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Interval neutrosophic sets (INSs) provide us with a more flexible and effective way to express incomplete, indeterminate, and
inconsistent information..e purpose of this paper is to introduce the newmulticriteria decision-making (MCDM)method based
on the improved projection model under the interval neutrosophic environment. In this paper, we investigated the basic concepts
and operational rules of interval neutrosophic numbers (INNs), then proposed the projection of two INNs and improved the
entropy formula of the INNs. Furthermore, this paper took account into the decision maker’s attitude towards the indeterminacy
and risk and proposed two different methods to determine the ideal solutions. Based on this, we presented an improved MCDM
method based on the projection model under the interval neutrosophic environment. Finally, the practicability and reliability of
the proposed method were explained by the example of software quality-in-use evaluation.

1. Introduction

Zadeh [1] proposed the concept of fuzzy set (FS), which
could effectively deal with the fuzzy information, and has
been effectively applied to the fields of fuzzy decision-
making, fuzzy control, pattern recognition, and so on. Based
on the idea of FSs, Atanassov added nonmembership
function and introduced the concept of intuitionistic fuzzy
set (IFS) [2]..en, Atanassov and Gargov [3] introduced the
concept of interval-valued intuitionistic fuzzy set (IVIFS),
which uses the form of interval numbers to represent the
membership and nonmembership. .is form provides a
more flexible way to express fuzzy and uncertain infor-
mation. However, IFS and IVIFS still have some short-
comings in representing indeterminacy information. To
overcome these shortcomings, Smarandache [4] proposed
the concept of neutrosophic set (NS), which takes three
parameters into account including truth-membership, in-
determinacy-membership, and falsity-membership. .is
form deals with not only the incomplete information but
also the indeterminate information and inconsistent

information clearly and effectively. Its advantage is to
quantify the uncertainty clearly. Different from those of IFS
and IVIFS, the truth information, the indeterminacy in-
formation, and the falsity information of NS are irrelevant.
Considering that, the neutrosophic set put forward the
concept of indeterminacy-membership on the basis of IFS.
And it is the generalization of FS, IFS, and IVIFS. .erefore,
it is difficult to apply the neutrosophic set to the practical
decision-making environment. Wang et al. extended the
neutrosophic set and proposed the concepts of both single-
valued neutrosophic set (SVNS) [5] and interval neu-
trosophic set (INS) [6]. In contrast with NS, SVNS, and INS,
practical problems can be solved more easily and effectively.
In view of the flexibility and practicability of INS in dealing
with uncertain information, it has attracted extensive at-
tention in the field of multicriteria decision-making
(MCDM). An INS is an instance of an NS, and it would be
more suitable to apply the indeterminate information and
inconsistent information measures [7]. In view that INS
represents truth-membership, indeterminacy-membership,
and falsity-membership in the form of the interval number,
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the expression of INS is prone to be more inclusive and
flexible when dealing with uncertain information..erefore,
the INS will provide an effective method to solve the un-
certainty in the real environment.

Yu et al. [8–10] conducted a bibliometric analysis of
related periodicals, such as fuzzy optimization and decision-
making, which is valuable for the further study of MCDM.
.e recent research is divided into two trends. One is the
innovation and development of fuzzy sets, such as NS [11,
12], SVNS, INS, and other concepts. .e other is to combine
new concepts with more mature MCDM methods and
further innovate and apply these methods. Among them, the
research on the single value neutrosophic set mainly in-
cludes basic concepts, operational rules, similarity mea-
surement, distance measurement, entropy measurement,
definition of cross entropy [13, 14], aggregation operator
[15–18], and decision method [19, 20]. INS adopts the form
of the interval number to represent the truth information,
indeterminacy information, and falsity information, which
can effectively catch and express more information in case of
uncertainty [21]. Ridvan [22] and Tian et al. [23] provided
the definition of the interval neutrosophic crossentropy and
proposed several multicriteria decision-making methods
based on this. Ye [24] utilized the similarity measures with
interval neutrosophic sets between each alternative and the
ideal alternative to rank the alternatives and meanwhile
determine the better one. Bolturk and Kahraman [25] de-
veloped a novel AHPmethod with cosine similarity measure
under the INS environment. Sun et al. [26] proposed a
choquet integral operator with interval neutrosophic
numbers for MCDM. Zhang et al. [27, 28] developed the
MCDM methods with simplified neutrosophic number
(SNNs) and interval neutrosophic numbers (INNs). In
addition, Liu et al. [29–31] also studied the MCDM method
under the interval neutrosophic environment and made
some progress. Pramanik et al. proposed the definitions of
in-crossentropy and similarity measure and introduced an
extended grey relational analysis method under the interval
neutrosophic environment [32–34]. .e properties and
applications of multivalued neutrosophic set, neutrosophic
cubic set [35–39], picture fuzzy set [40, 41], and linguistic
neutrosophic set [42–45] will be considered as the direction
of some scholars in the next stage of research studies. In
addition, Ashraf also studied the properties, operational
rules, and aggregation operators of spherical fuzzy sets and
linguistic spherical fuzzy sets, then further studied their
application to multiattribute decision-making problems
[46–54]. Spherical fuzzy sets will also become a research
direction in fuzzy decision-making. .ese studies will inject
new vitality into the uncertain decision-making.

.e neutrosophic set regards the truth, falsity, and in-
determinacy information as mutually independent. Taking
the single-valued neutrosophic number as an example, it can
be seen that changes in one value do not directly affect
changes in other values. .e range of its three parameters is
[0, 1]. We determined the comprehensive information by
synthesizing the values of three parameters. As shown in
Figure 1(b), point K is the geometric representation of a
single-valued neutrosophic number. Relatively, for an

intuitionistic fuzzy set A � 〈x, μA(x), vA(x)〉 | x ∈ X􏼈 􏼉, it is
not hard for us to find that μA(x) + ]A(x) + πA(x) � 1;
therefore, the changes of values of μA(x) and ]A(x) directly
affect the value of πA(x). In Figure 1(a), point D is the
geometric representation of an intuitionistic fuzzy number
and the abovementioned three parameters are linearly
correlated..erefore, it is not suitable to copy the formula of
ranking, entropy, crossentropy, and the distance of two
intuitionistic fuzzy numbers to the SVNS and INS. Given the
abovementioned reasons, combining with the characteristics
of the neutrosophic set, the problem of how to treat the
indeterminacy information becomes the key to the ranking
method of neutrosophic numbers, the calculation of the
expected value, and the distance between two neutrosophic
numbers. Most studies tend to accept the conclusion as
follows that, for two SVNNs or INNs, if the values of their
truth membership and falsity-membership are identical, the
larger the indeterminacy value is, the smaller the SVNN will
be, which is based on the fact that people are inclined to
choose the alternative with lower uncertainty. However, that
is not always the case. If we try to adopt the prospect theory
to interpret single-valued neutrosophic set, we may find that
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Figure 1: Geometric representation of (a) intuitionistic fuzzy
number and (b) single-valued neutrosophic number.
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the previous conclusion is not constant. According to the
certainty effect of prospect theory, given two single neu-
trosophic numbers x � [0.5, 0.7, 0.1] and y � [0.5, 0.4, 0.1],
and meanwhile 0.5 − 0.1 � 0.4, the truth information
dominates for the two numbers..e advantages are obvious.
We tend to choose the number with the lower value of
indeterminacy information. Based on the abovementioned
description, we can draw the following conclusion, that is,
x>y. On the contrary, given two neutrosophic numbers x �

[0.1, 0.7, 0.5] and y � [0.15, 0.1, 0.5], according to the re-
flection effect of prospect theory, because 0.1 − 0.5 � − 0.4,
the falsity information dominates for two numbers. .e
psychology of decision makers is often that since the result is
terrible, a gamble may bring the good result. As a conse-
quence, they are apt to choose the number with the higher
indeterminacy value. When we compare two numbers,
generally speaking, it is easy to make a comparison provided
that one has more obvious advantages over the other. By
employing different methods, we can obtain the same result.
But often, there are some numbers with high similarity,
which make it difficult to make a comparison. Different
comparison methods may result in different results, for
instance, the comparison of two numbers x � [0.1, 0.1, 0.5]

and y � [0.15, 0.15, 0.55]. Despite that scholars have put
forward many comparative methods, it is still hard to de-
termine which one is appropriate. .is is a matter of con-
sideration. .e difficulty of conducting the research is to
figure out the compensation mode between different pa-
rameters. From the abovementioned examples, we come to a
conclusion that the attitude of decision makers towards
indeterminacy information will be the foundation of the
comparison of two neutrosophic numbers. Similarly, the
attitude of decision makers towards indeterminacy infor-
mation also affects the determination of positive and neg-
ative ideal schemes.

.e rest of paper was organized as follows. In Section 2,
this paper introduced some related concepts of INSs and
operational rules of INNs and meanwhile provided the new
ranking method for INNs. In Section 3, this paper gave the
definition for the projection of two INNs and improved the
entropy weight formula. Section 4 proposed an MCDM
method based on the projection model and improved en-
tropy weight. In Section 5, this paper illustrated the steps of
the proposed method for evaluating the quality-in-use of
software. Finally, the further research work was introduced
in Section 6.

2. Preliminaries

2.1. Neutrosophic Sets and Single-Valued Neutrosophic Sets

2.1.1. Interval Neutrosophic Sets. An interval neutrosophic
set (INS) is an instance of NS, which can be used in real
decision and graphic image processing. .e definitions of
interval neutrosophic set and numbers are given as follows.

Definition 1 [see 6]. Let U be a space of points (objects) and
Int[0, 1] be the set of all closed subsets of [0, 1]. An interval
neutrosophic set B in U is defined with the form

B � x, TB(x), IB(x), FB(x)( 􏼁􏼂 􏼃
􏼌􏼌􏼌􏼌 x ∈ U􏽮 􏽯, (1)

where the intervals TB(x) � [TL(x), TU(x)] ⊆ [0, 1],
IB(x) � [IL(x), IU(x)] ⊆ [0, 1], and FB(x) � [FL(x),

FU(x)] ⊆ [0, 1] denote truth-membership function, inde-
terminacy-membership function, and falsity -membership
function, respectively:

0≤ supTA(x) + supIA(x) + supFA(x)≤ 3. (2)

So, we can use x � ([TL, TU], [IL, IU], [FL, FU]) to
represent the elements of the interval neutrosophic set, that
is, the interval neutrosophic number (see Figure 2).

Definition 2 (see [24]). Let x � ([TL
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1 ], [IL
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1 ], [FL
1 , FU

1 ])

and y � ([TL
2 , TU

2 ], [IL
2 , IU
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2 ]) be two interval neu-
trosophic numbers, and then the Hamming distance can be
defined as follows:
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Definition 3 (see [11]). Let x � ([TL
1 , TU
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1 ], [FL
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and y � ([TL
2 , TU

2 ], [IL
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2 ]) be two interval neu-
trosophic numbers, and then the operational rules of interval
neutrosophic numbers can be defined as follows:
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Definition 4 (see [11]). Let x � ([TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ])

and y � ([TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ]) be two interval neu-
trosophic numbers, and its operational rules satisfy the
following operation relations:
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(1) x ⊕ y � y ⊕ x

(2) x ⊗ y � y ⊗ x

(3) λ(x ⊕ y) � λx ⊕ λy, λ≥ 0
(4) λ1x ⊕ λ2x � (λ1 + λ2)x, λ1, λ2 ≥ 0
(5) xλ ⊕ yλ � (x ⊗ y)λ, λ≥ 0
(6) xλ1 ⊗ xλ2 � xλ1+λ2 , λ1, λ2 ≥ 0

2.1.2. /e Ranking Method of Interval Neutrosophic
Numbers. Next, we introduce a method to compare the
interval neutrosophic numbers, which fully considers the
decision maker’s attitude towards risk. We divide decision
makers into three types: risk preference type, risk neutrality
type, and risk aversion type. In the process of evaluation,
whether qualitative or quantitative methods are used, ob-
jective facts should be taken as the basis as far as possible.
Different attitudes of decision makers can lead to different
results. Based on this, the definitions of expect function and
fuzzy function are provided.

Definition 5. Let x � ([TL, TU], [IL, IU], [FL, FU]) be an
INN, and then the expect function of an interval neu-
trosophic number can be defined as follows:

Exp(x) �
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When the decision maker is the risk preference type,
0.5<φ≤ 1. When the decision maker is the risk aversion
type, 0≤φ< 0.5. When the decision maker is the risk
neutrality type, φ � 0.5. Generally, we set φ � 0.5. We can
compare the size of the interval neutrosophic numbers
according to the size of the expected function. .e greater
the expected value of the INN, the greater the INN.

Here, we assume the decision maker is the risk neutrality
type, and let φ � 0.5:

(1) Compare M � ([0, 4, 0.6], [0.2, 0.6], [0.2, 0.5]) and
N � ([0, 3, 0.7], [0.2, 0.6], [0.3, 0.6]).
Because Exp(M) � 0.45, Exp(N) � 0.35, so M>N.

(2) Compare M � ([0, 3, 0.7], [0.3, 0.5], [0.3, 0.6]) and
N � ([0, 3, 0.7], [0.2, 0.6], [0.3, 0.6]).
Because Exp(M) � 0.35, Exp(N) � 0.35, so M � N.

Obviously,M is less ambiguous, so we tend to think that
M is more valuable. However, the abovementioned calcu-
lation results show that M�N, which is not consistent with
the objective reality. .erefore, we propose a fuzzy function
to assist in the comparison of the size of the interval neu-
trosophic numbers.

Definition 6. Let M � ([TL, TU], [IL, IU], [FL, FU]) be an
interval neutrosophic number, then the fuzzy function of an
interval neutrosophic number can be defined as follows:

Fuz(M) � T
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(10)

Theorem 1. /e fuzzy function satisfies the following
properties:

(P1)
Fuz(M) � 1, if TU � FU � IU � 1, TL � FL � IL � 0,

(P2) Fuz(M) � 0, if TU � TL or FU � FL or IU � IL.

When the Exp (expect function) values of two INNs are
equal, then compare their Fuz (fuzzy function) values. .e
INNs with smaller fuzzy function values have larger values.

With equation (10), we calculate the fuzzy values of M
and N as follows:

Fuz(M) � 0.024,

Fuz(N) � 0.048.
(11)

So, we can get M>N.
Let M � ([TL

M, TU
M], [IL

M, IU
M], [FL

M, FU
M]) and

N � ([TL
N, TU

N], [IL
N, IU

N], [FL
N, FU

N]) be two neutrosophic
numbers, and the ranking method of interval neutrosophic
numbers are as follows:

(1) If Exp(M)>Exp(N), then M>N

(2) If Exp(M) � Exp(N), Fuz(M)> Fuz(N), then
M<N

(3) If Exp(M) � Exp(N), Fuz(M) � Fuz(N), then
M � N

3. The Definition of Projection and Variation
Entropy Weight

3.1. /e Projection of Two Interval Neutrosophic Numbers.
.e main idea of the projection method is that each deci-
sion-making scheme is treated as a row vector, and then
there is an angle between each alternative and the ideal
solutions. .e smaller the angle is, the more similar the two
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Figure 2: Geometric representation of the interval neutrosophic
set.
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vectors are..e vector consists of direction and module..e
angle cosine value between vectors mainly measures whether
the direction of the two vectors is consistent but cannot
reflect the size of their modules. .erefore, it is necessary to
consider both the size of the module and the angle cosine in
order to reflect the proximity between vectors. Based on this,
the concept of projection is given.

.is paper proposes a projection model based on INS,
which not only retains the advantages of traditional pro-
jection methods but also has more flexibility and practica-
bility in dealing with the uncertain information and
inconsistent information.

Definition 7. Let M � ([TL
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It follows the following rules:
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is the projection of M on N, 0≤ projN(M)≤
�
6

√
. Generally,

the larger the value of projN(M) is, the closer M is to N, the
smaller the value of projN(M) is, and the further theM away
from N. When M � ([0, 0], [1, 1], [1, 1]) and
N � ([0, 0], [1, 1], [1, 1]), we specify projN(M) � 1.

.e projection model with INNs is improved, in which
positive information, antinegative information and anti-
uncertainty information are fused together instead of pos-
itive information, negative information, and uncertainty
information.

3.2. /e Variation Entropy of the Interval Neutrosophic
Number. .e basic idea of the entropy weight method is to
determine the objective weight according to the variability
of the indicator. Entropy is a main concept in the in-
formation theory and a measure of uncertainty. If experts
take the form of INN as an evaluation value, it will bring a
certain degree of uncertainty and fuzziness. Relative to the
variation degree of a certain value to a group, we focus

more on the ambiguity and uncertainty of the value. In
view that the interval neutrosophic number takes the
interval number to express the truth-membership, the
indeterminacy-membership, and the falsity-membership,
there may be great inconsistency in the data itself.
.erefore, the weight of the indicator is determined by the
accuracy of the data under a certain indicator. .e law is
that the lower the degree of fuzziness and uncertainty is,
the greater the weight will be, while the higher the degree
of fuzziness and uncertainty is, and the smaller the weight
will be.

Definition 11. Let M � ([TL, TU], [IL, IU], [FL, FU]) be an
interval neutrosophic number, and the variation entropy of
the interval neutrosophic number (see Figure 3) is defined as
follows:

E(M) � T
U

− T
L

􏼐 􏼑 × F
U

− F
L

􏼐 􏼑 ×
IL + IU

2
. (16)
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4. The Steps of Projection Methods Based on
Improved Entropy and Interval
Neutrosophic Set

Let A � A1, A2, . . . , Am􏼈 􏼉 be the set of the alternatives, in
which Ai(i � 1, 2, . . . , m) represents the ith alternative. Let
C � C1, C2, . . . , Cn􏼈 􏼉 be the set of the attributes that are used
to evaluate the alternatives, and here Cj(j � 1, 2, . . . , n)

represents the jth attribute. Let W � (w1, w2, . . . , wn) be a
set of weights, wj represents the weight of indicator Cj,
􏽐

n
j�1 wj � 1, j � 1, 2, . . . , n, wj ≥ 0. .e decision matrix

denoted by X � [xij]m×n, which is given by the experts. And
xij represents the evaluation value of the ith alternative with
respect to the jth attribute, and takes the form of INN:

X � xij􏽨 􏽩
m×n

� T
L
ij, T

U
ij􏽨 􏽩, I

L
ij, I

U
ij􏽨 􏽩, F

L
ij, F

U
ij􏽨 􏽩􏼐 􏼑􏽨 􏽩

m×n
. (17)

As for the projection methods based on variation en-
tropy and INS for MCDM, we will introduce the specific
steps as follows.

Step 1: normalization of the decision matrix.
For multicriteria decision-making problems, different
evaluation indicators often have different dimensions.
In order to convert the elements of the decision matrix
into the nondimensional form and eliminate the in-
fluence of different dimensions on decision-making
results, according to equation (4), the decision infor-
mation was transformed from the cost criteria to
benefit criteria, and the decision matrix is normalized.
According to the following methods, decision matrix
X � [xij]m×n is normalized as R � [rij]m×n:

rij �
xij, for benefit criteria,

xij, for cost criteria,

⎧⎨

⎩ (18)

where, according to equation (4), xij represents the
inverse of xij.
Step 2: determine the weight of each indicator
W � (w1, w2, . . . , wn):

wj �
1/􏽐

m
i�1 E rij􏼐 􏼑

􏽐
n
j�1 1/􏽐

m
i�1 E rij􏼐 􏼑

, (j � 1, 2, . . . , n). (19)

Step 3: the determination of positive and negative ideal
solutions.
Decision making is a kind of subjective decision-
making process. In addition to considering the un-
certain information and fuzzy information in the
problem domain, we should pay more attention to the
attitude of decision makers towards uncertain infor-
mation and fuzzy information, which reflects the at-
titude of decision makers towards risk.

4.1. /e Common Approach. A common approach is to
assume that decision makers are risk conservatives, who
tend to avoid risk. If decision makers are conservative and
pessimistic, then according to equations (20) and (21), the
positive and negative ideal solutions can be defined as
follows:

A
+

� max
i

T
L
ij,max

i
T

U
ij􏼔 􏼕, min

i
I

L
ij,min

i
I

U
ij􏼔 􏼕, min

i
F

L
ij,min

i
F

U
ij􏼔 􏼕􏼚 􏼛,

(20)

A
−

� min
i

T
L
ij,min

i
T

U
ij􏼔 􏼕, max

i
I

L
ij,max

i
I

U
ij􏼔 􏼕, max

i
F

L
ij,max

i
F

U
ij􏼔 􏼕􏼚 􏼛.

(21)
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Figure 3: .e geometric representation of the entropy for an interval neutrosophic number.
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4.2. /e Improved Approach. Because decision makers have
different attitudes towards indeterminacy and different
expectations of risk, the results of positive and negative ideal
solutions are different. According to equations (9) and (10),
we rank the attribute values from big to small. Here, we can
set the value of φ..e value of φ represents the attitude to the
indeterminacy information. .en, according to equations
(22) and (23), the formulas of positive and negative ideal
solutions are as follows:

􏽥A
+

� max
i

T
L
ij, T

U
ij􏽨 􏽩, I

L
ij, I

U
ij􏽨 􏽩, F

L
ij, F

U
ij􏽨 􏽩􏼐 􏼑􏼚 􏼛, (22)

􏽥A
−

� min
i

T
L
ij, T

U
ij􏽨 􏽩, I

L
ij, I

U
ij􏽨 􏽩, F

L
ij, F

U
ij􏽨 􏽩􏼐 􏼑􏼚 􏼛. (23)

Step 4: calculating projections between alternatives and
negative ideal solutions, respectively:

projA− Ai( 􏼁 � 􏽘
n

j�1
wj

TL
ijT

L−
j + TU

ijTU−
j + 1 − IL

ij􏼐 􏼑 1 − IL−
j􏼐 􏼑 + 1 − IU

ij􏼐 􏼑 1 − IU−
j􏼐 􏼑 + 1 − FL

ij􏼐 􏼑 1 − FL−
j􏼐 􏼑 + 1 − FU

ij􏼐 􏼑 1 − FU−
j􏼐 􏼑

������������������������������������������������������������

TL−
j􏼐 􏼑

2
+ TU−

j􏼐 􏼑
2

+ 1 − IL−
j􏼐 􏼑

2
+ 1 − IU−

j􏼐 􏼑
2

+ 1 − FL−
j􏼐 􏼑

2
+ 1 − FU−

j􏼐 􏼑
2

􏽱 .

(24)

Step 5: rank the alternatives according to the value of
projA− (Ai). .e bigger the value of projA− (Ai), the
worse the alternative. On the contrary, the smaller the
value of Ci, the better the alternative.

5. Illustrative Example for Application of
Software Quality-In-Use Evaluation

In the real world of software development and application, we
have many methods to evaluate and improve software quality
[55, 56]. Software quality evaluation is an effective way to
improve software quality. .e selection of evaluation criteria
and methods is always the key problem in software quality
evaluation. Suitable evaluation criteria and methods directly
affect the quality of software evaluation. Software quality-in-use
evaluation is an important part of software quality evaluation,
and evaluation results provide reference for software quality
evaluation. Since the evaluator may give the evaluation values
involving the information of support, neutrality, and opposi-
tion, the interval neutrosophic number is suitable to be used as
the expression form of the evaluation value. In the evaluation of
software quality, it is difficult to determine the weight infor-
mation..erefore, in the face of unknown weight information,
we tend to use the improved entropy weight determination
method to determine the weight information according to the
fuzziness and uncertainty of interval neutrosophic number.

Software quality-in-use use refers to the satisfaction extent of
a software product to a specific user’s specific needs in the user’s
environment during the utilization. Software quality-in-use
mainly judges the quality of software from the perspective of
users, which is quite different from the software quality we used
to say. Its focus is on the satisfaction of users about software
itself, instead of the performance and function of software. As
the supporting hardware and running environment of users are
different from those of developers, the evaluation results may
change. An enterprise needs to evaluate the software quality-in-
use according to four criteria of effectiveness C1, productivity
and satisfaction C2, and risk C3, and we need to select the
software with better software quality-in-use. After the prelim-
inary screening, there are six alternativesA1,A2,A3,A4,A5, and
A6 to choose from. In order to evaluate the quality-in-use of

software scientifically and reasonably, the interval neutrosophic
number was employed to express the evaluation values of each
criteria. .e evaluation values of experts for each alternative
under different attributes are shown in Table 1.

(1) .e decision matrix A is normalized according to
equations (4) and (18). Since risk is a cost-oriented
attribute, the normalizedmatrixR is shown in Table 2.

(2) According to equations (16) and (19), calculate the
weight of each indicator:

W � (0.32, 0.44, 0.24). (25)

(3) If decision makers are conservative and pessimistic,
the common approach is adopted. According to
equations (20) and (21), determine the positive and
negative ideal solutions:

A
+

� (([0.5, 0.7], [0.1, 0.2], [0.2, 0.3]), ([0.6, 0.8],

[0.2, 0.4], [0.1, 0.3]), ([0.7, 0.9], [0.1, 0.5],

[0.1, 0.4])),

A
−

� (([0.1, 0.3], [0.7, 0.8], [0.5, 0.9]), ([0.2, 0.5],

[0.5, 0.7], [0.5, 0.6]), ([0.2, 0.5], [0.6, 0.9],

[0.7, 0.9])).

(26)

If we consider decision maker’s different attitude to
risk, the improved approach is adopted. According to
equations (22) and (23), determine the positive and
negative ideal solutions:

􏽥A
+

� (([0.4, 0.6], [0.3, 0.5], [0.4, 0.7]), ([0.5, 0.8],

[0.3, 0.4], [0.2, 0.4]), ([0.2, 0.6], [0.3, 0.5],

[0.1, 0.4])),

􏽥A
−

� (([0.2, 0.4], [0.7, 0.8], [0.3, 0.4]), ([0.3, 0.5],

[0.4, 0.7], [0.5, 0.6]), ([0.2, 0.5], [0.3, 0.8],

[0.5, 0.7])).

(27)
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(4) When decisionmakers adopt the common approach,
according to equation (24), calculate projections
between alternatives and negative ideal solutions:

projA− (A1) � 1.358,

projA− (A2) � 1.256,

projA− (A3) � 1.297,

projA− (A4) � 1.090,

projA− (A5) � 1.396,

projA− (A6) � 1.273.

(28)

When decision makers adopt the improved approach, we
assume decision makers are the risk aversion type. So, let
φ � 0.5, according to equation (24), calculate projections
between alternatives and negative ideal solutions:

proj􏽥A− (A1) � 1.354,

proj􏽥A− (A2) � 1.215,

proj􏽥A− (A3) � 1.225,

proj􏽥A− (A4) � 1.068,

proj
􏽥A− (A5) � 1.365,

proj􏽥A− (A6) � 1.357.

(29)

(5) When decision adopts the common approach, rank
the alternatives according to the value of projA− :

projA− (A4)< projA− (A2) < projA− (A6)

< projA− (A3) < projA− (A1)< projA− (A5).

(30)

So, the rank results of alternatives are as follows:

A4>A2>A6>A3>A1>A5. (31)

According to the evaluation results, we tend to think
A4 has better quality-in-use.

(6) When decision adopts the improved approach, rank
the alternatives according to the value of projA− :

projA− (A4)< projA− (A2)< projA− (A3)< projA− (A1)

< projA− (A6)< projA− (A5).

(32)

So, the rank results of alternatives are as follows:

A4>A2>A3>A1>A6>A5. (33)

According to the evaluation results, we also tend to think
A4 has better quality-in-use.

Besides, we also use the TOPSIS method with Hamming
distance or Euclidean distance to evaluate the data listed in
Table 2. We get the ranking results, as shown in Table 3. .e
results show that the projection method gets the similar
results with the TOPSIS method.

In the evaluation with INNs, we find that there is such
information in reality, if it is expressed by INNs, such as
([0.12, 0.13], [0.05, 0.09], and [0.07, 0.12]). .e characteristic
of this kind of information is that the values of the three
parameters are very small and close. Is this kind of infor-
mation valuable or negligible in our decision-making? .is
is what we should think about. First of all, we should
consider the amount of information provided by this value
denoted by Inf(x) � (TL + TU + IL + IU + FL + FU)/6.
According to the value of Inf(x), we consider whether other
evaluation values of the same attribute also have a small
amount of information. If so, this is a normal phenomenon
and will be handled according to the normal process.
Otherwise, we can take two schemes: first, take it as valuable

Table 1: Decision matrix given by experts.

Alternatives Effectiveness (C1) Productivity and satisfaction (C2) Risk (C3)
A1 ([0.4, 0.6], [0.3, 0.5], [0.4, 0.7]) ([0.5, 0.8], [0.3, 0.4], [0.2, 0.4]) ([0.5, 0.7], [0.2, 0.7], [0.2, 0.5])
A2 ([0.2, 0.4], [0.7, 0.8], [0.3, 0.4]) ([0.6, 0.7], [0.4, 0.5], [0.4, 0.5]) ([0.2, 0.5], [0.1, 0.9], [0.4, 0.6])
A3 ([0.5, 0.7], [0.6, 0.8], [0.2, 0.4]) ([0.4, 0.6], [0.2, 0.5], [0.2, 0.6]) ([0.3, 0.4], [0.3, 0.5], [0.2, 0.5])
A4 ([0.3, 0.6], [0.3, 0.7], [0.5, 0.9]) ([0.3, 0.5], [0.4, 0.7], [0.5, 0.6]) ([0.2, 0.8], [0.3, 0.4], [0.5, 0.6])
A5 ([0.2, 0.5], [0.1, 0.5], [0.2, 0.3]) ([0.6, 0.7], [0.3, 0.4], [0.4, 0.6]) ([0.7, 0.9], [0.2, 0.6], [0.7, 0.9])
A6 ([0.1, 0.3], [0.1, 0.2], [0.5, 0.8]) ([0.2, 0.5], [0.5, 0.7], [0.1, 0.3]) ([0.1, 0.4], [0.5, 0.7], [0.2, 0.6])

Table 2: Normalized decision matrix.

Alternatives Effectiveness (C1) Productivity and satisfaction (C2) Risk (C3)
A1 ([0.4, 0.6], [0.3, 0.5], [0.4, 0.7]) ([0.5, 0.8], [0.3, 0.4], [0.2, 0.4]) ([0.2, 0.5], [0.3, 0.8], [0.5, 0.7])
A2 ([0.2, 0.4], [0.7, 0.8], [0.3, 0.4]) ([0.6, 0.7], [0.4, 0.5], [0.4, 0.5]) ([0.4, 0.6], [0.1, 0.9], [0.2, 0.5])
A3 ([0.5, 0.7], [0.6, 0.8], [0.2, 0.4]) ([0.4, 0.6], [0.2, 0.5], [0.2, 0.6]) ([0.2, 0.5], [0.5, 0.7], [0.3, 0.4])
A4 ([0.3, 0.6], [0.3, 0.7], [0.5, 0.9]) ([0.3, 0.5], [0.4, 0.7], [0.5, 0.6]) ([0.5, 0.6], [0.6, 0.7], [0.2, 0.8])
A5 ([0.2, 0.5], [0.1, 0.5], [0.2, 0.3]) ([0.6, 0.7], [0.3, 0.4], [0.4, 0.6]) ([0.7, 0.9], [0.4, 0.8], [0.7, 0.9])
A6 ([0.1, 0.3], [0.1, 0.2], [0.5, 0.8]) ([0.2, 0.5], [0.5, 0.7], [0.1, 0.3]) ([0.2, 0.6], [0.3, 0.5], [0.1, 0.4])
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information and assign it a larger weight according to the
entropy weight theory; second, take it as an invalid value and
exclude it from the decision-making process.

Besides, in the future research, we will consider the
uncertainty and fuzziness of INNs as well as its variation to
the group, further improve the calculation formula of en-
tropy weight, and apply the improved entropy weight for-
mula to main kinds of MCDM methods.

6. Conclusions

.is paper firstly introduced and quoted some basic
operational rules of INNs, then defined the projection of
two INNs, improved the entropy weight formula for
INNs, and introduced a new ranking method for INNs.
Based on this, this paper further proposed an MCDM
approach based on the projection method for INNs, which
has the following characteristics: (1) the projection model
with INNs is improved, in which the positive information,
the antinegative information, and the antiuncertainty
information are fused together instead of the positive
information, the negative information, and the uncer-
tainty information; (2) it introduced the improved en-
tropy of an INN and proposed the improved entropy
weight formula; (3) it made the decision-making results
more flexible and reliable because it determined the
positive and negative ideal solutions according to the
decision maker’s attitude to risk.

.e research results in this paper not only enrich the
theoretical contents of the INSs but also provide a new
way for the MCDM problems, which provides a sufficient
scientific basis for us to solve multicriteria group decision-
making problems. However, in this paper, we only con-
sidered the application of the MCDM method based on
the projection model in solving the software quality-in-
use evaluation problems. .e future research work is
mainly divided into two aspects: on the one hand, we will
continue to promote the application of this method in
related fields, such as software outsourcing service pro-
vider selection, information security assessment, and
software product quality assessment, especially for the
evaluation of external and internal software quality; on the
other hand, we will continue to study the combination
between INNs and theoretical methods, such as two-sided
matching model [57], TODIM method, and the prospect
theory.
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