

jkm). >en, (O■M)t � Mt■Ot.

Proof. Let O■M � [Sim]α×c, then (O■M)t � [Smi]c×α, Ot

� [Oji]β×α,M
t � [Mmj]c×β.

Now,

(O■M)
t

� T
S
kmi,I

S
kmi,F

S
kmi􏼐 􏼑

c×α

� maxjk min T
M
mjk,T

o
jki􏼐 􏼑,minjk max I

M
mjk,I

o
jki􏼐 􏼑,minjk max F

M
mjk,F

0
jki􏼐 􏼑􏼐 􏼑

c×α

� T
M
mjk,I

M
mjk,F

M
mjk􏼐 􏼑

c×β■ T
o
jki,I

o
jki,F

0
jki􏼐 􏼑β×α

� M
t■Ot

.

(24)

□
Definition 13. Let O � [Oij] and M � [Mij] be two
NHSMs, where Oij � (To

ijk,Io
ijk,Fo

ijk) and
Mij � (TM

ijk,IM
ijk,FM

ijk). �en, their union is defined as
follows:

O∪M � S, whereTs
ijk � max T

o
ijk,T

M
ijk􏼐 􏼑,I

s
ijk �

I
o
ijk + I

M
ijk􏼐 􏼑

2
,F

s
ijk � min F

o
ijk,F

M
ijk􏼐 􏼑. (25)

Definition 14. Let O � [Oij] and M � [Mij] be two
NHSMs, where Oij � (To

ijk,Io
ijk,Fo

ijk) and Mij � (TM
ijk,

IM
ijk,FM

ijk). �en, their intersection is defined as follows:

O∩M � S, whereTs
ijk � min T

o
ijk,T

M
ijk􏼐 􏼑,I

s
ijk �

I
o
ijk + I

M
ijk􏼐 􏼑

2
,F

s
ijk � max F

o
ijk,F

M
ijk􏼐 􏼑. (26)

Proposition 3. Let O � [Oij] and M � [Mij] be two upper
triangular NHSMs, where Oij � (To

ijk,Io
ijk,Fo

ijk) and
Mij � (TM

ijk,IM
ijk,FM

ijk). >en, (O∪M), (O∩M), (O⊕M),
(O⊕wM), (O⊙M), and (O⊙ wM) are all upper triangular
NHSMs and vice versa.

Theorem 3. Let O � [Oij] and M � [Mij] be two NHSMs,
where Oij � (To

ijk,Io
ijk,Fo

ijk) and Mij � (TM
ijk,IM

ijk,FM
ijk).

>en,

(1) (O∪M)◇ � O◇ ∩M◇.
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(2) (O∩M)◇ � O◇ ∪M◇. Proof

(O∪M)
◇

� max T
o
ijk,T

M
ijk􏼐 􏼑,

Io
ijk + IM

ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

◇

� min F
o
ijk,F

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, max T

o
ijk,T

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� F
o
ijk,I

o
ijk,T

o
ijk􏼐 􏼑∩ F

M
ijk,I

M
ijk,T

M
ijk􏼐 􏼑

� T
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑
◇
∩ T

M
ijk,I

M
ijk,F

M
ijk􏼐 􏼑
◇

� O
◇ ∩M◇.

(27)

□
Proof

(O∩M)
◇

� min T
o
ijk,T

M
ijk􏼐 􏼑,

Io
ijk + IM

ijk􏼐 􏼑

2
, max F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

◇

� max F
o
ijk,F

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, min T

o
ijk,T

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� F
o
ijk,I

o
ijk,T

o
ijk􏼐 􏼑∪ F

M
ijk,I

M
ijk,T

M
ijk􏼐 􏼑

� T
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑
◇
∪ T

M
ijk,I

M
ijk,F

M
ijk􏼐 􏼑
◇

� O
◇ ∪M◇.

(28)

□
Theorem 4. Let O � [Oij] and M � [Mij] be two NHSMs,
where Oij � (To

ijk,Io
ijk,Fo

ijk) and Mij � (TM
ijk,IM

ijk,FM
ijk).

>en,

(1) (O∪M) � (M∪O).

(2) (O∩M) � (M∩O).

Proof

(O∪M) � max T
o
ijk,T

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� max T
M
ijk,T

o
ijk􏼐 􏼑,

I
M
ijk + I

o
ijk􏼐 􏼑

2
, min F

M
ijk,F

o
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
M
ijk,I

M
ijk,F

M
ijk􏼐 􏼑∪ T

o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑

� (M∪O).

(29)

□
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Proof

(O∩M) � min T
o
ijk,T

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, max F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� min T
M
ijk,T

o
ijk􏼐 􏼑,

I
M
ijk + I

o
ijk􏼐 􏼑

2
, max F

M
ijk,F

o
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
M
ijk,I

M
ijk,F

M
ijk􏼐 􏼑∩ T

o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑

� (M∩O).

(30)

□
Theorem 5. Let O � [Oij], M � [Mij], and N � [Mij]be
NHSM, where Oij � (To

ijk,Io
ijk,Fo

ijk), Mij � (TM
ijk,IM

ijk,

FM
ijk), and Nij � (TN

ijk,IN
ijk,FN

ijk). >en,

(O∪M)∪N � O∪ (M∪N),

(O∩M)∩N � O∩ (M∩N).
(31)

Proof

(O∪M)∪N � max T
o
ijk,T

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦∪ T

N
ijk,I

N
ijk,F

N
ijk􏼐 􏼑􏽨 􏽩

� max T
o
ijk,T

M
ijk,T

N
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk + I

N
ijk􏼐 􏼑

3
, min F

o
ijk,F

M
ijk,F

N
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� max T
O
ijk,T

M
ijk,T

N
ijk􏼐 􏼑,

I
O
ijk + I

M
ijk + I

N
ijk􏼐 􏼑

3
, min F

O
ijk,F

M
ijk,F

N
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
O
ijk,I

O
ijk,F

O
ijk􏼐 􏼑∪ max T

M
ijk,T

N
ijk􏼐 􏼑,

I
M
ijk + I

N
ijk􏼐 􏼑

2
, min F

M
ijk,F

N
ijk􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
O
ijk,I

O
ijk,F

O
ijk􏼐 􏼑∪ T

M
ijk,I

M
ijk,F

M
ijk􏼐 􏼑∪ T

N
ijk,I

N
ijk,F

N
ijk􏼐 􏼑􏼐 􏼑

� O∪ (M∪N).

(32)

Assertion 2 is similar to assertion 1. □

4. Logical Operations for NHSMs with
Their Properties

In this section, we develop some logical operators for NHSM
with their desirable properties and also introduce the no-
tions of necessity and possibility operators for NHSM.

Definition 15. Let O � [Oij] and M � [Mij] be two
NHSMs, where Oij � (To

ijk,Io
ijk,Fo

ijk) and Mij � (TM
ijk,

IM
ijk,FM

ijk). �en, OR-operation between them is defined as
follows:

T(O∨M) � max T
O
ijk,T

M
ijk􏽮 􏽯,

I(O∨M) � min I
O
ijk,I

M
ijk􏽮 􏽯,

F(O∨M) � min F
O
ijk,F

M
ijk􏽮 􏽯.

(33)

Definition 16. Let O � [Oij] and M � [Mij] be two
NHSMs, where Oij � (To

ijk,Io
ijk,Fo

ijk) and
Mij � (TM

ijk,IM
ijk,FM

ijk). �en, AND-operation between
them is defined as follows:
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T(O∨M) � min T
O
ijk,T

M
ijk􏽮 􏽯,

I(O∨M) � max I
O
ijk,I

M
ijk􏽮 􏽯,

F(O∨M) � max F
O
ijk,F

M
ijk􏽮 􏽯.

(34)

Proposition 4. Let O � [Oij], M � [Mij], and N � [Mij]

be three NHSMs, where Oij � (To
ijk,Io

ijk,Fo
ijk),

Mij � (TM
ijk,IM

ijk,FM
ijk), and Nij � (TN

ijk,IN
ijk,FN

ijk).
>en,

(1) O∨M � M∨O.
(2) O∧M � M∧O.
(3) O∨(M∨N) � (O∨M)∨N.
(4) O∧(M∧N) � (O∧M)∧N.

Proof. �e proof of the above proposition is
straightforward. □

Definition 17. Let O � [Oij] be an NHSM, where
Oij � (To

ijk,Io
ijk,Fo

ijk). �en, the necessity operator for
NHSM is represented as ⊕O and defined as follows:

⊕O � T
o
ijk,I

o
ijk, 1 − T

o
ijk􏼐 􏼑. (35)

Definition 18. Let O � [Oij] be an NHSM, where
Oij � (To

ijk,Io
ijk,Fo

ijk). �en, the possibility operator for
NHSM is represented as ⊗O and defined as follows:

⊗O � 1 − F
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑. (36)

Proposition 5. Let O � [Oij] and M � [Mij] be two
NHSMs, where Oij � (To

ijk,Io
ijk,Fo

ijk) and
Mij � (TM

ijk,IM
ijk,FM

ijk). >en,

(1) ⊕(O∪M) � ⊕O∪⊕M.
(2) ⊕(O∩M) � ⊕O∩⊕M.
(3) ⊗(O∪M) � ⊗O∪ ⊗M.
(4) ⊗(O∩M) � ⊗O∩ ⊗M.

Proof. We know that O � [Oij] � (To
ijk,Io

ijk,Fo
ijk) and

M � [Mij] � (TM
ijk,IM

ijk,FM
ijk) are two NHSMs. �en,

utilizing Definition 13, we get

O∪M � T
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑∪ T

M
ijk,I

M
ijk,F

M
ijk􏼐 􏼑,

O∪M � max T
o
ijk,T

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠.

(37)

Utilizing Definition 17, we get

⊕(O∪M) � max T
o
ijk,T

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, 1 − max T

o
ijk,T

M
ijk􏼐 􏼑⎛⎝ ⎞⎠. (38)

Again, using Definition 17, we have

⊕O � T
o
ijk,I

o
ijk, 1 − T

o
ijk􏼐 􏼑,

⊕M � T
M
ijk,I

M
ijk, 1 − T

M
ijk􏼐 􏼑.

(39)

�en, utilizing Definition 13, we have

⊕O∪⊕M � max T
o
ijk,T

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, min 1 − T

o
ijk, 1 − T

M
ijk􏼐 􏼑⎛⎝ ⎞⎠,

⊕O∪⊕M � max T
o
ijk,T

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, 1 − max T

o
ijk,T

M
ijk􏼐 􏼑⎛⎝ ⎞⎠.

(40)

Hence,

⊕(O∪M) � ⊕O∪⊕M. (41)
□

Proof. It is similar to assertion 1. □

Proof. We know that O � [Oij] � (To
ijk,Io

ijk,Fo
ijk) and

M � [Mij] � (TM
ijk,IM

ijk,FM
ijk) are two NHSMs. �en,

utilizing Definition 14, we get

O∪M � T
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑∪ T

M
ijk,I

M
ijk,F

M
ijk􏼐 􏼑,

O∪M � max T
o
ijk,T

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠.

(42)

Utilizing Definition 18, we get
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⊗ (O∪M) � 1 − min F
o
ijk,F

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠. (43)

Again, using Definition 18, we have

⊗O � 1 − F
o
ijk,I

o
ijk,F

o
ijk􏼐 􏼑,

⊗M � 1 − F
M
ijk,I

M
ijk,F

M
ijk􏼐 􏼑.

(44)

�en, utilizing Definition 13, we get

⊗O∪ ⊗M � max 1 − F
o
ijk, 1 − F

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠,

⊗O∪ ⊗M � 1 − min F
o
ijk,F

M
ijk􏼐 􏼑,

I
o
ijk + I

M
ijk􏼐 􏼑

2
, min F

o
ijk,F

M
ijk􏼐 􏼑⎛⎝ ⎞⎠.

(45)

Hence,

⊗ (O∪M) � ⊗O∪ ⊗M. (46)
□

Proof. It is similar to assertion 3. □

Definition 19. Let O � [Oij] be the NHSM of order α × β,
where Oij � (To

ijk,Io
ijk,Fo

ijk), then the value of matrix O is
denoted asV(O) and it is defined asV(O) � [VO

ij] of order
α × β, where VO

ij � To
ijk − Io

ijk, − Fo
ijk. �e score of two

NHSMs O � [Oij] andM � [Mij] of order α × β is given as
S(O,M) � V(O) + V(M) and S(O,M) � [Sij], where
Sij � VO

ij + VM
ij . �e total score of each object in the

universal set is | 􏽐
n
j�1 Sij|.

5. A Decision-Making Approach for
Neutrosophic Hypersoft Matrix Using
Score Function

A set of decision-makers wants to choose the appropriate
alternative from α number of alternatives. Decision-makers
select the attributes (β) for the selection of the most suitable
alternative. If anyone attribute has further subattributes
which form a relation like NHSM, every decision-maker
gives his preference for each alternative according to the
subattributes of the considered attributes in form of NHSMs
and obtained an NHSM of order α × β. From this NHSM, we
calculate values of matrices, which help to obtain a scoring
matrix, and finally, we calculate the total score of each al-
ternative from the score matrix. �e value matrices are
matrices that obey all properties of the real matrices. �e

score function is also a real matrix that is obtained from two
or more value matrices. �e algorithm of the presented
approach is given as follows.

5.1. Algorithm. Step 1: construct an NHSM.
Step 2: calculate the value matrix from NHSM. Let O �

[Oij] be the NHSM of order α × β, where
Oij � (To

ijk,Io
ijk,Fo

ijk), then the value of matrix O is
denoted as V(O) and it is defined as V(O) � [VO

ij] of
order α × β, whereVO

ij � To
ijk − Io

ijk, − Fo
ijk.

Step 3: compute score matrix with the help of value
matrices. �e score of two NHSMs O � [Oij] andM �

[Mij] of order α × β is given as S(O,M) � V(O) +

V(M) and S(O,M) � [Sij], where Sij � VO
ij + VM

ij .
Step 4: compute the total score from the score matrix.
�e total score of each object in the universal set is
| 􏽐

n
j�1 Sij|.

Step 5: find the optimal solution by selecting an object
of maximum score from the total score matrix.

5.2. Application of the Proposed Approach. Let
U � T1,T2,T3,T4,T5,􏼈 T6,T7,T8,T9,T10,T11,T12,

T13,T14,T15} be a collection of applicants for the position
of a faculty member in the public sector.�e president of the
institution hires a team of decision-makers A,B{ } for the
selection of the most competent faculty member. Also, the
president instructs decision-makers about the selection
procedure of the alternative such as

A � A1 � Qualification,A2 � Experience,A3 � Gender,A4 � Publications􏼈 􏼉. (47)
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Furthermore, the abovementioned attributes have fur-
ther bifurcation and can be classified as follows:

A
a
1 � Qualification � BSHons.,

MS
Mphill

, Phd,Post Doctorate􏼨 􏼩,

A
b
2 � Experience � 5 yr, 8 yr, 10 yr, 15 yr􏼈 􏼉,

A
c
3 � Gender � Male, Female{ },

A
d
4 � Publications � 3, 5, 8, 10+{ }.

(48)

�en,

F: A
a
1 × A

b
2 × A

c
3 × A

d
4⟶ P(U). (49)

Assume the relation F(Aa
1 × Ab

2 × Ac
3 × Ad

4) � F

(Mphill, 5 yr,male, 3) is the actual requirement of the in-
stitute for the selection of the most competent candidate. On

a seniority basis, four are shortlisted T2,T6,T8,T14􏼈 􏼉

according to the above-defined relation (Mphill,
5 yr,male, 3). �e team of decision-makers A,B{ } interviews
the shortlisted candidates. Both decision-makers give their
opinion for each alternative in the form of NHSM given as
follows:

A � F(Mphill, 5 yr,male, 3)

�

T
2
, 0.5, 0.3, 0.6{ }, 0.3, 0.4, 0.7{ }, 0.5, 0.6, 0.9{ }, 0.6, 0.4, 0.5{ }􏼐 􏼑,

T
6
, 0.3, 0.2, 0.1{ }, 0.6, 0.5, 0.3{ }, 0.7, 0.8, 0.3{ }, 0.7, 0.5, 0.3{ }􏼐 􏼑,

T
8
, 0.7, 0.3, 0.6{ }, 0.6, 0.4, 0.8{ }, 0.8, 0.5, 0.4{ }, 0.6, 0.2, 0.1{ }􏼐 􏼑,

T
14

, 0.5, 0.4, 0.5{ }, 0.3, 0.6, 0.7{ }, 0.9, 0.2, 0.1{ }, 0.4, 0.5, 0.3{ }􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

B � F(Mphill, 5 yr,male, 3)

�

T
2
, 0.8, 0.1, 0.2{ }, 0.7, 0.4, 0.3{ }, 0.4, 0.6, 0.3{ }, 0.5, 0.3, 0.5{ }􏼐 􏼑,

T
6
, 0.8, 0.2, 0.1{ }, 0.7, 0.4, 0.3{ }, 0.8, 0.2, 0.1{ }, 0.9, 0.3, 0.2{ }􏼐 􏼑,

T
8
, 0.5, 0.3, 0.4{ }, 0.7, 0.3, 0.2{ }, 0.9, 0.2, 0.1{ }, 0.4, 0.2, 0.7{ }􏼐 􏼑,

T
14

, 0.7, 0.4, 0.2{ }, 0.2, 0.4, 0.7{ }, 0.7, 0.2, 0.1{ }, 0.6, 0.3, 0.4{ }􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(50)

Utilize the above-developed algorithm such as follows: Step 1. �e above two NHSSs are given in the form of
NHSMs as

[A] �

(0.5, 0.3, 0.6) (0.3, 0.4, 0.7) (0.5, 0.6, 0.9) (0.6, 0.4, 0.5)

(0.3, 0.2, 0.1) (0.6, 0.5, 0.3) (0.7, 0.8, 0.3) (0.7, 0.5, 0.3)

(0.7, 0.3, 0.6) (0.6, 0.4, 0.8) (0.8, 0.5, 0.4) (0.6, 0.2, 0.1)

(0.5, 0.4, 0.5) (0.3, 0.6, 0.7) (0.9, 0.2, 0.1) (0.4, 0.5, 0.3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[B] �

(0.8, 0.1, 0.2) (0.7, 0.4, 0.3) (0.4, 0.6, 0.3) (0.5, 0.3, 0.5)

(0.8, 0.2, 0.1) (0.7, 0.4, 0.3) (0.8, 0.2, 0.1) (0.9, 0.3, 0.2)

(0.5, 0.3, 0.4) (0.7, 0.3, 0.2) (0.9, 0.2, 0.1) (0.4, 0.2, 0.7)

(0.7, 0.4, 0.2) (0.2, 0.4, 0.7) (0.7, 0.2, 0.1) (0.6, 0.3, 0.4)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(51)
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Step 2. Now, calculate the value matrices of NHSMs
defined in step I.

[V(A)] �

− 0.4 − 0.8 − 1 − 0.3

0 − 0.2 − 0.4 − 0.1

− 0.2 − 0.6 − 0.1 − 0.3

− 0.4 − 1 − .6 − 0.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[V(B)] �

0.5 0 − 0.5 − 0.3

0.5 0 0.5 0.4

− 0.2 0.2 0.6 0.5

0.1 − 0.9 0.4 − 0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(52)

Step 3. Now, compute the score matrix by adding value
matrices obtained in step II.

[S(A,B)] �

0.1 − 0.8 − 1.5 − 0.6

0.5 − 0.2 0.1 0.3

− 0.4 − 0.4 0.5 − 0.2

− 0.3 − 1.9 1 − 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53)

Step 4. Now, a total score of score matrix is given as

Total score �

2.8

0.1

0.5

1.7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (54)

Step 5. �e candidate T2 will be selected for a faculty
position in the public sector as the total score of T2 is
highest among the rest of the total score of candidates.

6. Discussion and Comparative Analysis

In the subsequent section, we are going to compare and
discuss our proposed decision-making methodology with
some existing techniques.

6.1. Comparative Analysis. �rough the current exploration
along with comparative, it can be concluded that the results
acquired by the proposed approach overlap with the ac-
cessible methodologies. However, in connection with ac-
cessible decision-making techniques, the main benefit of the
proposed method is that it comprises additional information
utilizing the membership, nonmembership, and indeter-
minacy of subattributes of considered attributes to address
uncertainty in data. Among them, the information related to

the object can be interpreted more accurately and objec-
tively. It is also a useful tool for solving inaccurate and
imprecise data in the DM process. �erefore, the inspiration
for the score value corresponding to each parameter will not
affect other parameters, so predictable information loss will
occur in the process. On the contrary, there is no serious loss
of information in our proposed approach. �e benefit of the
planned method along with related measures over existing
methods is that it not just notices the degree of discrimi-
nation, but the degree of similarity between observations so
that avoiding decisions is based on negative reasons.
�erefore, it is a suitable tool to combine inaccurate and
uncertain info in the DM process.

6.2. Discussion. By utilizing the methodology of Cagman
and Enginoglu [53], we can process the parametric values of
the alternative, but soft matrices have no information about
the multi-subattributes of the considered parameters.
Cagman and Enginoglu [54] deal with the uncertainty
considering MD, but the fuzzy soft matrix cannot deliver the
NMD of any attribute of the alternative. To overcome such
difficulties, Mondal and Roy [57] utilized the intuitionistic
fuzzy soft matrices using MD and NMD of the parametrized
family of attributes, but intuitionistic fuzzy soft matrices
provide no information about the indeterminacy part of the
object. Deli and Broumi [59] established neutrosophic soft
matrices competently handle the truthiness, indeterminacy,
and falsity objects of the attributes, but all the above-
mentioned studies have no information about the sub-
attributes of the considered attributes, when attributes have
their corresponding subattributes, then all abovementioned
theories fail to handle the situation. On the contrary, our
presented notion competently deals with such difficulties
considering the truthness, indeterminacy, and falsity objects
of any subattribute of the considered parameters with the
following condition 0≤T(v) + I(v) + F(v)≤ 3. Conse-
quently, relying upon the obtained results, it can be confi-
dently concluded that the proposed methodology indicates a
higher stability and usability for decision-makers in the DM
procedure. �e presented NHSM is unable to deal with the
situation, when the information is delivered in interval form.
�e final ranking of the proposed technique and prevailing
methodologies is seen in Table 7.

7. Conclusion

In this paper, we extend the notion of NHSS to a neu-
trosophic hypersoft matrix with some basic operations and
discussed their desirable properties. We also proposed the

Table 7: Comparative analysis of final ranking with existing studies.

Methods Ranking of alternatives Optimal alternatives
Cagman and Enginoglu [53] T2 >T14 >T8 >T6 T2

Cagman and Enginoglu [54] T2 >T8 >T14 >T6 T2

Mondal and Roy [57] T2 >T14 >T8 >T6 T2

Deli and Broumi [59] T2 >T14 >T6 >T8 T2

Proposed approach T2 >T14 >T8 >T6 T2

14 Complexity



score matrix for NHSM and furthermore introduced the
logical operators, necessity, and possibility operators under
considered environment. A decision-making methodology
has been established with the assistance of the score matrix
to solve the MADM problem. Consequently, relying upon
the obtained outcomes, it can be confidently concluded that
the proposed methodology indicates a greater constancy and
usability for decision-makers in the DM process. To ensure
the practicality of the established approach, a comparative
study has been conducted. Future research will surely
concentrate upon presenting several other operators to solve
decision-making complications utilizing NHSM. �e sug-
gested idea can be applied in quite a lot of issues in real life,
including the medical profession, pattern recognition, and
economics. We are sure this article will open new vistas for
investigators in this field.
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