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Abstract: This paper proposes an α-level estimation algorithm for ridge fuzzy regression modeling,
addressing the multicollinearity phenomenon in the fuzzy linear regression setting. By incorporating
α-levels in the estimation procedure, we are able to construct a fuzzy ridge estimator which does
not depend on the distance between fuzzy numbers. An optimized α-level estimation algorithm
is selected which minimizes the root mean squares for fuzzy data. Simulation experiments and
an empirical study comparing the proposed ridge fuzzy regression with fuzzy linear regression is
presented. Results show that the proposed model can control the effect of multicollinearity from
moderate to extreme levels of correlation between covariates, across a wide spectrum of spreads for
the fuzzy response.
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1. Introduction

Often times in practical applications, the available data may not always be precise. The researcher
may be only accessible to minimum and maximum values of data. Sometimes the data may not
even be given in numbers. For instance, consider linguistics data such as “young”, “tall”, or “high”,
and medicine data such as “healthy” and “not healthy”. In such cases where the given data are
imprecise and vague, classical representation of numbers may be insufficient. The fuzzy set theory
introduced by Zadeh [1,2] can handle such uncertainty in data. In the view of fuzzy set theory,
uncertain data are what is called fuzzy. Fuzzy data are prevalent in various fields such as linguistics,
survey, medicine and so forth [3–7]. The development of fuzzy set theory has led to statistical
methods for analyzing fuzzy data. When the measure of indeterminacy is needed, the neutrosophic
set introduced by Smarandache [8] considered the measure of indeterminacy in addition to the fuzzy
set. The neutrosophic statistics based on the the neutrosophic set can be applied for the analysis of the
data when data are selected from the population with uncertain, fuzzy, and imprecise observations [9].

In 1982, Tanaka et al. [10] proposed the fuzzy linear regression model which generalizes the usual
linear regression model to fuzzy data. Fuzzy regression models have been since then widely used to
analyze fuzzy data [11–16].

In classical linear regression models, the multicollinearity phenomenon is frequently observed in
which two or more explanatory variables are highly linearly related. Common examples of collinear
covariates are: a person’s height and weight, a person’s level of education, gender, race, and starting
salary. When multicollinearity occurs, the least squares estimator may not be obtainable or be subject to
very high variance. Once the researcher identifies the collinear variables, there are several techniques
the researcher can use to handle multicollinearity. Among these techniques, the two most widely used
approaches are lasso regression and ridge regression. Lasso regression developed by Tibshirani [17]
and ridge regression developed by Hoerl and Kennard [18] improve model performance by adding a
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penalty term to the classical linear regression model. Both methods aim to shrink the model parameters
towards zero. This induces a sparse model which increases the model bias, but decreases the model
variance even more, thus improving overall performance. Ridge regression decreases the parameters
of low contributing variables towards zero, but not exactly to zero, and stabilizing the parameter
variance of the least squares estimator in the presence of multicollinearity. Lasso regression sets the
model parameters exactly to zero, removing low contributing variables as well as improving model
fitting. However, sometimes the researcher may want to include all the available covariates in the
model without having to reduce the dimension of the data. In such cases, ridge regression is preferred
to lasso regression.

Similar to classical linear regression models, multicollinearity occurs frequently in fuzzy linear
regression models as well, causing problems in the estimation procedure. Often times the number of
covariates is not particularly large for fuzzy data. Consequently, dropping any explanatory variables
may not be an option. As in the classical statistical setting, we prefer to use ridge regression to
lasso regression to handle multicollinearity in such datasets. In this paper, we incorporate fuzzy
set theory with ridge regression developed by Hoerl and Kennard [18] to handle multicollinearity
observed in fuzzy data. Only some works have suggested ridge estimation methods for fuzzy
linear regression, and are limited to obtaining fuzzy ridge estimators which are dependent on the
distance between fuzzy numbers [19–21]. We instead propose an α-level estimation algorithm for
ridge fuzzy regression modelling. The proposed algorithm is an extension of the ridge regression
model introduced in Choi et al. [22]. By applying α-levels to the estimation procedure, we are able
to construct a fuzzy ridge estimator which does not depend on the distance between fuzzy numbers.
Simulation experiments show the proposed ridge fuzzy regression model can solve moderate to severe
degrees of multicollinearity across a wide range of spreads for the fuzzy response. An empirical study
using Tanaka’s house prices data [10] with multicollinearity, the most widely applied data set in the
fuzzy linear regression literature, is conducted to demonstrate the practical implementations.

The rest of this paper is organized as follows. Section 2 introduces key definitions and results
from fuzzy set theory. Section 3 describes the classical ridge regression, followed by a step-by-step
procedure for the proposed α-level estimation algorithm of ridge fuzzy regression modeling. Sections 4
and 5 illustrates the performance of the model with simulation studies and a numerical example,
respectively. Section 6 concludes the paper.

2. Fuzzy Numbers

A fuzzy set is a set of ordered pairs A = {(x, µA(x)) : x ∈ X} where µA(x) : X → [0, 1] is
a membership function which represents the degree of membership of x in a set A. Please note
that when A is a crisp (classical) set, its membership function can take only the values one or zero
depending on whether or not x does or does not belong to A. In this case, µA(x) reduces to the
indicator function IA(x) of a set A. For any α in [0, 1], the α-level set of a fuzzy set A is a crisp set
A(α) = {x ∈ X : µA(x) ≥ α}which contains all the elements in X with membership value in A greater
than or equal to α. The α-level set of a fuzzy set A can also be represented by A(α) = [lA(α), rA(α)].
Here lA(α) and rA(α) are the left and right end-points of the α-level set, respectively. Zadeh’s [23]
resolution identity theorem states that a fuzzy set can represented by its membership function or by its
α-level set. Let A be a fuzzy number with membership function µA(x) and α-cut A(α). Then we have
µA(x) = Sup{α · IA(α)(x) : α ∈ [0, 1]}.

A fuzzy number is a normal and convex subset of the real line R with bounded support.
The support of a fuzzy set A is defined by supp(A) = {x ∈ R|µA(x) > 0}. The following parametric
class of fuzzy numbers, the so-called LR-fuzzy numbers denoted by A = (am, sl , sr)LR, is often used as
a special case:
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µA(x) =


L
( am − x

sl

)
if x ≤ am

R
( x− am

sr

)
if x > am

for x ∈ R (1)

where L, R : R→ [0, 1] are fixed, left-continuous, and non-increasing functions with R(0) = L(0) = 1,
and R(1) = L(1) = 0. L and R are called left and right shape functions of A, respectively. am is
the mean value of A, and sl , sr > 0 are each the left and right spreads of A. The spreads sl and sr

represent the fuzziness of the fuzzy number and can be symmetric or asymmetric. If sl = sr = 0,
the LR-fuzzy number becomes a precise real number with no fuzziness. Thus, a precise real number can
be considered to be a special case of a fuzzy number. For a precise observation a ∈ R, its corresponding
membership function is µa(x) = 1.

In the fuzzy set theory, triangular and trapezoidal fuzzy numbers are special cases of LR-fuzzy
numbers and are used extensively [24]. The membership function of a triangular fuzzy number
A = (al , am, ar)T is given by

µA(x) =


x− al

am − al
if x ≤ am

ar − x
ar − am

if x > am

for x ∈ R (2)

where al , am, and ar are the left end-point, mid-point, and right end-point, respectively.

3. Ridge Fuzzy Regression

In this section, we propose the α-level estimation algorithm for the proposed ridge fuzzy regression
model. This algorithm modifies the method based on Choi et al. [22] to estimate the fuzzy parameters.
The term α-level estimation indicates that our algorithm uses α-levels to describe fuzzy data. By using
α-level, we are able to develop a ridge fuzzy estimator which is not restricted to the distance between
fuzzy numbers. We first briefly examine the original formulation of ridge regression model for
crisp data.

3.1. Ridge Regression

Given a data set {yi, xi1, xi2, · · · , xip}N
i=1, a multiple linear regression model assumes that the

relationship between a dependent variable yi, i = 1, · · · , N and a set of explanatory variables
xi1, xi2, · · · , xip, i = 1, · · · , N is linear. The model takes the form

yi = β0 + β1xi1 + · · · βpxip + εi = X t
i β i = 1, · · · , N (3)

or written alternatively in matrix notation as Y = Xβ + ε. A vector Y = (y1, · · · , yN)
t is a vector

of observations on the dependent variable, X = (X t
1, · · · , X t

N)
t is a matrix of explanatory variables,

β = (β0, β1, · · · , βp)t is a vector of regression coefficients to be estimated, and ε = (ε1, · · · , εN)
t is a

vector of error terms. The standard estimator for β is the least squares estimator defined by

β̂ = (X tX)−1X tY . (4)

In the presence of multicollinearity, i.e., in state of extreme correlations among the explanatory
variables β̂ is poorly determined and susceptible to high variance. Thus, we may deliberately bias
the regression coefficient estimates so as to control their variance. In this manner, the ridge regression
estimator was introduced by Hoerl and Kennard [18] as a penalized least squares estimator. It is
achieved by minimizing the residual sum of squares (RSS) subject to a constraint on the size of the
estimated coefficient vector [25]:
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RSS(λ) = (Y − Xβ)t(Y − Xβ) + λβt β. (5)

Here λ ≥ 0 is a shrinkage parameter which controls the size of the coefficients. The larger the
value of λ, the greater the amount of shrinkage, and we have coefficients close to zero. The smaller
the value of λ is close to 0, we obtain the least squares solutions. Please note that by convention the
input matrix X is assumed to be standardized and Y is assumed to be centered before solving RSS(λ).
The ridge regression solution is

β̂ridge = (X tX + λI)−1X tY

where I is the p× p identity matrix. The shrinkage parameter λ is usually selected via K-fold cross
validation. Cross validation is a simple and powerful tool often used to calculate the shrinkage
parameter and the prediction error in ridge regression. The entire dataset is divided into K parts,
and trains the model on all but the kth part. The model is validated on the kth part, iterating for all
k = 1, · · · , K. The choice of K is K = 5 or K = 10 in general.

3.2. Ridge Fuzzy Regression Algorithm

Let us consider a set of observations

{yi, xi1, xi2, · · · , xip}N
i=1 = {(yil , yim, yir)T , (x1l , x1m, x1r)T , · · · , (xpl , xpm, xpr)T}N

i=1 (6)

where the dependent variable yi, i = 1, · · · , N and the explanatory variables xi1, xi2, · · · , xip, i =

1, · · · , N are triangular fuzzy numbers. We assume a linear relationship between the dependent and
explanatory variables:

yi = A0 ⊕ A1 � xi1 ⊕ · · · ⊕ Ap � xip ⊕ εi, i = 1, · · · , N (7)

where {Aj}
p
j=0 = {(Ajl, Ajm, Ajr)T}

p
j=0 are the fuzzy regression parameters and {εi}N

i=1 =

{(εil, εim, εir)T}N
i=1 are the fuzzy error terms. ⊕ and � represent addition and multiplication between

two fuzzy numbers, respectively. Often the N equations are stacked together and written in matrix
notation as

Y = X � A⊕ ε. (8)

For more details on arithmetic operations between fuzzy numbers, see [10,26]. Please note that
the above fuzzy variables can be symmetric or asymmetric, and be extended to various forms such
as normal, parabolic, or square root fuzzy data. Since crisp sets are a special case of fuzzy sets,
fuzzy inputs and fuzzy outputs, or fuzzy inputs and crisp outputs combinations are also possible.
For illustration purposes, in this section, we present our ridge fuzzy regression model using triangular
membership functions.

We divide the given data into training and test sets. The model is computed from the training set
{yi, xi1, xi2, · · · , xip}n

i=1, and later its performance is evaluated on the test set {yi, xi1, xi2, · · · , xip}m
i=1.

Note again that N is the total number of observations, n is the number of observations for the training
set, and m is the number of observations for the test set, such that n + m = N. We fit our ridge fuzzy
regression model on the training set by the following estimation algorithm:

Step 1: Create α-level sets of the triangular fuzzy input and output as illustrated in Figure 1.
For any α-level in [0, 1],
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yi(α) = [lyi (α), ryi (α)] (9)

= [(α− 1)sy
il + yim,−(α− 1)sy

ir + yim]

xij(α) = [lxij(α), rxij(α)] (10)

= [(α− 1)sx
ijl + xijm,−(α− 1)sx

ijr + xijm] i = 1, · · · , n, j = 1, · · · , p

where sy
il , sy

ir, sx
ijl , sx

ijr ≥ 0 are the left and right spreads of the dependent and explanatory variables,

respectively. The α-levels are denoted by the sequence (αk)
K
k=0 for some K with αk ∈ [0, 1].

● ● ●● ●

y1m y2m yim
sil

y sir
y

lyi(α) ryi(α)

● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

Y

α

Figure 1. Fuzzy output data.

Step 2: Perform ridge regression of Y(αk) on X(αk) for each k = 0, · · · , K. Find the intermediate
estimators lA(αk) and rA(αk) of lA(αk) and rA(αk) by minimizing the following respective ridge loss
functions (see Figure 2).

(lY (αk)− lX(αk)lA(αk))
t(lY (αk)− lX(αk)lA(αk)) + λlA(αk)

tlA(αk) (11)

(rY (αk)− rX(αk)rA(αk))
t(rY (αk)− rX(αk)rA(αk)) + λrA(αk)

trA(αk)

We assume the endpoints of the α-level set of Y has been centered and the endpoints of α-level set
of X has been standardized as is by convention in classical ridge regression [25].

●

● ●

● ●

● ●

● ●●● ●● ●● ●● ●

lAj(1)=rAj(1)

lAj(0.75)

rAj(0.75)

lAj(0.5) rAj(0.5)
lAj(0.25) rAj(0.25)

lAj(0) rAj(0)
0.00

0.25

0.50

0.75

1.00

 

α

Figure 2. Intermediate estimators lAj (αk) and lAj (αk) for the α-level sequence (0, 0.25, 0.5, 0.75, 1).
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Step 3: Obtain the estimators l̃A(αk) and r̃A(αk) of lA(αk) and rA(αk) by modifying the intermediate
estimators lA(αk) and rA(αk) so that the estimated coefficients form the membership function of a
triangular fuzzy number. For this the following operations are performed (see Figure 3).

l̃A(αK) = r̃A(αK) = lA(αK) = rA(αK) (12)

l̃A(αk) = min {lA(αk), l̃A(αk+1)} k = K− 1, K− 2, · · · , 0

r̃A(αk) = max {rA(αk), r̃A(αk+1)} k = K− 1, K− 2, · · · , 0

●

● ●

● ●

● ●

● ●

●● ●● ●● ●

lAj
~ (1)=rAj

~ (1)

lAj
~ (0.75) rAj

~ (0.75)lAj
~ (0.25)=lAj

~ (0.5)

rAj
~ (0.25)=rAj

~ (0.5)

lAj
~ (0) rAj

~ (0)
0.00

0.25

0.50

0.75

1.00

 

α

Figure 3. Modified estimators l̃Aj (αk) and l̃Aj (αk) for the α-level sequence (0, 0.25, 0.5, 0.75, 1).

Step 4: Estimate the triangular fuzzy coefficient Â = (Âl , Âm, Âr)T and its membership function
µÂ by fitting a linear regression line through l̃A(αk) and r̃A(αk) for k = 0, · · · , K, respectively.
A constraint is given so that µÂ satisfy the condition of µÂ(l̂A(1)) = µÂ(r̂A(1)) = 1 (see Figure 4).

● ●

● ●

● ●

● ●

●

●● ●● ●● ●● ●● ●

lAj
^ (0) lAj

^ (1)=rAj
^ (1) rAj

^ (0)
0.00

0.25

0.50

0.75

1.00

 

α

Figure 4. Estimated fuzzy coefficient Âj = (Âjl , Âjm, Âjr)T and its membership function.
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Step 5: Symmetric fuzzy inputs or outputs do not always guarantee that the estimated membership
function µÂ will also be symmetric. To reduce the difference between the true values with the fitted
values we consider the following candidates:

µÂ(x) =


x− l̂A(0)

l̂A(1)− l̂A(0)
if x ≤ l̂A(1) = r̂A(1)

r̂A(0)− x
r̂A(0)− r̂A(1)

if x > l̂A(1) = r̂A(1)

for x ∈ R (13)

or

µÂ(x) =


x− l̂A(0)

l̂A(1)− l̂A(0)
if x ≤ l̂A(1)

l̂A(0) + x
l̂A(1)− l̂A(0)

if x > l̂A(1)

for x ∈ R (14)

where r̂A(0) is chosen as r̂A(0) = 2× l̂A(1)− l̂A(0), or

µÂ(x) =


r̂A(0) + x

r̂A(0)− r̂A(1)
if x ≤ r̂A(1)

r̂A(0)− x
r̂A(0)− r̂A(1)

if x > r̂A(1)

for x ∈ R (15)

where l̂A(0) is chosen as l̂A(0) = 2× r̂A(1)− r̂A(0).
We present two performance criteria based on Diamond’s fuzzy distance measure [27] to evaluate

the proposed fuzzy estimators. Denote the dependent variable as yi = (yil , yim, yir)T , i = 1, · · · , n,
and its predicted value as ŷi = (ŷil , ŷim, ŷir)T = (X t

il Âl , X t
im Âm, X t

ir Âr)T , i = 1, · · · , n. Here n is the
number of observations for the training set. We defined RMSEF (root mean square error for fuzzy
numbers) and MAPEF (mean absolute percentage error for fuzzy numbers) as below.

RMSEF =

√
1
n

n

∑
i=1
{(yil − ŷil)2 + (yim − ŷim)2 + (yir − ŷir)2} (16)

MAPEF =
100%

n

n

∑
i=1

(|yil − ŷil |+ |yim − ŷim|+ |yir − ŷir|) (17)

Compute the RMSEF for each of the membership functions, then select the one which minimizes
the criterion.

Step 6: Repeat Steps 1–5 for selected α-level sequences (αk)
K
k=0 with αk equally spaced between 0

and 1. Choose the optimal set of α-levels which minimizes RMSEF. Finally, compute the fuzzy ridge
coefficient estimate Â based on that selected sequence.

4. Simulation Study

A simulation study was conducted to illustrate the performance of the proposed ridge fuzzy
regression model in the presence of multicollinearity. Simulation results are compared with the fuzzy
linear regression model with varying degrees of correlation. The fuzzy least squares estimator is
obtained by setting the tuning parameter λ as zero in Step 2 of Section 3.2.

We generated N = 100 observations for each of the p = 4 crisp explanatory variables. The number
of data dimensions is in line with commonly found fuzzy data. Following Gibbons [28], the explanatory
variables xij are generated by



Mathematics 2020, 8, 1572 8 of 15

xij = (1− ρ2)1/2zij + ρzip, i = 1, · · · , n j = 1, · · · , p (18)

where ρ is a given constant and zij are generated from independent normal distributions with mean 50
and variance 1. Here xij are assumed to be non-negative so as to reflect the non-negative characteristics
of real world fuzzy data. The degree of linear association between explanatory variables is controlled
via ρ, where in this case is the correlation between any two explanatory variables is ρ2. Three different
sets of correlation are considered corresponding to ρ = 0.8, 0.9, and 0.99. Each value of ρ stands for
moderate, high, and very high correlation between the variables. Observations on the fuzzy dependent
variable are generated by

yil = A0l + A1l xi1 + · · ·+ Apl xip + ε1
i (19)

yim = A0m + A1mxi1 + · · ·+ Apmxip + ε2
i

yir = A0r + A1rxi1 + · · ·+ Aprxip + ε3
i , i = 1, · · · , N

where ε1
i , ε2

i , ε3
i are generated from independent normal distributions with mean 0 and variance σ2.

Four values of σ are investigated in this study: 0.5, 1, 1.5, and 2. Large values of σ correspond to bigger
variation in the spreads of the fuzzy dependent variable. Sy

l = (sy
1l , · · · , sy

Nl)
t the vector of left spreads

and Sy
r = (sy

1r, · · · , sy
Nr)

t the vector of right spreads are determined by

sy
il = yim − yil (20)

sy
ir = yir − yim i = 1, · · · , N.

Cases of asymmetric spreads, Sy
l 6= Sy

r , and symmetric spreads, Sy
l = Sy

r are also
compared. The supposed parameters of the model are: Al = (0, 0.1, 0.15, 0.2, 0.25), Am =

(0, 0.4, 0.45, 0.5, 0.55), and Ar = (0, 0.7, 0.75, 0.8, 0.85). In order to analyze the effects of factors ρ

and σ, we controlled for the effects of varying α-level sequences in Step 6 of Section 3.2. For both
models we fixed the α-level sequence as (0, 0.25, 0.5, 0.75, 1).

200 replicates for each scenario are generated. The explanatory variables and the fuzzy coefficients
remain fixed, while the error terms and hence the fuzzy dependent variable changes. We separated the
simulated data into training and test sets. Once the ridge fuzzy regression model and the fuzzy linear
regression model are fit to the training data, RMSEF and MAPEF are computed from the test set for
t = 1, · · · , 200 replicates. Let RMSEt

F and MAPEt
F be the performance measures when the fuzzy model

is applied to the replicate t. The following quantities are then computed for each fuzzy estimator:

Ave. RMSEF =
1

200

200

∑
t=1

RMSEt
F (21)

Ave. MAPEF =
1

200

200

∑
t=1

MAPEt
F. (22)

In addition, we fit the ridge regression model and the linear regression model on the mid-point
of our training data {yim, xi1m, xi2m, · · · , xipm}n

i=1 for comparison with fuzzy methods. The test Ave.
RMSE and Ave. MAPE values of 200 replicates are recorded for both models. The output from
numerical experiments is suggested below in Tables 1–6. Measures of performance are summarized
for all combinations of factors ρ, σ and whether the fuzzy output is symmetric or not. The following
remarks can be made on the basis of Tables 1–6:

1. Ave. RMSE and Ave. MAPE do not depend on whether the spreads are symmetric or not as
they are computed from the mid-points of the generated data. Ridge regression achieves smaller
Ave. RMSE than linear regression in all cases. Ridge regression achieves smaller or nearly equal
Ave. MAPE with linear regression in all cases. If the Ave. RMSE of ridge regression is smaller
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than linear regression a similar pattern is observed for Ave. RMSEF values. This relationship is
observed for Ave. MAPE and Ave. MAPEF as well.

2. Ave. RMSEF increases as σ increases for both models. As σ and ρ increases, the Ave. RMSEF
difference between ridge fuzzy regression and fuzzy linear regression increases as well.
Ave. RMSEF values are larger when the spreads are symmetric. In all scenarios, ridge fuzzy
regression Ave. RMSEF values almost always outperform those of fuzzy linear regression.

3. Ave. MAPEF exhibit near identical patterns with Ave. RMSEF. For both ridge fuzzy regression
and fuzzy linear regression, Ave. MAPEF is larger for bigger σ values. The difference between the
two models increases as σ and ρ increases. When the fuzzy dependent variable is symmetric the
Ave. MAPEF values are larger than when it is asymmetric. Ave. MAPEF is in general lower for
ridge fuzzy regression than fuzzy linear regression for all σ and ρ combinations and asymmetric,
symmetric outputs.

Table 1. The performance measures when ρ = 0.8 and the dependent variable is an asymmetric triangular
fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 1.161 4.459 10.955 19.419
Fuzzy Reg. 1.706 8.979 23.130 40.243

Ave. RMSE Ridge Reg. 0.478 0.957 1.437 1.917
Linear Reg. 0.481 0.962 1.444 1.925

Ave. MAPEF
Ridge Fuzzy Reg. 1.84% 7.64% 19.26% 34.43%
Fuzzy Reg. 2.83% 15.81% 41.14% 71.71%

Ave. MAPE Ridge Reg. 0.31% 0.61% 0.91% 1.21%
Linear Reg. 0.31% 0.61% 0.92% 1.23%

Table 2. The performance measures when ρ = 0.8 and the dependent variable is a symmetric triangular
fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 3.604 8.150 19.944 22.572
Fuzzy Reg. 6.273 19.228 39.020 61.870

Ave. RMSE Ridge Reg. 0.478 0.957 1.437 1.917
Linear Reg. 0.481 0.962 1.444 1.925

Ave. MAPEF
Ridge Fuzzy Reg. 5.89% 13.64% 25.52% 38.88%
Fuzzy Reg. 10.72% 33.72% 69.03% 109.8%

Ave. MAPE Ridge Reg. 0.31% 0.61% 0.91% 1.21%
Linear Reg. 0.31% 0.61% 0.92% 1.23%

Table 3. The performance measures when ρ = 0.9 and the dependent variable is an asymmetric
triangular fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 1.210 4.612 11.625 20.995
Fuzzy Reg. 2.879 17.321 38.918 63.449

Ave. RMSE Ridge Reg. 0.478 0.959 1.440 1.921
Linear Reg. 0.481 0.962 1.444 1.925

Ave. MAPEF
Ridge Fuzzy Reg. 2.02% 8.29% 21.47% 39.05%
Fuzzy Reg. 5.19% 32.26% 72.62% 118.4%

Ave. MAPE Ridge Reg. 0.32% 0.64% 0.95% 1.27%
Linear Reg. 0.32% 0.64% 0.96% 1.28%
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Table 4. The performance measures when ρ = 0.9 and the dependent variable is a symmetric triangular
fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 3.306 8.356 16.036 25.076
Fuzzy Reg. 8.378 30.691 60.041 91.664

Ave. RMSE Ridge Reg. 0.478 0.959 1.440 1.921
Linear Reg. 0.481 0.962 1.444 1.925

Ave. MAPEF
Ridge Fuzzy Reg. 5.60% 14.71% 28.85% 45.47%
Fuzzy Reg. 15.23% 56.89% 111.7% 170.6%

Ave. MAPE Ridge Reg. 0.32% 0.64% 0.95% 1.27%
Linear Reg. 0.32% 0.64% 0.96% 1.28%

Table 5. The performance measures when ρ = 0.99 and the dependent variable is an asymmetric
triangular fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 0.952 2.378 6.822 14.514
Fuzzy Reg. 34.201 101.27 171.70 243.33

Ave. RMSE Ridge Reg. 0.440 0.874 1.310 1.746
Linear Reg. 0.443 0.885 1.328 1.771

Ave. MAPEF
Ridge Fuzzy Reg. 1.80% 4.70% 14.53% 31.64%
Fuzzy Reg. 75.07% 222.3% 377.1% 535.0%

Ave.MAPE Ridge Reg. 0.37% 0.74% 1.11% 1.49%
Linear Reg. 0.38% 0.76% 1.14% 1.52%

Table 6. The performance measures when ρ = 0.99 and the dependent variable is a symmetric
triangular fuzzy number.

σ: 0.5 1.0 1.5 2.0

Ave. RMSEF
Ridge Fuzzy Reg. 2.471 6.266 13.195 23.077
Fuzzy Reg. 55.455 142.97 233.84 325.40

Ave. RMSE Ridge Reg. 0.440 0.874 1.310 1.746
Linear Reg. 0.443 0.885 1.328 1.771

Ave. MAPEF
Ridge Fuzzy Reg. 4.70% 12.53% 27.65% 49.26%
Fuzzy Reg. 121.5% 313.5% 513.2% 714.9%

Ave. MAPE Ridge Reg. 0.37% 0.74% 1.11% 1.49%
Linear Reg. 0.38% 0.76% 1.14% 1.52%

5. Empirical Study

In this section, we demonstrate the performance of the proposed ridge fuzzy regression model
on an illustrative example taken from Tanaka [10]. The performance of the ridge fuzzy regression
estimator is compared with the fuzzy least squares estimator for crisp explanatory variables and a
fuzzy dependent variable. The linear regression fuzzy model from Tanaka [10] is further compared to
illustrate the performance of the ridge fuzzy regression model. For both the ridge fuzzy regression
and the linear fuzzy model, the α-level sequences αk = r× k, k = 0, · · · , K for some r and K are chosen
as candidates for Step 6 of the estimation algorithm in Section 3.2. The list of α-level sequences is
presented in Table 7.
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Table 7. The list of α-level sequences for Step 6 of the estimation algorithm.

αk = r × k, k = 0, · · ·, K

No. r K
1 0.01 100
2 0.02 50
3 0.025 40
4 0.04 25
5 0.05 20
6 0.1 10
7 0.15 6
8 0.2 5
9 0.25 4
10 0.3 3
11 0.5 2
12 1 1

Example: House Prices Data

Tanaka et al. [10] presents a data set concerning the price mechanism of prefabricated houses.
The relationship between five crisp inputs (rank of material, first floor space (m2 ), second first floor
space (m2), number of rooms and number of Japanese-style rooms) and a fuzzy output (house price)
is investigated. The complete data is shown in Table 8. The fitted values for the ridge fuzzy model
and the linear fuzzy model is shown in Table 9. Results show the predicted values from the ridge
fuzzy regression more accurately describes the original data than fuzzy linear regression. This is again
clarified in Figure 5. In the triangular fuzzy plot of the observed and fitted values, a comparison of
the two models is shown. The black triangles correspond to the observed values, the red triangles in
Figure 5a to the ridge fuzzy fitted values, and the blue triangles in Figure 5b to the fuzzy linear fitted
values. Both methods estimated the mid-points of the fuzzy dependent variable well. The spreads
however, are shorter for the proposed ridge fuzzy regression than the other. The fitted equation for the
ridge fuzzy regression is given by

Ŷ =(−1839.23,−1156.78,−474.32) + (1874.56, 1874.56, 1874.56)x1+ (23)

(73.73, 75.29, 76.85)x2 + (59.04, 65.57, 72.10)x3+

(−149.93,−149.93,−149.93)x4 + (543.50, 587.74, 631.98)x5

and for the fuzzy linear regression, the fitted equation is

Ŷ =(−2038.12,−1129.61,−221.09) + (2386.56, 2386.56, 2386.56)x1+ (24)

(87.13, 93.37, 99.60)x2 + (71.72, 82.13, 92.54)x3+

(−376.35,−376.35,−376.35)x4 + (−285.03,−188.25,−91.48)x5.

Please note that the fitted equation for the linear regression fuzzy model shown in Tanaka et al. [10] is

Ŷ =(10, 220, 11, 040, 11, 860) + (1810, 1810, 1810)x1+ (25)

(1770, 2140, 2510)x2 + (870, 870, 870)x3+

(−540,−540,−540)x4 + (−180,−180,−180)x5.

An analysis of the α-level sequences used in Step 6 of the estimation algorithm is presented in
Figure 6. The α-level sequence which minimizes RMSEF was chosen as the optimal α-level sequence
for each of the models. The red dots in Figure 6a,b each indicate the chosen α-level sequence based on
RMSEF. For the ridge fuzzy regression, αk = r× k, k = 0, · · · , K with r = 0.01, K = 100 was chosen.
In the case of fuzzy linear regression, r = 0.5, K = 2 was selected.
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Table 8. Houses prices data.

No. Y = (ym, Sy
l = Sy

r ) x1 x2 x3 x4 x5

1 (6060, 550) 1 38.09 36.43 5 1
2 (7100, 50) 1 62.10 26.50 6 1
3 (8080, 400) 1 63.76 44.71 7 1
4 (8260, 150) 1 74.52 38.09 8 1
5 (8650, 750) 1 75.38 41.40 7 2
6 (8520, 450) 2 52.99 26.49 4 2
7 (9170, 700) 2 62.93 26.49 5 2
8 (10,310, 200) 2 72.04 33.12 6 3
9 (10,920, 600) 2 76.12 43.06 7 2

10 (12,030, 100) 2 90.26 42.64 7 2
11 (13,940, 350) 3 85.70 31.33 6 3
12 (14,200, 250) 3 95.27 27.64 6 3
13 (16,010, 300) 3 105.98 27.64 6 3
14 (16,320, 500) 3 79.25 66.81 6 3
15 (16,990, 650) 3 120.50 32.25 6 3

Table 9. Fitted values of house prices data.

No. Y = (ym, Sy
l = Sy

r ) Ridge Fuzzy Reg. Fuzzy Reg.

1 (6060, 550) (5812.32, 1024.08) (5735.21, 1621.95)
2 (7100, 50) (6819.04, 996.70) (6785.09, 1668.23)
3 (8080, 400) (7988.07, 1118.22) (8059.27, 1868.14)
4 (8260, 150) (8214.21, 1091.78) (8143.87, 1866.29)
5 (8650, 750) (9233.67, 1158.99) (8684.11, 2002.89)
6 (8520, 450) (8894.65, 1026.66) (8884.70, 1708.12)
7 (9170, 700) (9493.11, 1042.17) (9436.42, 1,770.07)
8 (10,310, 200) (11,051.53, 1143.94) (10,266.90, 1992.65)
9 (10,920, 600) (11,272.79, 1170.98) (11,276.09, 2024.78)

10 (12,030, 100) (12,309.87, 1190.31) (12,561.81, 2108.54)
11 (13,940, 350) (13,837.21, 1153.57) (13,781.85, 2059.16)
12 (14,200, 250) (14,315.80, 1144.40) (14,372.32, 2080.39)
13 (16,010, 300) (15,122.16, 1161.12) (15,372.29, 2147.15)
14 (16,320, 500) (15,677.92, 1375.23) (16,093.51, 2388.31)
15 (16,990, 650) (16,517.66, 1213.89) (17,106.59, 2285.64)
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(a) Ridge fuzzy regression.
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(b) Fuzzy linear regression.

Figure 5. The triangular fuzzy plot of observed and fitted values. (a): Ridge fuzzy regression and (b):
Fuzzy linear regression.

In Table 10 the performance measures RMSEF and MAPEF ridge fuzzy regression are compared
with the fuzzy linear regression model and the linear regression fuzzy model from Tanaka et al. [10].
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Clearly both measures are greatly reduced for the ridge fuzzy regression compared to the other
models, suggesting that the proposed ridge fuzzy regression model provides a better fit of the data in
comparison to the two methods.
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(b) Fuzzy linear regression.

Figure 6. Analysis of the α-level sequences in Step 6 of the estimation algorithm. (a): Ridge fuzzy
regression and (b): Fuzzy linear regression.

Table 10. RMSEF and MAPEF fuzzy performance measures for ridge fuzzy regression, fuzzy linear
regression, and the linear regression fuzzy model from Tanaka et al. [10].

RMSEF MAPEF

Ridge Fuzzy Reg. 1327.78 18%
Fuzzy Reg. 2321.24 33%
Tanaka et al. 349,851.8 55%

6. Conclusions

This paper proposes an α-level estimation algorithm for ridge fuzzy regression modeling,
extending the ridge regression model introduced in Choi et al. [22]. As shown in simulation studies
and an empirical study, the proposed ridge fuzzy regression model can handle fuzzy data sets with
crisp inputs and triangular fuzzy outputs. The same procedure is available with fuzzy inputs and
fuzzy outputs, or fuzzy inputs and crisp outputs. In previous works, estimation methods for ridge
fuzzy regression depend on the distance between fuzzy numbers. By incorporating α-levels to ridge
fuzzy regression, we are able to construct the ridge fuzzy estimator without having to define the
distance between fuzzy numbers. Simulation results show the ridge fuzzy regression model reduces
the effect of multicollinearity over a wide range of spreads for the fuzzy response, for various levels of
correlation between inputs. In the illustrative example taken from Tanaka et al. [10], we have shown
the practical implementations of our method. Comparison is made with fuzzy linear regression with
respect to RMSE and MAPE for fuzzy numbers. Overall these results demonstrate the effectiveness of
ridge regression in fuzzy data.

An importance point to note is that typically ridge regression is preferred over lasso regression
when the objective of research is to handle multicollinearity while not wanting to remove low
contributing variables. However, when the dimension of the data is large and dropping collinear
variables is necessary, one may use lasso regression rather than ridge regression. To manage such
cases, in future studies we plan to extend the proposed α-level estimation algorithm for ridge fuzzy
models to lasso fuzzy regression models. Lasso fuzzy regression will be especially useful for modeling
correlated genetic data sets.

In addition, the present study can be extended for neutrosophic statistics [9,29–35] as future research.
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