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Abstract: The monitoring and management of consistently changing landscape patterns are accom-
plished through a large amount of remote sensing data using satellite images and aerial photography
that requires lossy compression for effective storage and transmission. Lossy compression brings
the necessity to evaluate the image quality to preserve the important and detailed visual features
of the data. We proposed and verified a weighted combination of qualitative parameters for the
multi-criteria decision-making (MCDM) framework to evaluate the quality of the compressed aerial
images. The aerial imagery of different contents and resolutions was tested using the transform-based
lossy compression algorithms. We formulated an MCDM problem dedicated to the rating of lossy
compression algorithms, governed by the set of qualitative parameters of the images and visually
acceptable lossy compression ratios. We performed the lossy compression algorithms’ ranking with
different compression ratios by their suitability for the aerial images using the neutrosophic weighted
aggregated sum product assessment (WASPAS) method. The novelty of our methodology is the use
of a weighted combination of different qualitative parameters for lossy compression estimation to get
a more precise evaluation of the effect of lossy compression on the image content. Our methodology
includes means of solving different subtasks, either by altering the weights or the set of aspects.

Keywords: aerial imagery; lossy compression; qualitative evaluation; MCDM; WASPAS; neutro-
sophic set

1. Introduction

The use of modern technologies increases the capabilities to explore the landscape
using satellite images and aerial photography. Remote sensed data provide us with the
information for studying and surveying the Earth and its bodies. The land cover patterns–
vegetation, soil, rock, water, buildings, roads, and other elements–are continually changing
due to anthropogenic impact and climate variations. The monitoring of land cover changes
and use, and emergency management [1] is accomplished through a large amount of remote
sensing data. These changes are related to urban planning [2], deforestation, biodiversity
loss [3–5] and other causes, like natural disasters [6]. This amount of data requires compres-
sion for effective management–storage, transmission, view, manipulation, processing, etc.
of the information. Uncompressed high-resolution images, containing remote sensing data,
tend to fill the storage space ineffectively and require long transmission time. Effective
data compression reduces the amount of data at the expense of their quality. Therefore, it
is important to determine the balance between the quality of remote sensing data and the
degree of compression.

Both lossy and lossless compression can be used for remote sensing imagery, reducing
the amount of data with significantly different compression ratios. Lossless compression
can be considered symmetric compression, which does not introduce the loss and dis-
tortions into information, so the compression ratios in most cases are low [7]. Higher
compression ratios are achievable using lossy compression methods at the expense of
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image quality [7] as this type of compression is asymmetric (the original file does not match
the decompressed file). For extremely large image files, lossy compression is the obvious
solution. Simultaneously, it is essential to evaluate the quality of the compressed images to
preserve the detailed and important visual features of the aerial images [8]. In this article,
an image that is reconstructed after compression will be referred to as a compressed image.

The degree of image degradation during each lossy compression process depends on
the compression algorithm, compression ratio, and the image itself. It is important to select
the proper lossy compression format and compression quality for the appropriate aerial
image to minimize the compression impact [8,9]. Different algorithms are used to save satel-
lite images and aerial photography data into the lossy compression formats [10–12]. The
majority of the popular compression algorithms for aerial imagery are wavelet-based [13].
The most used are the proprietary Enhanced Compression Wavelet (ECW) [14] and Joint
Photographic Experts Group (JPEG2000) [15]. The Consultative Committee for Space Data
Systems (CCSDS) is mostly used for real-time remote sensing data transmission [16]. The
ICER (Progressive Wavelet Image Compressor) is used for onboard image compression by
the NASA Mars Rovers [17]. The ECW method, in comparison to the proprietary wavelet-
based method Multiresolution Seamless Image Database (MrSid), produces smaller and
better quality images and in less time [18]. JPEG image compression is based on the discrete
cosine transform (DCT) and is the most well-known and widely applied [19]. All these al-
gorithms offer excellent compression performance, which is usually evaluated by efficiency
and computational requirements [13]. There are works [13,19–21] devoted to the analysis of
lossy compression performance comparing different algorithms at various conditions. We
are interested in the compression efficiency as it relates to the ability to maintain the highest
possible visual quality of the compressed aerial image by increasing the number of bits per
pixel for data storage. Our analysis and selection of lossy compression for aerial images do
not target the real-time applications, and the compression and decompression times are
not a priority. Considering the peculiarities of the algorithms used for satellite and aerial
images, we selected three of them for qualitative evaluation: ECW, JPEG2000, and JPEG.
The CCSDS method, compared to ECW and JPEG2000, retains the lower qualitative result
when reconstructing the original image after compression but is faster [13].

Continuous improvement of the current state-of-the-art lossy compression methods
requires proper methods and methodologies for qualitative evaluation of lossy compres-
sion. Usually, the single objective metrics are used to examine images’ lossy compression
quality [9–13]. We think the related and weighted combination of different qualitative
parameters can evaluate the influence of lossy compression on the image content more
precisely. We proposed and verified a set of qualitative parameters evaluating the com-
pressed aerial images using the MCDM framework. We formulated a new MCDM problem
dedicated to the rating of lossy compression algorithms governed by appropriate qual-
itative parameters of compressed images and visually acceptable lossy compression for
them. Herewith, we performed ranking for lossy compression algorithms with different
compression ratios by their suitability for the different resolution aerial images. To ensure
the stability of MCDM ranking results, we chose the direct weight determination and
weighted aggregated sum product assessment (WASPAS) methods in the neutrosophic
environment. These methods show great stability in solving various real-life problems.
We created the original multi-criteria decision-making methodology for the qualitative
selection of the aerial images’ lossy compression, which also provides the means of solving
different subtasks, either altering the weights or the set of aspects.

The article consists of five sections. Section 2 provides a summary of published papers
on the qualitative assessment of compressed aerial images. Section 3 describes the general
framework of the methodology, a set of alternatives and criteria for a multi-criteria task of
the qualitative rating of aerial images’ lossy compression, and defines the direct weight
determination and MCDM neutrosophic WASPAS methods for data processing. Section 4
presents the set of selected aerial images, qualitative evaluation, the ranking of compression
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results of the set by the neutrosophic WASPAS-SVNS method, and discussion of the results.
Concluding remarks and future directions are presented in Section 5.

2. Related Works

Qualitative assessment for compressed aerial images plays a vital role in identifying
the quality of different features of interest after the compression like forests, marshes,
shrubs, roads, buildings, water bodies, and others. The task is to identify the important
visual features that were lost during lossy compression. The features can be characterized
by generalizations like shape, size, density, color tone, texture [22,23]. Various land covers,
like vegetation, sand, or water, have distinct textures and colors in the aerial images. In-
formation on the change of the colors and textures can be calculated using global [20] and
local [20,23] statistical parameters: first-order histogram-based global statistics, like stan-
dard deviation, mean, or second-order Grey Level Co-occurrence Matrix (GLCM)-based
local statistics like contrast, homogeneity, entropy, and other. Textural or color changes
can be evaluated without prior image processing, and compared to the other features
like shape, size, density. The effect of lossy compression on the region color is usually
calculated using statistics of the image color components before and after compression
obtaining color components after image conversion to the appropriate color spaces [20].
Qualitative evaluation of color changes after compression can be performed using prior
image processing—segmentation by color [24,25]—and comparing the quality of segmen-
tation before and after compression, where the original image segmentation results serve
as ground truth. The color RGB images of the remote sensing are obtained by assigning a
specific multispectral band to each RGB channel. The obtained color of the object is the
combination of radiometric resolution (RS), or the number of bits obtained for each band.
The RS range depends on the possibility to collect values, based on the sensitivity and range
of the instrumentation. As edge detection is closely related to the image density [26,27],
the qualitative evaluation of edge detection after image compression can be used to assess
the change of compressed and original image density. Segmentation, edge detection, mor-
phological, and other image processing and analysis methods are applied to extract the
regions of the image. After the image regions are separated, their shape and size can be
evaluated. Mostly the general objective image quality assessment (IQA) metrics are used
to evaluate the degradations of the compressed images: mean square error (MSE) [8,19],
Peak Signal to Noise Ratio (PSNR) [8,9,13,19], Structural Similarity Index (SSIM) [8,19],
multiscale SSIM (MS-SSIM) [8,19], Visual Information Fidelity (VIF) [19], etc. Some authors
derived new methods to evaluate compression quality [28,29]. There were attempts to
include more parameters for the comparative analysis and evaluation of the compression
algorithms, including texture measures [20]. In [13,16,18], the authors included compres-
sion speed and compression ratios to evaluate the performance of appropriate algorithms.
The change of land cover pattern after lossy compression influences the proper detection
of distinct areas and their boundaries. The impact of lossy compression on the content of
remote sensing images usually occurs at higher compression ratios and depends on the
compression algorithms. In [30], the effect of lossy compression was evaluated for edge
detection, segmentation [31,32], and classification [32,33]. The visual features’ degradation
in areal images compressed using lossy algorithms is related to the image content and
resolution [34]. The effect of lossy compression on the processed result and quality of the
compressed images can be evaluated using subjective metrics like Mean Opinion Score
(MOS), but it is not always effective. Visual data in the relevant application areas can be
collected, compressed for easier transmission, saving storage space, and later reviewed by
the inspectors or processed by the appropriate methods [35]. In these cases, it should be
useful to find the best solution for image lossy compression implementation in hardware.

We aim to manage the qualitative rating process of lossy compression by the set
of qualitative parameters such as general image quality metrics, change of color (using
first-order histogram-based statistics), change of texture (using second-order GLCM-based
statistics), and subjective evaluation (using MOS). These qualitative parameters were



Symmetry 2021, 13, 273 4 of 26

applied both for the ranking of lossy compression algorithms and the decision making
about the acceptable threshold of visual distortions in the lossy compressed image. A
weighted combination of different qualitative parameters could be used to evaluate the
effect of lossy compression on the image content more precisely. This approach also
provides the possibilities to solve different subtasks, either altering the weights or the set
of aspects.

The impact of the lossy compression process was analyzed using a set of qualitative
parameters, considered as criteria in our multi-criteria decision-making methodology. The
MCDM approach was successfully applied in a broad spectrum of image processing areas:
improvement of edge detection [36] and segmentation [37] of images, selection of edge
detection algorithms for satellite images [27]. The MCDM was used as an important
technique in sustainability engineering [38,39], as a solution for various complex tasks
based on the assessment of variants. Direct determination for qualitative parameters’
weighting and WASPAS methods were chosen as efficient decision-making tools. These
methods were not applied for the qualitative rating of lossy compression by a set of aspects
before our research. WASPAS is capable of providing a higher accuracy result compared to
the weighted product model (WPM), and the weighted sum model (WSM) methods as it is
the combination of both methods [40].

3. Methods for the Methodology of the Selection of Lossy Compression Algorithms by
Set of Qualitative Parameters

We apply the framework of multi-criteria decision-making for the evaluation of lossy
compression algorithms. The problem formulation in the MCDM context is formalized
by constructing the decision matrix. This matrix is defined by the criteria, placed in
rows, and the alternatives are placed in columns. The first step in the selection of lossy
compression algorithms is the definition of the set of qualitative parameters. The content
change of the reconstructed aerial image after compression depends on the compression
algorithm, compression ratio, image resolution, and image content itself. Image content is
presented by pixel values, and after lossy compression, these values of the reconstructed
image are altered. Herewith, the visual appearance of the features, like a forest, cropland,
roads, buildings, water, is changing too. In this work, visual features are characterized by
generalizations like texture, color tone, and luminance.

3.1. A Framework of the Methodology

The developed original MCDM methodology for the qualitative rating (selection) of
lossy compression algorithms for aerial images includes seven essential stages:

• The selection and verification of a set of qualitative parameters for the change detection
between the original and compressed aerial images as the criteria;

• The selection of a set of lossy compression algorithms with the appropriate compres-
sion ratios that are used for aerial image compression as the alternatives;

• The compression of the selected aerial images using the selected lossy compression
algorithms with different compression ratios;

• The evaluation of the influence of lossy compression to the content of the aerial image
using the set of qualitative parameters;

• Definition of the acceptable visible distortion threshold in the compressed image;
• The processing of the acquired data using MCDM neutrosophic WASPAS method;
• The ranking of the compression algorithms and their compression ratios by their

qualitative suitability for the appropriate aerial images of different resolutions.

The generalized framework for the implementation of the methodology is presented
in Figure 1.
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Figure 1. The framework for rating the lossy compression algorithms and their compression ratios by their qualitative
suitability for the aerial images. Different colors present stages related to the data selection, lossy compression (alternatives),
lossy compression evaluation by the qualitative parameters (criteria) and data processing for qualitative ranking of
lossy compression.

The transform-based lossy compression algorithms—JPEG2000, ECW, and JPEG—
were selected to implement our methodology. The algorithms were ranked by the amount of
the distortions introduced to the aerial image, estimated using: (a) the supervised objective
image quality measures; (b) subjective evaluation; (c) the change in the appropriate first-
order statistical measures; (d) the change in the second-order statistical measures. The
novelty of the approach is the use of a weighted combination of different qualitative
parameters for lossy compression estimation compared to the estimation using only single
objective image quality metrics. Thus, the effect of lossy compression on the image content
can be evaluated more precisely. This also allows targeting different subtasks, either
altering the weights or the set of aspects: the same approach can be used to assess the
texture or color quality after the compression.

3.2. Lossy Compression Algorithms for Aerial Images

In this work, three lossy transform-based compression algorithms, namely, JPEG2000 [41],
ECW [42,43], and JPEG [44], were selected as alternatives for MCDM methodology to
evaluate them by compression efficiency. JPEG2000 is a still image (greyscale, color etc.)
encoding and decoding system that defines both lossy and lossless compression techniques
based on the discrete wavelet transform (DWT) method [45]. ECW is a proprietary lossy
compression format based on the DWT method, targeted for satellite imagery and aerial
photography [46]. JPEG is a commonly used image encoding and decoding system, using
a lossy compression technique based on the DCT [47].

It has been stated [48] that the transform-based compression is less sensitive to changes
in the statistical image properties, and the subjective image quality is preserved better.
The proper lossy compression technique uses the image data decomposition to reduce the
redundant information and maintain the quality of the image. The generalized scheme
for lossy aerial image compression and decompression is presented in Figure 2. It con-
sists of the reduction in redundancy, entropy coding, bit stream transmission, decoding,
and data reconstruction. The typical encoder performs color space conversion and image
decomposition, transformation, quantization and coding [49,50]. The decoder performs
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entropy decoding, dequantization, inverse transformation, and inverse color space conver-
sion [49,50].

Figure 2. Basic procedures for aerial image transform-based lossy compression–decompression.

As shown in Figure 1, the encoder converts the original image into the bit stream. The
encoded bit stream is received by the decoder, and the restored image is obtained. For
the lossy compression system, the total data quantity of the original image is larger than
the data quantity of the compressed image. The ratio between these images is called the
compression ratio [7,51] and can be expressed as:

Cr =
Usize
Csize

, (1)

where Usize—uncompressed image size; Csize—the size of a compressed image file stored in
a disk.

It must be noted that the compression ratio is calculated for the storage size, not the
image data, so storing the same compressed image in the different storage formats will
affect the compression ratio because of the additional data, introduced by the file format.

The aerial image is transformed from the spatial domain to the frequency domain
at the decomposition stage. This process is usually lossless. The JPEG2000 and ECW
algorithms use DWT to decompose an image into sub-images (sub-bands) of low-pass
(approximate) and high-pass (detail) coefficients at different resolutions. The ECW algo-
rithm exploits this decomposition during compression of images to maintain the quality
close to the uncompressed imagery, and the quality at different compression ratios changes
less compared to JPEG2000. The difference between JPEG2000 and ECW is the analysis
and synthesis filters used for DWT. The JPEG uses a discrete cosine transform (DCT) to
obtain the approximation blocks, representing the magnitude of the appropriate frequen-
cies. DWT and DCT coefficients of the decomposed image are ordered by their impact,
and coefficients contributing insignificant information to image content may be omitted.
Properties like energy compaction, data decorrelation, computational speed characterize
the discrete transforms and can be reused in data compression.

The quantization is an irreversible process in the lossy compression pipeline. It is a
compromise between the quality of the image and the compression ratio. As the lower
frequencies provide the most important part of the information in the image, there is a
possibility to discard high-frequency components and reduce the amount of data consider-
ing the human eye is almost insensitive to the rapidly varying differences in brightness
(high frequencies). In the JPEG pipeline, blocks containing high-frequency and thus low-
importance coefficients that are close to zero are discarded to get an enhanced compression
rate. The visually weighted quantization tables are exploited for the minimization of the
perceptible loss of information. Considering that each sub-band has different importance
based on the human perceptibility, the selection of the quantizer step-size can exploit the
human visual system (HVS) model like DCT quantization tables in JPEG. The JPEG2000
uses a uniform scalar quantizer to quantize wavelet sub-band coefficients, for which the
magnitudes are below the quantizer step-size. The sub-bands of each JPEG2000 image tile
are further divided into non-overlapping blocks—the rectangular arrays for entropy cod-
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ing. Similar to JPEG2000, the ECW quantization is adopted to the coefficients of separate
wavelet sub-bands. The image compression is achieved after the quantization.

For the creation of the compressed bit stream, the JPEG2000 algorithm uses Embedded
Block Coding with Optimized Truncation (EBCOT) that encompasses the arithmetic coding
system. The entropy coder of JPEG uses Huffman coding. The encoded bit stream can
be transmitted over communication channels or stored in repositories. The encoding
procedure is lossless.

The compressed image is reconstructed via decoding, dequantization, and transfor-
mation, inverse DWT for JPEG2000/ECW and inverse DCT for JPEG. Finally, the color
transform from YCbCr to the presentation color space is performed. The reconstructed
aerial image is a close approximation of the original image, as distortions are introduced
during lossy compression.

Since ECW is a proprietary algorithm, only the compression results can expose its
peculiarities. The aerial images were compressed by the ECW algorithm using Global
Mapper v20.0.1 software package [52] in our work.

3.3. Qualitative Parameters for Compressed Aerial Images

In aerial images, the different areas like grass, sand, vegetation, water, and others
may be defined as regions of different textures. As the texture is defined by the local
fluctuations of intensities or color brightness in an image, a human can discern the appro-
priate regions even in grayscale images by distinct textures. The region of rough texture
is characterized by contrasting values of the neighboring pixels (e.g., forest canopy). The
smooth region contains pixels of similar values (e.g., calm water) [27]. Texture character-
istics are used in various application areas of remote sensing images like segmentation
and classification [23,53,54]. The aerial images are rich not only in texture but also in color
information. This information is used for edge detection, segmentation, classification, and
other purposes [5,36,37].

The visual features depend on the image content since it is represented by the spatial
arrangement and interrelationships of pixel values. The pixel-based approaches are widely
used in change detection in remote sensing data [23,55]. Because of this, it is essential to
evaluate the impact of lossy compression on the visual features of the aerial image content.
Change detection of the texture and color characteristics can be evaluated by numerical
pixel-based statistical measures [20,55]. The image does not require the prior processing
to assess the statistical change of information after lossy compression and statistics are
calculated for the compressed and the original image to find the differences.

There are different methods to calculate the texture features, like Gabor Filter [56],
wavelet [57], Grey Level Co-occurrence Matrix (GLCM) [53–55]. The GLCM-based method
is commonly used for texture analysis and discrimination using second-order histogram
statistics. In [58], the authors proposed 14 statistics properties to describe the texture.
There are five commonly used Haralic statistical measures (irrelative to each other) for
texture analysis in remote sensing images: contrast, correlation, energy, entropy, and
homogeneity [53,59]. The statistical texture measures are calculated using the probability
matrix P of the GLCM method. The number of grey levels in the aerial image determines
the dimensions of this matrix. The gray levels can be quantized with the cost of the
reduction in the information [60]. Each element (i, j) of the probability matrix P defines
the frequency of a pixel of the i grayscale intensity occurring at a specified distance d and
direction θ adjacent to a pixel of a grayscale intensity j. Smaller distances are used for
capturing local information [54].

In this research, we used five GLCM-based statistics to evaluate the distortions in-
troduced into the grayscale image (Y channel of YCbCr color space) textures after lossy
compression: contrast, correlation, homogeneity, energy, entropy.
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The contrast [53,54,58] statistic measures the intensity contrast between each image
pixel and its neighbor. This statistic presents the local variations in the image content and
is defined by the equation:

Contrast = ∑N−1
i=0 ∑N−1

j=0 |i− j|2P(i, j), (2)

where P—the probability matrix, (i, j)—location of the current pixel.
The correlation [53,54,58] shows the link between a pixel and its neighbors. It also

reflects texture similarity in the appropriate direction and will be high for the image regions
with a linear structure. The correlation is expressed as:

Correlation = ∑N−1
i=0 ∑N−1

j=0

(i− µi)
(

j− µj
)

P(i, j)
σiσj

, (3)

where µi, µj—the mean, σi, σj—the standard deviation.
The homogeneity [53,54,58] statistic reflects how close to the GLCM diagonal are

distributed the elements of GLCM. Low contrast image exposes high values of homogeneity.
This statistic is closely related to the change of the pixel intensity values in the image region.
The homogeneity is calculated as:

Homogeneity = ∑N−1
i=0 ∑N−1

j=0
P(i, j)

1 + |i− j| . (4)

The energy [53,54,58] statistic measures the uniformity. The less smooth the texture of
the image is, the lower its energy value. The energy is computed as:

Energy = ∑N−1
i=0 ∑N−1

j=0 P2(i, j). (5)

The entropy [53,54,58] measures the image information. The high entropy reflects the
high complexity and disorder of the image textures. The smooth textures have low entropy
values. The entropy statistic is computed as:

Entropy = −∑N−1
i=0 ∑N−1

j=0 P(i, j)logP(i, j). (6)

The effect of lossy compression on the image color is defined by first-order statistics—
mean and standard deviation—of Cb and Cr color channels of YCbCr color space in
our research. These histogram-based statistics are global as they do not localize image
distortions in the spatial domain. The one-dimensional histogram is used to provide
statistical information about the greyscale or color image or textures. The probability
density function p(i) can be calculated by dividing the values of intensity level histogram
h(i) by the number of image pixels N ×M [61]:

p(i) =
h(i)
NM

, (7)

where i = 0, 1, . . . , G− 1, G—the number of image intensity levels.
The average intensity level of the image is defined by the mean statistics. The standard

deviation defines the density of the image intensity dispersion around the mean.
Supervised quality metrics—PSNR, PSNR-HVS-M, SSIM, MS-SSIM—compare the

distorted image with reference. We included subjective metrics alongside the commonly
used supervised objective metrics to evaluate the quality of lossy aerial image compression.

Simple pixel-based differences metric—Peak Signal to Noise Ratio (PSNR) is usually
used for assessment of image distortion after lossy compression. The PSNR is only an
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approximation to human visual perception. Peak signal to noise ratio between the original
Im(i, j) and compressed Im′(i, j) images [62] is calculated as:

PSNR = 10log10
2B − 1√

MSE
, (8)

where MSE—the mean square error; B—the bits per sample.
The Mean Square Error (MSE) [62]:

MSE =
1

MN ∑M−1
i=0 ∑N−1

j=0 (Im(i, j)− Im′(i, j)2, (9)

where M and N—the width and high of the aerial image, respectively.
For YCbCr color space, PSNR is computed as [62]:

PSNRYCbCr =
6PSNRY + PSNRCb + PSNRCr

8
. (10)

PSNR-HVS-M metric was designed to improve PSNR’s performance [63,64], taking
into account the HVS. The original and distorted images are divided into 8 × 8 non-
overlapping blocks of pixels. The difference δ(i, j) between each distorted and original
block of DCT coefficients is multiplied by a contrast masking metric (CM), and further, the
result is weighted using coefficients of Contrast Sensitivity Function (CSF) [64]:

δPSNRHSVM(i, j) = (δ(i, j)·CM(i, j))·CSFCo f (i, j). (11)

Then, the MSE in DCT domain [64]:

MSEPSNRHSVM(i, j, I, J) =
1

MN ∑M/8
I=1 ∑N/8

J=1

(
∑8

i=1 ∑8
j=1 (δPSNRHSVM(i, j))2

)
, (12)

where (I, J)—the position of the 8 × 8 non-overlapping block in the image; (i, j)—the
position of the pixel in the block.

PSNR-HVS-M is computed using Equation (8) and replacing MSE with MSEPSNRHSVM.
Values of PSNR and PSNR-HVS-M metrics are in the range [0, +∞] dB.

The Structural Similarity Index (SSIM) [65,66] shows the similarity between the two
images—the original and reconstructed after compression. The changes of structural
information are analyzed in the images using the structure s, luminance l, and contrast c.
This HVS-based metric is usually applied to a luminance channel of images (Y channel of
YCbCr color space). For j-th scale SSIM, the quality assessment is defined as [66]:

SSIMj =
1
Nj

∑
i

c
(
xj,i, yj,i

)
s
(
xj,i, yj,i

)
, (13)

for j = 1, . . . , M−1 and

SSIMj =
1
Nj

∑
i

l
(
xj,i, yj,i

)
c
(

xj,i, yj,i
)
s
(
xj,i, yj,i

)
, (14)

for j = M. In (7) and (8), xj,i, yj,i are i-th local image patches at the j-th scale that are extracted
from i-th evaluation widow, and Nj—the number of the evaluation windows in the scale.

The overall multiscale SSIM is denoted as MS-SSIM [66] and is expressed by the
equation:

MSSSIM =
M

∏
j=1

(SSIMj)
β j , (15)

where β j—the values that are obtained through psychophysical measurements [56].
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The values of SSIM and MS-SSIM metrics are in the range from [0, 1]. High image
quality is indicated by the high score of SSIM, MS-SSIM, PSNR, and PSNR-HVS-M.

A subjective evaluation of the distorted image quality is based on human visual
perception. This method is called the Mean Opinion Score (MOS) [62] and defines the
average score of opinions. MOS is commonly used to assess the image quality in a broad
spectrum of applications, including image compression. Human judgment is important,
but the subjective method is time-consuming and can fail to evaluate high-resolution
images because of the vast amount of the data present; it is almost impossible to perceive
and estimate the small distortions. This method is reasonable to combine with objective
methods.

These four groups of qualitative parameters are presented in Figure 3.

Figure 3. Qualitative parameters for the evaluation of the reconstructed aerial image after lossy
compression. Different colors represent different groups of qualitative parameters.

They were used as criteria for the qualitative evaluation of aerial image lossy com-
pression using MCDM methodology. The chosen combination of the different types of
qualitative measurements can improve the qualitative assessment of the image recon-
structed after lossy compression.

3.4. Evaluation of the Criteria Weights

One of the constituent parts of MCDM methods is the determination of criteria weights.
The criteria weights were assessed using the subjective direct weight determination method.
The majority of the present methods for the determination of criteria weights are based on
the subjective expert judgment [67,68]. The direct weighting method of criteria importance
was used in most cases. This widespread, while subjective, method has higher accuracy
compared to the ranking method [68]. Using the criteria weights direct determination
method, the sum of all the assessment weights of each expert must be equal to 100%
or 1.0 [69–71].

The qualitative parameters—criteria—were provided for the experts to evaluate their
importance. The calculation of the importance of a criterion ci is calculated according
to (16):

ci =
∑r

k=1 cik

r
(16)

where cik—the estimation value of i criterion by k expert, and r is the number of experts.
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The weights of the criteria are calculated using (17):

wi =
∑r

k=1 cik

∑m
i=1 ∑r

k=1 cik
(17)

where r is the number of experts, m—the number of criteria, cik—i criterion by k expert.
The assessment of the importance of qualitative parameters by experts and the calcu-

lated weight of each parameter are presented in Table 1.

Table 1. Evaluation of the importance of criteria and their weights.

Criteria of Images Optimum
Experts

Average Criteria Values Criteria Weights
1st 2nd 3rd 4th 5th

Change of Y contrast, C1 min 2 3 2 2 2 2.2 0.022
Change of Y correlation, C2 min 2 3 3 1 3 2.4 0.024
Change of Y homogeneity,

C3
min 2 3 4 4 3 3.2 0.032

Change of Y energy, C4 min 9 10 8 8 9 8.8 0.088
Change of Y entropy, C5 min 9 10 9 10 10 9.6 0.096

MOS for RGB image
textures, C6

max 7 8 8 8 9 8.0 0.080

Change of Cb mean, C7 min 10 9 10 10 8 9.4 0.094
Change of Cr mean, C8 min 9 9 8 9 10 9.0 0.090
Change of Cb standard

deviation, C9
min 5 3 5 4 3 4.0 0.040

Change of Cr standard
deviation, C10

min 3 3 4 4 2 3.2 0.032

MOS for RGB image colors,
C11

max 8 7 6 9 6 7.2 0.072

SSIM for Y component of
YCbCr, C12

max 8 6 6 6 7 6.6 0.066

MS-SSIM for Y component
of YCbCr, C13

max 8 7 7 6 9 7.4 0.074

PSNR for YCbCr image, C14 max 6 5 4 5 5 5.0 0.050
PSNR-HVS–M for YCbCr

image, C15
max 5 6 8 6 7 6.4 0.064

MOS for RGB image
artifacts, C16

min 7 8 8 8 7 7.6 0.076

3.5. MCDM WASPAS Method for Data Processing and Evaluation

In the present research, WASPAS has been selected for the exploration of the problem
related to the qualitative rating of aerial image lossy compression. The applications of the
WASPAS method were presented in [67]. The WASPAS approach is used for the solution to
a broad range MCDM problems. This method is popular due to stability and simplicity.
WASPAS method initially was introduced in [72] and later was extended by single-valued
neutrosophic sets (WASPAS-SVNS) [73]. Although this method has been already used to
solve different MCDM tasks [74,75], we could not find any research where WASPAS was
applied to assess the lossy compression in the satellite images.

WASPAS-SVNS approach can be decomposed into several steps [73] presented below:

1. For the construction of the decision matrix, we need to have the initial information
that consists of the evaluations of lossy compression algorithms and compression
ratios (as alternatives) according to the qualitative parameters of compressed aerial
images (as criteria). When the decision matrix X is constructed, vector normalization
is used to normalize the decision matrix X.

x̃ij =
xij√

∑m
i=1 (xij)

2
(18)
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Here, xij, i = 1, . . . m; j = 1, . . . n is the value of the of jth variable for the ith ithalternative
(criteria).

2. Then, the neutrosophication and calculation of the neutrosophic decision matrix
X̃n are performed. For the conversion between crisp normalized values x̃ij and
single-valued neutrosophic numbers (SVNNs), X̃n is calculated. Elements of the
neutrosophic decision matrix X̃n are the single-valued neutrosophic numbers x̃n

ij =(
tij, iij, fij

)
, where t is the membership degree, i—the indeterminacy degree and f —

the non-membership degree. The standard crisp-to-neutrosophic mapping will be
applied in this study.

3. The first decision component that is based on the sum of the total relative importance
of the ith alternative is calculated by the equation:

Q̃(1)
i = ∑Lmax

j=1 x̃n
+ij · w+j +

(
∑Lmin

j=1 x̃n
−ij · w−j

)c
(19)

Here, the values x̃n
+ij and w+j are associated with the criteria which are maximized;

consequently, x̃n
−ij and w−j correspond to the criteria which are minimized. The weight

of criteria is an arbitrary positive real number, the amount of the maximized criteria is
Lmax, and the amount of the minimized criteria is Lmin. For the single-valued neutrosophic
numbers (SVNNs), the following algebra operations should be applied:

x̃n
1 ⊕ x̃n

2 = (t1 + t2 − t1t2, i1i2, f1 f2) (20)

x̃n
1 ⊗ x̃n

2 = (t1t2, i1 + i2 − i1i2, f1 + f2 − f1 f2) (21)

wx̃n
1 =

(
1− (1− t1)

w, iw
1 , f w

1
)
, w > 0 (22)

x̃n
1

w =
(
tw
1 , 1− (1− i1)

w, 1− (1− f1)
w), w > 0 (23)

x̃n
1

c = ( f1, 1− i1, t1) (24)

Here, x̃n
1 = (t1, i1, f1) and x̃n

2 = (t2, i2, f2).

4. The second decision component based on the product of total relative importance in
the ith alternative is calculated by the equation:

Q̃(2)
i = ∏Lmax

j=1

(
x̃n
+ij

)w+j ·
(
∏Lmin

j=1

(
x̃n
−ij

)w−j
)c

(25)

5. The following equation calculates the weighted criteria:

Q̃i = 0.5Q̃(1)
i + 0.5Q̃(2)

i (26)

6 The final ranking of the alternatives is evaluated considering the descending order

of the S
(

Q̃i

)
. This is a score function (further referred to as utility function) for

deneutrosophication of the joint generalized criteria and is calculated as follows:

S
(

Q̃i

)
=

3 + ti − 2ii − fi
4

(27)

4. An MCDM Application for the Selection of Lossy Compression Algorithms
and Discussion

In this section, we present the verification of the proposed methodology on the
qualitative selection of lossy compression for the aerial images. The aerial images of
different content and resolution were selected for the compression and the qualitative
evaluation of their lossy compression. The set of qualitative parameters named criteria,
encompass the general image quality assessment metrics, first-order color statistics, second-
order texture statistics, and subjective evaluation. The influence of the lossy compression
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algorithms with different compression ratios to the aerial images’ content was estimated
using the set of criteria. The compression algorithms with appropriate compression ratios
were ranked according to the qualitative degradation for corresponding compressed image
using the neutrosophic WASPAS-SVNS method.

4.1. Compression of Aerial Images

Three lossy compression algorithms were selected for the initial experiment: JPEG200,
ECW, JPEG. As the quality of the compressed image depends not only on the compression
algorithm but also on the compression ratio, four compression ratios were selected for each
algorithm named as follows: low (25:1), medium (50:1), high (75:1), very high (100:1). The
influence of the compression ratios lower than 25:1 is negligible, as shown in [19,31,34].
Higher compression ratios deteriorated image quality significantly and were not estimated
in this work. Larger intervals between compression ratios were chosen to make their effect
on the content of an image more explicit. Each algorithm introduces unique artifacts to the
image content that are more noticeable in the higher compression ratios.

The GLOBAL MAPPER software [46] was used for the ECW compression of the
original aerial images. The RGB color *.tiff image file saved as the *.ecw image using Global
Mapper changing the compression ratios. The imwrite() function from MATLAB was used
for JPEG2000 and JPEG compression. The source images were obtained as TIFF images with
lossless compression. The JPEG2000 compressed files were generated using the imwrite
( . . . , “CompressionRatio”, Value) function, altering Value for the target compression ratio.
For JPEG compression imwrite ( . . . , “Quality”, Value) function was used, altering Value as
the quality from 100 to 1 of the JPEG compressed file. The smaller the number, the more
compression will be reached with the worse quality for the image. All other settings for the
imwrite() function were set to default values. The experimental compression ratios were
tailored and verified using Equation (1).

The content and resolution of the image also affect the result of the lossy compressed
image. Relevant compression algorithms have different effects on image textures, colors,
and luminance. Three high-resolution (1 pixel = 0.5 m) aerial images of different content
were selected using Earth Explorer [76]. The aerial images used in the experiment (Figure 4)
are “img1”, “img2”, and “img3” of the dataset 200710_myrtle_beach_sc_0x5000m_utm_clr,
saved as 3000 × 3000 24-bit TIFF images in RGB (8 bits for each band). The “img1” has
more smooth textures with low spatial frequencies of intensity changes, and the large
regions of different colors and intensities dominate in it. The “img2” is rich with similar
rough textures with high spatial frequencies of intensity changes, and small regions occupy
a slight part of the image. The “img3” has various types of textures, and a large number of
regions differ in size, color, and intensity [27]. We have tested other images with similar
textures and colors to verify objective qualitative parameters. Images were selected by
the varying characteristic features (texture, color tone, luminance, number, and size of the
objects) but not by the appropriate classes, as the aim is to verify the methodology.

For the other three images of different resolutions, the original images were reduced
four times using the impyramid() MATLAB function. The reduced “img1”, “img2”, and
“img3” will be referenced as “img4”, “img5”, and “img6” accordingly, with the resolution of
1 pixel = 2 m and the size of 750× 750 pixels. The remote sensing images with higher spatial
resolution have richer spatial textures as their pixels contain more information compared
to low-resolution images. All six images of different structures were compressed using
three different algorithms using four compression ratios. Figure 5 presents the cropped
images “img1” and “img4” compressed using JPEG2000, ECW, and JPEG algorithms at a
100:1 compression ratio.
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Figure 4. The original aerial images used in the experiment (Landsat-7 images courtesy of the U.S. Geological Survey): (a)
“img1” in RGB. The red rectangular indicates a cropped region presented in Figure 5); (b) “img2” in RGB; (c) “img3” in
RGB; dataset 200710_myrtle_beach_sc_0x5000m_utm_clr. (d) “img1”, component Y; (e) “img2”, component Y; (f) “img3”,
component Y.

Figure 5. The same cropped region of the aerial images “img1” and “img4” compressed using different lossy compression
algorithms at the compression ratio 100:1: (a) “img1”, the original image; (b) “img1”, Joint Photographic Experts Group
(JPEG)2000 compression; (c) “img1”, Enhanced Compression Wavelet (ECW) compression; (d) “img1”, JPEG compres-
sion; (e) “img4”, the reduced “img1”; (f) “img4”, JPEG2000 compression; (g) “img4”, ECW compression; (h) “img4”,
JPEG compression.
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4.2. Qualitative Evaluation of Aerial Image Lossy Compression

The qualitative evaluation was performed using MATLAB. After lossy compression
of images “img1”, “img2”, “img3”, “img4”, “img5”, and “img6” all selected qualitative
parameters were calculated and estimated using the original and reconstructed versions of
the aerial images.

The first group of parameters—texture change of images after compression—includes
the second-order statistics: contrast (Equation (2)), correlation (Equation (3)), homogeneity
(Equation (4)), energy (Equation (5)), and entropy (Equation (6)). The GLCM-based statistics
were calculated for the luminance component in the YCbCr space of the original and
compressed images. The difference between them was used to evaluate texture changes.
The size of the probability matrix P of the GLCM method was determined by the number
of the original gray levels in the Y component. The smaller distances between the image
pixel of interest and its neighboring pixel are used to capture local texture information. For
3000 × 3000 images with the resolution of 1 pixel = 0.5 m and for 750 × 750 images with
resolution of 1 pixel = 2 m were taken different displacements (respectively, d = 1, 2, 3, 4,
5, 6, and d = 1) for six directions (θ = 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦and 315◦) as the
texture changes are to be assessed in the same area. The extra pixel in each direction is
used to minimize the influence of pixel-shifting during image resizing. The mean of each
GLCM’s texture statistic was calculated to define final contrast, correlation, homogeneity,
energy, and entropy measures used to evaluate changes after lossy compression. Calculated
texture changes between the original and compressed images are presented in Figure 6a–e.
The more significant difference between the qualitative parameters of textures of the
original and distorted images, the higher impact of lossy compression was on the loss
of image texture information. As seen from Figure 6a,e, changes of texture contrast and
entropy commonly increase with increasing compression ratios for the selected algorithms.
However, statistical changes in textures increase in the negative direction for correlation,
homogeneity, and energy as the compression ratios increase (Figure 6b–d). Table 2 in the
first five rows shows the same results for the calculated qualitative texture parameters,
respectively, C1, C2, C3, C4, and C5 but only for the “img1”. The differences between the
qualitative parameters of textures of the original and distorted images slightly decrease
in some cases from the lower compression ratios to the higher as presented in Figure 6c,e,
respectively, for homogeneity and entropy changes using ECW lossy compression from
75:1 to 100:1 compression ratios for “img5”.

The second group of parameters—color change of images after compression—includes
the first-order statistics: mean and standard deviation of Cb and Cr components. Cal-
culated color changes between the original and the compressed images are presented
in Figure 6g,h,i,j. The more significant the difference between the original and distorted
images’ qualitative color parameters, the higher the impact of lossy compression on the
distortions of color information. Changes of chrominance (mean and standard deviation)
commonly increase with increasing compression ratios for the selected algorithms. Rows
from 7 to 10 in Table 2 show the calculated results of the qualitative texture parameters C7,
C8, C9, and C10 for the “img1”. For JPEG lossy compression ratios from 75:1 to 100:1, the
change of the mean for the Cb component considerably decreases for “img6”, as presented
in Figure 6g.

The third group of parameters—supervised objective IQA metrics—includes PSNR
for YCbCr image (Equation (8)), PSNR-HVS-M for YCbCr image (Equation (10)), SSIM for
Y component (Equations (13) and (14)), MS-SSIM for Y component (Equation (15)). The
supervised objective quality metrics compare the compressed images with the original, and
the better image quality is indicated by a higher score (Figure 6l–o). The same results of
IQA metrics for the “img1” are presented in Table 2, rows 12 to 15, respectively, including
criteria C12, C13, C14, and C15. IQA metrics decrease with increasing compression ratios for
the selected algorithms for all images.
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Figure 6. Influence of lossy compression with selected compression ratios to the quality of the reconstructed different
aerial images after compression. Distinct colors represent aerial images “img1”, “img2”, “img3”, “img4”, “img5” and
“img6”. Different line types represent lossy compression algorithms JPEG2000, ECW, JPEG. Each figure shows the results
of the selected qualitative parameter (criterion) for the six images compressed with different algorithms: (a) C1—contrast
change for Y component; (b) C2—correlation change for Y component; (c) C3—homogeneity change for Y component; (d)
C4—energy change for Y component; (e) C5—entropy change for Y component; (f) C6—MOS for RGB image texture; (g)
C7—change of the mean of Cb component; (h) C8—change of the mean of Cr component; (i) C9—change of the standard
deviation of Cb component; (j) C10—change of the standard deviation of Cr component; (k) C11—MOS for RGB image
colors; (l) C12—SSIM for Y component; (m) C13—MS-SSIM for Y component; (n) C14—PSNR for YCbCr image; (o) C15—
PSNR-HVS-M for YCbCr image; (p) C16—MOS for RGB image artifacts; (q) legends for marking the separate algorithms in
each figure; (r) legends for marking the separate images in each figure.
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Table 2. Impact of the lossy compression algorithms with relevant compression ratios to the aerial image “img1” content.

Qualitative
Parameters

(Criteria) of Images

Criteria
Opti-mum

Compression Algorithm, Compression Ratio (Alternatives)

JPEG200025:1,
A1

ECW, 25:1,
A2

JPEG,
25:1, A3

JPEG200050:1,
A4

ECW, 50:1,
A5

JPEG,
50:1, A6

JPEG2000
75:1, A7

ECW,
75:1, A8

JPEG,
75:1, A9

JPEG2000100:1,
A10

ECW,
100:1, A11

JPEG,
100:1,
A12

JPEG2000-
A01,
A13

ECW-
A02,
A14

JPEG-
A03,
A15

Change of Y
contrast, C1

min 14.5651 48.7378 7.1548 26.0821 79.8598 12.1424 35.1855 89.8264 16.5589 39.4098 104.8575 21.0296 35.1855 79.8598 12.1424

Change of Y
correlation, C2

min −0.0057 −0.0178 −0.0028 −0.0103 −0.0291 −0.0050 −0.0139 −0.0355 −0.0065 −0.0156 −0.0402 −0.0077 −0.0139 −0.0291 −0.0050

Change of Y
homogeneity, C3

min −0.0483 −0.0180 −0.0164 −0.0722 −0.0395 −0.0708 −0.0917 −0.0477 −0.1475 −0.1109 −0.0619 −0.2465 −0.0917 −0.0395 −0.0708

Change of Y energy,
C4

min −0.0001 −0.0001 −0.00004 −0.0002 −0.0002 −0.0006 −0.0003 −0.0002 −0.0033 −0.0004 −0.0004 −0.0118 −0.0003 −0.0002 −0.0006

Change of Y
entropy, C5

min 0.2388 0.2898 0.0773 0.3784 0.5623 0.3958 0.4936 0.6272 1.1482 0.5946 0.8330 2.4476 0.4936 0.5623 0.3958

MOS for RGB
image textures, C6

max 9 8 9 8 7 7 6 5 4 4 2 1 6 7 7

Change of Cb mean,
C7

min 0.2966 0.6955 0.6452 0.5759 0.7086 0.9265 0.6897 0.7065 0.9880 0.7523 0.7066 2.2541 0.7523 0.7065 0.9265

Change of Cr mean,
C8

min 0.3514 0.6056 0.5366 0.5097 0.6388 0.9350 0.5605 0.6429 1.0032 0.5920 0.6428 1.2186 0.5920 0.6429 0.9350

Change of Cb
standard deviation,

C9

min 0.1128 0.3493 0.3522 0.3083 0.3524 0.3253 0.3483 0.3537 0.2878 0.3576 0.3538 0.3737 0.3576 0.3537 0.3253

Change of Cr
standard deviation,

C10

min 0.1579 0.2374 0.2199 0.2089 0.2797 0.2130 0.2182 0.2955 0.2199 0.2207 0.2988 0.3151 0.2207 0.2955 0.2130

MOS for RGB
image colors, C11

max 9 8 8 8 7 5 7 5 3 6 4 2 6 5 5

SSIM for Y
component of

YCbCr, C12

max 0.7125 0.5208 0.7647 0.6038 0.3720 0.6012 0.5460 0.2979 0.4854 0.4866 0.2509 0.3742 0.5460 0.3720 0.6012

MS-SSIM for Y
component of

YCbCr, C13

max 0.9891 0.9704 0.9935 0.9811 0.9350 0.9773 0.9724 0.9037 0.9541 0.9632 0.8750 0.9149 0.9724 0.9350 0.9773

PSNR for YCbCr
image, C14

max 40.3640 35.8226 38.7328 37.7416 34.2080 36.2407 36.7678 33.4156 34.7346 36.0396 32.8686 32.9938 36.7678 34.2080 36.2407

PSNR-HVS–M for
YCbCr image, C15

max 42.1918 35.7247 40.4886 38.1932 32.4256 36.4482 36.3451 30.7566 33.5373 34.8503 29.6463 30.8029 36.3451 32.4256 36.4482

MOS for RGB
image artifacts, C16

min 9 8 8 6 5 5 5 4 3 4 3 2 5 5 5
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The fourth group of parameters—subjective evaluations of RGB images after compres-
sion —includes MOS values in the range from 1 to 10 using a 10-point Likert scale [77] for
the quality of image textures, colors, and artifacts after compression. The meaning of the
qualitative parameters C6, C11, C16, and a rating scale was explained to the 15 students of
Information Technologies. They were provided with a questionnaire (see Appendix A) and
an individual blank response table (Table 2), excluding all rows except the sixth, eleventh,
and sixteenth. The respondents were asked to fill the response tables for the six images.
The assessments’ mean values were calculated and included as criteria C6, C11, and C16.
Estimated MOS values for textures, colors, general artifacts after lossy compression are
presented in both Table 2 and Figure 6f,k,p.

The threshold for the acceptable visible distortions in aerial images reconstructed after
each lossy compression was estimated visually by five experts from Vilnius Gediminas
technical university, Department of Graphical systems with at least 15 years of experience
in image processing. These experts also present their opinion concerning the image visual
criteria weights considered in Section 3.4. The qualitative parameters from acceptable
compression ratios for each algorithm and image were taken considering their groups—
texture, color, IQA. Three threshold alternatives—JPEG2000-A01, ECW-A02, JPEG-A03—
were constructed to evaluate acceptable visible distortions for each algorithm (Table 2, A13,
A14, A15). The threshold alternatives help to decide at which compression ratios of selected
lossy compression algorithms are aerial images’ distortions visually acceptable.

4.3. Ranking of Aerial Image Lossy Compression

After the alternatives were defined and qualitative criteria were calculated, the initial
decision matrix for qualitative evaluation of the lossy compression of aerial images was
formed. The example of the initial decision matrix for “img1” is presented in Table
2. As the matrix has negative values for the change of correlation, homogeneity, and
energy, to make calculations consistent with WASPAS-SVNS, the rows with negative values
were upshifted before the vector normalization. The obtained results by WASPAS-SVNS
methodology described in Section 3.5 (steps 2–6) are presented in Table 3. The qualitative
ranking of images’ lossy compression was calculated using the utility function S

(
Q̃i

)
(Equation (27)). Figure 7 presents the ranking of lossy compression for high and low-
resolution images. Ranking of compression algorithms based on their qualitative suitability
for the images makes it difficult to decide which compression ratios of lossy compression
are unacceptable for visual inspection. Qualitative ranking by estimating the threshold of
acceptable visual distortions places the algorithms with their compression ratios in order
of priority, excluding those whose distortions are greater than the subjectively determined
quality threshold (Table 3, Figure 8).

Table 3. Qualitative ranking of aerial images’ lossy compression.

No Alternatives
Utility Function S

(
~
Qi

)
Rank by WASPAS

“img1” “img2” “img3” “img4” “img5” “img6” “img1” “img2” “img3” “img4” “img5” “img6”

1 JPEG200025:1, A1 0.7673 0.7554 0.7526 0.7578 0.7647 0.7472 1 1 1 1 1 1
2 ECW 25:1, A2 0.7157 0.7161 0.7343 0.7372 0.7258 0.7380 4 5 2 3 5 2
3 JPEG25:1, A3 0.7380 0.7410 0.7268 0.7387 0.7389 0.7327 2 2 4 2 2 4
4 JPEG200050:1, A4 0.7243 0.7218 0.7263 0.7329 0.7387 0.7160 3 4 5 6 3 8
5 ECW 50:1, A5 0.6820 0.6799 0.7060 0.7135 0.6829 0.7175 10 12 8 8 10 7
6 JPEG 50:1, A6 0.6866 0.6994 0.6666 0.7007 0.7021 0.6820 8 8 12 10 8 11
7 JPEG200075:1, A7 0.7049 0.7069 0.6970 0.7076 0.7072 0.6885 5 7 9 9 7 10
8 ECW 75:1, A8 0.6645 0.6551 0.6942 0.6881 0.6601 0.7033 12 13 10 11 12 9
9 JPEG 75:1, A9 0.6479 0.6835 0.6275 0.6632 0.6132 0.5651 13 10 14 14 14 14

10 JPEG2000100:1, A10 0.6889 0.6918 0.6624 0.6785 0.6819 0.6612 7 9 13 13 11 13
11 ECW 100:1, A11 0.6397 0.6285 0.6783 0.6880 0.6293 0.6754 14 14 11 12 13 12
12 JPEG100:1, A12 0.5041 0.4853 0.4612 0.3991 0.4906 0.4856 15 15 15 15 15 15
13 JPEG2000-A01, A13 0.7002 0.7079 0.7159 0.7329 0.7282 0.7248 6 6 7 7 4 6
14 ECW-A01, A14 0.6787 0.6799 0.7324 0.7363 0.6987 0.7370 11 11 3 4 9 3
15 JPEG-A01, A15 0.6866 0.7223 0.7261 0.7343 0.7199 0.7327 9 3 6 5 6 5
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Figure 7. Qualitative ranking of the high- and low-resolution aerial images’ lossy compression using the selected alternatives
as 1 (A1)—JPEG2000, 25:1; 2 (A2)—ECW, 25:1; 3 (A3)—JPEG, 25:1; 4 (A4)—JPEG2000, 50:1; 5 (A5)—ECW, 50:1; 6 (A6)—JPEG,
50:1; 7 (A7)—JPEG2000, 75:1; 8 (A8)—ECW, 75:1; 9 (A9)—JPEG, 75:1; 10 (A10)—JPEG2000, 100:1; 11 (A11)—ECW, 100:1; 12
(A12)—JPEG, 100:1: (a) “img1” and its reduced version “img4”; (b) “img2” and its reduced version “img5”; (c) “img3” and
its reduced version “img6”.

As presented in Table 3 and Figure 7a–c graphs, the ranking of algorithms with
different compression ratios according to the qualitative suitability for the high-resolution
images “img1” and “img2” do not coincide. The “img3” ranking differs more from the first
two because its content has more features sensitive to the lossy compression, such as the
different types of textures, many small regions of different colors and intensities. The best
quality presents JPEG2000 25:1 compression for all high-resolution images (1st place in
Table 3, row 1), and the worst—JPEG 100:1 (15th place in Table 3, row 12). The JPEG2000
algorithm maintains better image quality than ECW and JPEG at compression ratios 50:1,
75:1, 100:1 (Table 3, JPEG2000 alternatives at 1st, 4th, 7th, 10th rows) too. Considering
the threshold alternative A13 for the JPEG2000 algorithm (Table 3, 13th row), a visually
acceptable lossy compression for “img1” and “img2” was ranked above 6th place and
for “img3” above 7th place. This corresponds to JPEG2000 compression lower than 100:1
for “img1” (Figure 8a) and lower than 75:1 for “img2” and “img3” (Figure 8e,f). ECW
and JPEG algorithms were ranked worse than JPE2000 at all compression ratios. At lower
compression ratios 25:1, 50:1, the JPEG algorithm (Table 3, JPEG alternatives at 3rd, 6th
rows) was ranked higher than the ECW algorithm for “img1” and “img2”. However, for
“img3” can be seen the opposite tendency. At higher compression ratios 75:1, 100:1, the
JPEG algorithm (Table 3, JPEG alternatives at 9th, 12th rows) was ranked worse than the
ECW algorithm for “img1” and “img3”. For “img2”, JPEG 75:1 was ranked higher than
ECW 75:1. Considering the threshold alternative A15 for the JPEG algorithm (Table 3, 15th
row), a visually acceptable lossy compression for “img1” was ranked above 9th place,
for “img2” above 3rd place, and for “img3” above 6th place. This corresponds to JPEG
compression lower than 75:1 for “img1” (near to 50:1 and less, Figure 8a), lower than 50:1
for “img2” and “img3” (near to 25:1 and less Figure 8e,f). The ECW compression rating is
presented in 2nd, 5th, 8th, 11th rows of Table 3. At lower compression ratios 25:1, 50:1, the
ECW algorithm was rated worse than the JPEG algorithm for “img1” and “img2”, but at
very high—100:1—compression ratios was rated higher than JPEG2000. Considering the
threshold alternative A14 for the ECW algorithm (Table 3, 14th row), a visually acceptable
lossy compression for “img1” was ranked above 11th place, for “img2” above 12th place,
and for “img3” above 3rd place. This corresponds to ECW compression lower than 75:1 for
“img1” (near to 50:1 and less, Figure 8a), and lower than 50:1 for “img2” and “img3” (near
to 25:1 and less, Figure 8e,f).
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Figure 8. Qualitative ranking of lossy compression algorithms with selected compression ratios solving the full and
partial tasks for aerial images: (a) “img1”—by all the selected qualitative parameters (b) “img1”—by the texture quality;
(c) “img1”—by the color quality; (d) “img1”—by the general quality metrics; (e) “img2”—by the all selected qualitative
parameters; (f) “img3”—by the all selected qualitative parameters; (g) “img4”—by the all selected qualitative parameters;
(h) “img5”—by the all selected qualitative parameters; (i) “img6”—by the all selected qualitative parameters; (j) legends
for marking the compression algorithms for each image; (k) legends for marking the thresholds of compression quality of
separate algorithms for each image.
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A similar ranking tendency is observed for the corresponding low-resolution images
“img4”, “img5”, and “img6” (Figure 8), but the changes of images’ content due to the
reduced resolution made the influence on the rating of lossy compression. The best
quality presents JPEG2000 25:1 compression for all low-resolution images (1st place–Table 3,
row 1), and the worst—JPEG 100:1 (15th place—Table 3, row 12). The JPEG2000 algorithm
maintains better quality than ECW and JPEG at compression ratios 50:1 and 75:1 for “img4”
and “img5”, but at 100:1 for “img5” is superior ECW compression (Table 3, JPEG2000
alternatives at 4th, 7th, 10th rows). ECW compression at compression ratios 50:1, 75:1,
100:1 is superior to JPEG2000 compression for “img6” too. Considering the threshold
alternative A13 for the JPEG2000 algorithm, a visually acceptable lossy compression for
“img4” was ranked above 7th place, for “img5” above 4th place, and “img6” above 6th
place. This corresponds to JPEG2000 compression lower than 75:1 for “img4” and “img5”
(near to 50:1 and less, Figure 8g,h), and lower than 50:1 for “img6”. At higher compression
ratios 75:1, 100:1, the ECW algorithm was ranked higher than the JPEG for the selected
low-resolution images, but at low—25:1—compression ratios was ranked worse than JPEG
for “img4” and “img5”. Considering the threshold alternative A14 for the ECW algorithm,
a visually acceptable lossy compression for “img4” was ranked above 4th place, for “img5”
above 9th place, and “img6” above 3rd place. This corresponds to ECW compression lower
than 50:1 for “img4”, “img5,” and “img6” (near to 25:1 and less, Figure 8g–i). A visually
acceptable JPEG lossy compression for was ranked by A15 alternative for “img4” above
5th place, for “img5” above 6th place, and “img6” above 5th place. This corresponds to
JPEG compression lower than 50:1 for “img4”, “img5,” and “img6” (for all images near to
25:1 and less, Figure 8g–i).

The effect of lossy compression on the image content can be evaluated more precisely
by the set of qualitative parameters and by using the parameters of the texture, color, and
IQA, different subtasks can be solved: the same approach can be used to assess the texture,
color, and general quality after the image lossy compression. Figure 8 shows the qualitative
suitability of JPEG2000, ECW, JPEG compression for “img1” solving the full (Figure 8a,e–i)
and partial tasks (Figure 8b–d)). Figure 8 shows that the JPEG2000 lossy compression is
superior to the lossy ECW and JPEG compression in texture (b), color features (c), and by
IQA (d). The JPEG compression provides similar image quality to JPEG2000 in texture
features only at low compression ratios. JPEG has a significant effect on color, except at low
compression ratios. The ECW compression at high compression ratios negatively affects
texture but has a low impact on color. By IQA, the JPEG and ECW compression have a
similar effect on the “img1” content.

4.4. Discussion

The ranking of JPEG2000, JPEG and ECW algorithms with different compression
ratios differs slightly according to the qualitative suitability for the high-resolution aerial
images “img1”, and “img2” (Table 3, Figure 7a,b) as both images have similar features of
the content. The “img1” and “img2” have textures of the same RGB values and intensities,
but rough textures dominate in the “img2”, while smooth ones are more common in the
“img1”. Due to prevalence of rough textures, “img1” has the lower visually acceptable
threshold of JPEG2000, JPEG and ECW lossy compression (Figure 8a) and the compression
artifacts are barely visible in the compressed image, compared to other ones. The “img3”
ranking, as well as the content, differs considerably comparing to the “img1” and “img2”
(Table 3, Figure 7c). The “img3” contains more features, sensitive to the lossy compression,
like textures with the high spatial frequencies (of intensity change) and a large number of
small regions differing in size, color, and intensity.

The changes of the content in the images “img4”, “img5”, and “img6” due to the down
sampling also influenced the ranking of lossy compression (Table 3, Figure 7a–c) and the
visually acceptable threshold of lossy compression (Figure 8g–i). The low-resolution aerial
images do not have the rich spatial textures of the high-resolution images, and their lossy
compression artifacts are more noticeable. The “img6” has the highest visually acceptable
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threshold of JPEG2000, JPEG and ECW lossy compression (Figure 8i) compared to “img4”
and “img5” (Figure 8g,h). After the image “img2” was down sampled to the “img5”, the
textured regions became smoother. As the textures in the “img1” are of dominating low
spatial frequencies of intensity changes, then down sampling it to the “img4” exposes a
smaller effect on the visual content of the image. Thus, the low-resolution images “img4”
and “img5” were similarly affected by lossy compression, especially at higher compression
ratios for JPEG (Figure 8g,h).

Each algorithm introduces unique artifacts and has a different effect on the aerial
images of different resolutions and contents. The JPEG lossy compression has a high
impact on the images’ content with uniform and coarse (low spatial frequencies of intensity
changes) textures. The “img1” and “img3” contains this type of textures, but “img3” was
affected more by JPEG compression as it contains a large number of small, uniform regions.
The JPEG2000 compression more affects images containing a large number of regions with
textures of high spatial frequencies of intensity changes (“img2”), and especially with the
small regions of different textures (“img3”). The ECW lossy compression has a higher effect
on images rich with rough textures of high spatial frequencies of intensity changes (“img2”).
The JPEG2000 and ECW compression have a similar effect for low-resolution images with
textures of high spatial frequencies of intensity changes (“img5”), or with small regions
with different textures (“img6”). The JPEG2000 has higher quality at higher compression
ratios than JPEG as it does not expose visually distracting artifacts, especially in low
frequency or uniform areas. The JPEG artifacts are more pronounced in the low-resolution
images’ content than they are in the high-resolution images. The smoothing artifacts are
more noticeable in ECW high-resolution images than in JPEG2000, specifically in images
with textures of high spatial frequencies of intensity changes. The ECW compression has a
slightly lesser effect on the low-resolution images.

5. Conclusions and Future Work

We proposed the original multi-criteria decision-making methodology for the qualitative
selection of the lossy compression for the aerial images based on their resolution and content.
The transform-based lossy compression algorithms with the appropriate compression ratios
were ranked by their suitability for aerial images using MCDM WASPAS-SVNS and direct
criteria weights evaluation methods. The rating of lossy compression is governed by the set
of qualitative parameters of images and visually acceptable lossy compression ratios.

Because of the need for the qualitative lossy compression for the effective storage and
transmission of a large amount of remote sensing data, it is imperative to decide which
algorithm and what compression ratio will be suitable for the selected image content and
resolution. Since the image quality after lossy compression can be determined by various
parameters, and they belong to the different groups that vary significantly, the weighted
combination of different qualitative parameters should be used.

The visual features (e.g., a forest, cropland, roads, buildings, water) in an image can be
characterized by generalizations like texture, color tone, and luminance. The information
on the change of the colors and textures can be calculated using the first-order color
statistics and second-order texture statistics, respectively. It is reasonable to include the
often-used objective IQA metrics and subjective evaluation. Using the set of the verified
groups of parameters and altering their weights, the effect of lossy compression on the
image content can be evaluated more precisely compared to the estimation using only
single objective image quality metrics.

The use of the set of the qualitative parameters for the texture, color, and IQA, can
solve different subtasks: the same approach can be used to assess the texture, color, and
general quality after the image lossy compression.

In the aerial imagery application context, it is useful to define the acceptable lossy
compression ratio for the selected lossy compression algorithm. We concentrated on visual
image inspection after data collection and compression for easier transmission and saving
storage space. It should be useful to find the best solution for image lossy compression
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implementation in hardware in such cases. The threshold of acceptable visual distortions
places the algorithms with their compression ratios in order of priority, excluding those
whose distortions are greater than the subjectively determined quality threshold. The
experimental results showed that the visually acceptable lossy compression for the high-
resolution aerial images is: JPEG2000—lower than 100:1 for “img1” and lower than 75:1 for
“img2” and “img3”; ECW and JPEG—lower than 75:1 for “img1” (near to 50:1 and less),
lower than 50:1 for “img2” and “img3” (near to 25:1 and less). The visually acceptable lossy
compression for the low-resolution aerial images is worse than for the high-resolution
images: JPEG2000—lower than 75:1 for “img4” and “img5” (near to 50:1 and less), and
lower than 50:1 for “img6”; ECW and JPEG—lower than 50:1 for “img4”, “img5,” and
“img6” (near to 25:1 and less).

As the lossy compression quality is a complex task and needs to be investigated further,
we are going to evaluate the lossy compression quality for the different classes of satellite
images against the segmentation using the appropriate set of qualitative parameters.
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Appendix A

The questionnaire for the evaluation of the visual image quality after the relevant
lossy compression:

• Evaluate the visual quality of compressed image textures according to the original
image textures.

• Evaluate the visual quality of compressed image colors according to the original
image colors.

• Evaluate a number of artifacts in the compressed image according to the original image.

References
1. ESA. Sentinel-2 User Handbook; ESA: Auckland, New Zealand, 2015; pp. 1–64.
2. Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley.

GeoJournal 2019. [CrossRef]
3. Fonji, S.F.; Taff, G.N. Using satellite data to monitor land-use land-cover change in North-eastern Latvia. SpringerPlus 2014, 3.

[CrossRef] [PubMed]
4. Tan, K.; Zhang, Y.; Wang, X.; Chen, Y. Object-Based Change Detection Using Multiple Classifiers and Multi-Scale Uncertainty

Analysis. Remote Sens. 2019, 11. [CrossRef]
5. Falco, N.; Mura, M.D.; Bovolo, F.; Benediktsson, J.A.; Bruzzone, L. Change Detection in VHR Images Based on Morphological

Attribute Profiles. IEEE Geosci. Remote Sens. Lett. 2013. [CrossRef]
6. Debusscher, B.; Coillie, F. Object-Based Flood Analysis Using a Graph-Based Representation. Remote Sens. 2019, 11, 1883.

[CrossRef]
7. Hussain, A.J.; Al-Fayadh, A.; Radi, N. Image compression techniques: A survey in lossless and lossy algorithms. Neurocomputing

2018, 300, 44–69. [CrossRef]
8. Faria, L.N.; Fonseca, L.M.G.; Costa, M.H.M. Performance Evaluation of Data Compression Systems Applied to Satellite Imagery.

J. Electr. Comput. Eng. 2012, 2012. [CrossRef]
9. Hagag, A.; Fan, X.; El-Samie, F.E.A. Lossy compression of satellite images with low impact on vegetation features. Multidimens.

Syst. Signal Proces. 2016, 28, 1717–1736. [CrossRef]

http://doi.org/10.1007/s10708-019-10037-x
http://doi.org/10.1186/2193-1801-3-61
http://www.ncbi.nlm.nih.gov/pubmed/24567875
http://doi.org/10.3390/rs11030359
http://doi.org/10.1109/LGRS.2012.2222340
http://doi.org/10.3390/rs11161883
http://doi.org/10.1016/j.neucom.2018.02.094
http://doi.org/10.1155/2012/471857
http://doi.org/10.1007/s11045-016-0443-y


Symmetry 2021, 13, 273 24 of 26

10. Christophe, E.; Thiebaut, C.; Latry, C. Compression Specification for Efficient Use of High Resolution Satellite data. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, B4.

11. Hagag, A.; Hassan, E.S.; Amin, M.; El-Samie, F.E.A.; Fana, X. Satellite multispectral image compression based on removing
sub-bands. Optik 2017, 131, 1023–1035. [CrossRef]

12. Ahujaa, S.L.; Bindub, M.H. High Resolution Satellite Image Compression using DCT and EZW. In Proceedings of the International
Conference on Sustainable Computing in Science, Technology & Management, Jaipur, India, 26–28 January 2019. [CrossRef]

13. Indradjad, A.; Nasution, A.S.; Gunawan, H.; Widipaminto, A. A comparison of Satellite Image Compression methods in the
Wavelet Domain. IOP Conf. Ser. Earth Environ. Sci. 2019, 280, 012031. [CrossRef]

14. Genitha, C.H.; Rajesh, R.K. A Technique for Multi-Spectral Satellite Image Compression Using EZW Algorithm. In Proceedings
of the International Conference on Control, Instrumentation, Communication and Computational Technologies, Kumaracoil,
India, 16–17 December 2016. [CrossRef]

15. Fiorucci, F.; Baruffa, G.; Frescura, F. Objective and subjective quality assessment between JPEG XR with overlap and JPEG 2000.
J. Vis. Commun. Image Represent. 2012, 23, 835–844. [CrossRef]

16. Manthey, K. A New Real-Time Architecture for Image Compression Onboard Satellites based on CCSDS Image Data Compression.
In Proceedings of the 4th International Conference on On-Board Payload Data Compression Workshop, Venice, Italy, 23–24
October 2014.

17. Kiely, A.B.; Klimesh, M. The ICER Progressive Wavelet Image Compressor. Interplanetary Network Progress Report; California Institute
of Technology: Pasadena, CA, USA, 2003.

18. Bateson, L.; Mcintosh, R. An Investigation into File Formats for the use and Delivery of Large Format Images; British Geological Survey
Internal Report; British Geological Survey: Nottingham, UK, 2004.

19. Simone, F.; Ticca, D.; Dufaux, F.; Ansorge, M.; Ebrahimi, T. A comparative study of color image compression standards using
perceptually driven quality metrics. In Proceedings of the Conference on Applications of Digital Image Processing, San Diego,
CA, USA, 10–14 August 2008; Volume XXXI, p. 7073. [CrossRef]

20. Matsuoka, R.; Sone, M.; Fukue, K.; Cho, K.; Shimoda, H. Quantitative analysis of image quality of lossy compression images. In
Proceedings of the ISPRS Congress, Istanbul, Turkey, 12–26 July 2004.

21. Tao, D.; Di, S.; Guo, H.; Chen, Z.; Cappello, F. Z-checker: A framework for assessing lossy compression of scientific data. Int. J.
High Perform. Comput. Appl. 2017, 1–19. [CrossRef]

22. Johnson, B.A.; Jozdani, S.E. Identifying Generalizable Image Segmentation Parameters for Urban Land Cover Mapping through
Meta-Analysis and Regression Tree Modeling. Remote Sens. 2018, 10, 73. [CrossRef]

23. Kupidura, P. The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite
Imagery. Remote Sens. 2019, 11, 1233. [CrossRef]

24. Sirmaçek, B.; Ünsalan, C. Road Detection from Remotely Sensed Images Using Color Features. In Proceedings of the 5th
International Conference on Recent Advances in Space Technologies—RAST2011, Istanbul, Turkey, 9–11 June 2011. [CrossRef]

25. Kazakeviciute-Januskeviciene, G.; Janusonis, E.; Bausys, R.; Limba, T.; Kiskis, M. Assessment of the Segmentation of RGB Remote
Sensing Images: A Subjective Approach. Remote Sens. 2020, 12, 4152. [CrossRef]

26. Fynn, I.E.M.; Campbell, J. Forest Fragmentation Analysis from Multiple Imaging Formats. J. Landsc. Ecol. 2019, 12. [CrossRef]
27. Bausys, R.; Kazakeviciute-Januskeviciene, G.; Cavallaro, F.; Usovaite, A. Algorithm Selection for Edge Detection in Satellite

Images by Neutrosophic WASPAS Method. Sustainability 2020, 12, 548. [CrossRef]
28. Öztürk, E.; Mesut, A. Entropy Based Estimation Algorithm Using Split Images to Increase Compression Ratio. Trakya Univ. J. Eng.

Sci. 2017, 18, 31–41.
29. Cheon, M.; Lee, J.S. Ambiguity-based evaluation of objective quality metrics for image compression. In Proceedings of the Eighth

International Conference on Quality of Multimedia Experience, Lisbon, Portugal, 6–8 June 2016. [CrossRef]
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