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Abstract: Value at Risk (VaR) has become a crucial measure for decision making in risk management
over the last thirty years and many estimation methodologies address the finding of the best
performing measure at taking into account unremovable uncertainty of real financial markets.
One possible and promising way to include uncertainty is to refer to the mathematics of fuzzy
numbers and to its rigorous methodologies which offer flexible ways to read and to interpret
properties of real data which may arise in many areas. The paper aims to show the effectiveness
of two distinguished models to account for uncertainty in VaR computation; initially, following a
non parametric approach, we apply the Fuzzy-transform approximation function to smooth data by
capturing fundamental patterns before computing VaR. As a second model, we apply the Average
Cumulative Function (ACF) to deduce the quantile function at point p as the potential loss VaRp for a
fixed time horizon for the 100p% of the values. In both cases a comparison is conducted with respect
to the identification of VaR through historical simulation: twelve years of daily S&P500 index returns
are considered and a back testing procedure is applied to verify the number of bad VaR forecasting in
each methodology. Despite the preliminary nature of the research, we point out that VaR estimation,
when modelling uncertainty through fuzzy numbers, outperforms the traditional VaR in the sense
that it is the closest to the right amount of capital to allocate in order to cover future losses in normal
market conditions.

Keywords: value at risk; fuzzy numbers; smoothing; quantile function

1. Introduction

In 1996 the Basel Committee approved the use of proprietary Value at Risk (VaR) measures for
calculating the market risk component of bank capital requirements; from that year, the scientific
literature grew dramatically in order to identify the best performing way to measure VaR.

Jorion in [1] defines VaR as the measure that is the worst expected loss over a given horizon under
normal market conditions at a given level of confidence. When a bank says that the daily VaR of its
trading portfolio is $1 million at the 95 percent confidence level, it means if no negative event occurs,
while only five percent of the time, the daily loss will exceed $1 million. The VaR is thus a conditional
quantile of the asset return loss distribution.

Despite the VaR is an intuitive concept, its computation may be complex; a detailed review about
the classical methodologies is in [2] where they are classified into three sets (i) the variance–covariance
approach, also called the Parametric method, (ii) the Historical Simulation (Non-parametric method)
and (iii) the Monte Carlo simulation, which is a Semi-parametric method. In the first papers
based on the comparison between the three approaches, no methodology seemed to perform better
than the others. However, more recently some contributions report that the Historical Simulation

Axioms 2020, 9, 98; doi:10.3390/axioms9030098 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0002-8944-2192
https://orcid.org/0000-0003-0088-4005
http://dx.doi.org/10.3390/axioms9030098
http://www.mdpi.com/journal/axioms
https://www.mdpi.com/2075-1680/9/3/98?type=check_update&version=2


Axioms 2020, 9, 98 2 of 15

produces almost poor VaR estimates basically because it does not offer an efficient use of the
available information.

A more recent review, presented in [3], concerns studies for VaR computations including several
approaches, related literature is relatively scarce, developed when uncertainty modeling is based on
fuzzy logic; the authors show in Figure 1 the amount of articles within each methodology in a time
period of twenty years.

Jorion in [1] defines VaR as the measure that is the worst expected loss over
a given horizon under normal market conditions at a given level of confidence.
When a bank says that the daily VaR of its trading portfolio is $1 million at
the 95 percent confidence level, it means if no negative event occurs, while only
five percent of the time, the daily loss will exceed $1 million. The VaR is thus
a conditional quantile of the asset return loss distribution.
Despite the VaR is an intuitive concept, its computation may be complex;

a detailed review about the classical methodologies is in [2] where they are
classified into three sets (i) the variance—covariance approach, also called the
Parametric method, (ii) the Historical Simulation (Non-parametric method)
and (iii) the Monte Carlo simulation, which is a Semi-parametric method. In
the first papers based on the comparison between the three approaches, no
methodology seemed to perform better than the others. However, more recently
some contributions report that the Historical Simulation produces almost poor
VaR estimates basically because it does not offer an effi cient use of the available
information.
A more recent review, presented in [3], concerns studies for VaR computa-

tions including several approaches, related literature is relatively scarce, devel-
oped when uncertainty modeling is based on fuzzy logic; the authors show in
Figure 1 the amount of articles within each methodology in a time period of
twenty years.

Figure 1: Cumulative number of articles published on models for Value at Risk

About twenty years ago, the first attempt to apply Fuzzy Logic in the es-
timation of VaR was shown in [4] where market liquidity is a key factor in the
definition of a pricing model through a fuzzy measure.
Fuzzy numbers describe the implicit vagueness within VaR in [5]; they play

the role of a sensitivity analysis while the stochastic nature of the risky compo-
nent is preserved.
In [6] interval estimation of VaR values are the input variables of a Fuzzy

Slack-Based Measurement that is useful for representing the implications of risk
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Figure 1. Cumulative number of articles published on models for Value at Risk.

About twenty years ago, the first attempt to apply Fuzzy Logic in the estimation of VaR was
shown in [4] where market liquidity is a key factor in the definition of a pricing model through a
fuzzy measure.

Fuzzy numbers describe the implicit vagueness within VaR in [5]; they play the role of a sensitivity
analysis while the stochastic nature of the risky component is preserved.

In [6] interval estimation of VaR values are the input variables of a Fuzzy Slack-Based
Measurement that is useful for representing the implications of risk and the effects of risk on efficiency.

The situation of leptokurtic and imprecise risk factors modelled as fuzzy random variables,
generalizing [7], is analyzed in Reference [8] where linear portfolio VaR and expected shortfall (ES)
are computed. The models imply the possibility of taking into account pessimistic or optimistic
investor’s believes.

In [9] VaR is estimated by using probabilistic fuzzy systems (PFSs) which are semi-parametric
methods that combines a linguistic description of the system behavior with statistical properties of
the data; the approach to designing probabilistic fuzzy VaR models is compared with GARCH model
and statistical back testing always accepts PFS models after tuning, whereas GARCH models may be
rejected in some situations.

A possibilistic portfolio model is proposed in [10] as an expansion of the possibilistic
mean-variance model by with VaR constraint and risk-free investment are computed taking the
assumption that the expected rate of returns is a fuzzy number. In [11] the authors suggest an evolving
possibilistic fuzzy modeling (ePFM) approach to estimate VaR; data from the main global equity
market indexes are used to estimate VaR using ePFM and the performance of ePFM is compared
with traditional VaR benchmarks producing encouraging results. A growing interest for researches
and practitioners is directed to VaR estimation in the case of operational risk, in [12] the intrinsic
properties of the data as fuzzy sets are related to the linguistic variables of the observed data (external),
allowing an organization to supervise operational VaR over time.

The notion of credibilistic average VaR is detailed in [13] where simulation algorithms support
its use in many real problems of risk analysis.

An alternative nonparametric approach based on maxitive kernel estimation of VaR is studied
in [14] where the obtained interval-valued VaR estimates are the key factors to lead to accurate decisions
involving uncertainty.
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Nevertheless, we believe that the modeling of uncertainty through fuzzy logic in decision
making and risk management deserves in-depth analysis; just to mention some of our contributions,
we developed the rigorous use of the extension principle for fuzzy-valued functions in [15] where we
show that fuzzy financial option prices can capture the unavoidable uncertainty of several stylized
facts in real markets and the subjective believes of the investor. It is a matter of interest the use of VaR
as a factor fixing decision-making believes for risk-averse investors, for example in [16], the process of
recovering investment opportunities with projects that have been rejected when applying the criterion
of the Value-at-Risk method, is studied.

In [17] we took three financial time series and we modeled them with two non-parametric
smoothing techniques defined in terms of expectile and quantile fuzzy-valued Fuzzy-transform,
respectively obtained by minimizing a least squares (L2-norm) operator and a L1-norm operator.
The relevance of expectiles in risk management is also focused in [18] where it is shown that several
limits of VaR and expected shortfall can be overcome by expectiles because they are the only elicitable
law-invariant coherent risk measures.

The goal of the present paper is to highlight potentialities of fuzzy numbers in VaR estimation
which is a fundamental topic in risk management because the amount of capital to be allocated in case
of future losses has to be identified carefully—if it is too small then it does not cover from adverse
events and if it is too large then the allocated capital can not be used for other crucial activities. To reach
the goal we apply two results which provide instruments for detecting time series properties and for
modelling their uncertainty.

The first VaR estimation is produced by the mentioned smoothing techniques, based on
Fuzzy-transform and evaluated by performing a rolling window analysis along twelve years of
daily returns, during which we count the number of violations and we compare it to the traditional
historical simulation.

The second approach addresses non parametric methods and, as in [19], we propose a method to
estimate quantiles through a nonparametric estimates of the cumulative distribution function deduced
by using the Average Cumulative Function (ACF) which plays the role of the double kernel smoothing
in the mentioned paper.

The choice of ACF, introduced in [20] as an alternative representation of fuzzy numbers, is justified
in terms of an interesting link which can be established between ACF-representation and quantile
functions, without requiring distributional assumptions. In [21] we extend the ACF analysis and in
particular we clarify the crucial role of ACF in determining the membership function from experimental
data. Again we compare the number of violations when VaR is defined in terms of ACF, with the same
number obtained through the historical simulation of VaR.

The paper is organized into seven sections. The second section fixes the basis of the F-transform
smoothing techniques that are applied in Section 3 within the case of VaR estimates for daily S&P500
index data, from June 2007 to June 2019. The fourth section gives the basic knowledge of the Average
Cumulative Function which allows the interpretation of the fuzzy quantile function in terms of VaR;
in Section 5 experiments are given with the same time series as in Section 3, in relation to which
the comparison is detailed in Section 6. Highlights on possible future researches are investigated in
Section 7.

2. Fuzzy-Transform Smoothing

In [17] two non-parametric smoothing methodologies are introduced; the expectile fuzzy-valued
F-transform is based on the classical F-transform obtained by minimizing a least squares (L2-norm)
operator, while the quantile fuzzy-valued F-transform is based on the L1-type F-transform, obtained
by minimizing an L1-norm operator.

The F-transform smoothing methodologies are compared with:

(1) expectreg and quantreg package, implemented in R language(CRAN repository);
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(2) SVM-type (Support Vector Machine) non-parametric learning algorithms, implemented in R
language (CRAN repository)

Eight measures are checked and they are minimized by both quantile and expectile smoothed
series, where quantile performs slightly better for those time series having steep peaks. In addition,
the robustness is confirmed within time series of various types. We detail some useful preliminaries
explaining the theoretical steps in the discrete case which fits the time series experiments in Section 3.

Given m values (ti, f (ti)), ti ∈ [a, b], i = 1, . . . , m, of a function f : [a, b] −→ R , a fuzzy partition
(P, A) of [a, b] such that each subinterval [xk−1, xk+1] contains at least one point ti in its interior (so that
the basic functions A1, . . . , An satisfy ∑m

i=1 Ak(ti) > 0 for all k), then the discrete direct F-transform of
f with respect to (P, A) is the n-tuple of real numbers (F1, . . . , Fn) given by

Fk =

m
∑

i=1
f (ti)Ak(ti)

m
∑

i=1
Ak(ti)

, k = 1, . . . , n, (1)

where Fk minimizes the function

Φm,k(y) =
m

∑
i=1
| f (ti)− y|2 Ak(ti). (2)

Under certain hypothesis, the minimization of Φ−k,α (µ) and Φ+
k,α (µ) produces two values µ−k,α and

µ+
k,α, for |ω ∈ [0, 1] that are the (midpoint) minimizers of functions Φ−k,α (η) and Φ+

k,α (η); when α ∈ [0, 1]
then the compact intervals are defined as:

Uk,α =



{
µk

(
1
2

)}
if α = 1[

µk
(

α
2
)

, µk
(
1− α

2
)]

if α ∈ [0, 1]

cl

( ⋃
β>0

Uk,β

)
if α = 0

. (3)

Then, for each k = 2− r, . . . , n + r− 1, the family of intervals {Uk,α; α ∈ [0, 1]} defines the α-cuts
of a fuzzy number Fk ∈ RF having membership function

Fk(x) =

{
sup{α|x ∈ Uk,α} if x ∈ Uk,0
0 if x /∈ Uk,0

. (4)

Given a set of m points Ym = {(ti, f (ti)); i = 1, . . . , m}, ti ∈ [a, b] of a function f : [a, b] −→ R and
given a fuzzy partition (P, A) of [a, b], the (n)-vector of fuzzy numbers

F(P,A) = (F1, . . . , Fn), (5)

where each fuzzy interval Fk has α-cuts Uk,α, is called the discrete direct quantile fuzzy transform of
f with respect to (P, A), based on the data-set Ym.

The corresponding inverse expectile fuzzy transform of f is the fuzzy-valued function defined by

f̂(P,A) (x) =
n

∑
k=1

Fk Ak (x) for x ∈ [a, b]. (6)
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In the same framework established to deduce (1), the discrete direct F-transform of f with respect
to (P,A) is the n-tuple of real numbers (G1, . . . , Gn) given by

Gk =

m
∑

i=1
f (ti)Ak(ti)

m
∑

i=1
Ak(ti)

, k = 1, . . . , n (7)

and, in the L1-norm case, each Gk minimizes the function.

Ψm,k(y) =
m

∑
i=1
| f (ti)− y| Ak(ti) (8)

Under some hypothesis, the minimization of Ψ−k,α (µ) and Ψ+
k,α (µ) produces two values η−k,α

and η+
k,α, for |ω ∈ [0, 1] that are the (midpoint) minimizers of functions Ψ−k,α (η) and Ψ+

k,α (η);
consider α ∈ [0, 1], the compact intervals

Vk,α =



{
ηk

(
1
2

)}
if α = 1[

ηk
(

α
2
)

, ηk
(
1− α

2
)]

if α ∈ [0, 1]

cl

( ⋃
β>0

Vβ

)
if α = 0;

(9)

form the α-cuts of a fuzzy number vk ∈ RF having membership function

vk(x) =

{
sup{α|x ∈ Vk,α} if x ∈ Vk,0
0 if x /∈ Vk,0.

(10)

Given a set of m points Ym = {(ti, f (ti)); i = 1, . . . , m}, ti ∈ [a, b], of a function f : [a, b] −→ R
and given a fuzzy partition (P, A) of [a, b], the (n)-vector of fuzzy numbers

G(P,A) = (G1, . . . , Gn), (11)

where each fuzzy interval Gk has α-cuts Vk,α, is called the discrete direct quantile fuzzy transform of
f with respect to (P, A), based on the data-set Ym.

The corresponding inverse quantile fuzzy transform of f is the fuzzy-valued function defined by

f̃(P,A) (x) =
1
r

n

∑
k=1

Gk Ak (x) for x ∈ [a, b]. (12)

3. Value at Risk through Smoothed Series

In order to evaluate the contribution of the smoothing techniques based on F-transform,
we consider a time series of 3020 values (pictured in Figure 2), covering the time period form June 2007
to June 2019, of the S&P500 index which measures the cumulative float-adjusted market capitalization
of 500 of the United States largest corporations.
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Figure 2: Daily values of the S&P500 index within the period from June 2007
to June 2019.

The number n of subintervals in the fuzzy partition (P,A) is m16 . As in kernel
smoothing, the basic functions Ak(x), defined on the intervals [xk−r, xk+r], are
obtained by translating and rescaling the same symmetric fuzzy number A0,
defined on [−1, 1] and centered at the origin, with membership

A0(t) =

 L(1 + τ , β0, β1) if τ ∈ [−1, 0]
1− L(t, β1, β0) if τ ∈ [0, 1]
0 otherwise

. (13)

where the basic functions are increasing rational spline defined as

L(τ) =
τ2 + β0τ(1− τ)

1 + (β0 + β1 − 2)τ(1− τ)
for τ ∈ [0, 1] (14)

with slope parameters β0 = 0.5, β1 = 0.5. In general, the smoothing effect is
not so much depending on the choice of function A0, instead, the number n
of subintervals of the decomposition P and the bandwidth r strongly impact
the smoothing effect; the best combinations of n and r have been chosen by a
generalized cross validation (GCV) approach.
Expectile and quantile smoothed curves Eω(x) and Qω(x) (given a specific

value ω ∈]0, 1[) are obtained from the α-cuts of the fuzzy-valued expectile func-
tion f̂(P,A) (x), as in (6) and the fuzzy-valued quantile function f̃(P,A) (x) , as in
(12) as follows:

Eω(x) =


n∑
k=1

F−k,2ωAk (x) if ω ≤ 1
2

n∑
k=1

F+k,2(1−ω)Ak (x) if ω ≥ 1
2

(15)

7

Figure 2. Daily values of the S&P500 index within the period from June 2007 to June 2019.

The number n of subintervals in the fuzzy partition (P,A) is m
16 . As in kernel smoothing, the basic

functions Ak(x), defined on the intervals [xk−r, xk+r], are obtained by translating and rescaling the
same symmetric fuzzy number A0, defined on [−1, 1] and centered at the origin, with membership

A0(t) =


L(1 + τ, β0, β1) if τ ∈ [−1, 0]
1− L(t, β1, β0) if τ ∈ [0, 1]
0 otherwise

, (13)

where the basic functions are increasing rational spline defined as

L(τ) =
τ2 + β0τ(1− τ)

1 + (β0 + β1 − 2)τ(1− τ)
for τ ∈ [0, 1] (14)

with slope parameters β0 = 0.5, β1 = 0.5. In general, the smoothing effect is not so much depending
on the choice of function A0, instead, the number n of subintervals of the decomposition P and the
bandwidth r strongly impact the smoothing effect; the best combinations of n and r have been chosen
by a generalized cross validation (GCV) approach.

Expectile and quantile smoothed curves Eω(x) and Qω(x) (given a specific value ω ∈ [0, 1]) are
obtained from the α-cuts of the fuzzy-valued expectile function f̂(P,A) (x), as in (6) and the fuzzy-valued
quantile function f̃(P,A) (x) , as in (12) as follows:

Eω(x) =


n
∑

k=1
F−k,2ω Ak (x) if ω ≤ 1

2
n
∑

k=1
F+

k,2(1−ω)
Ak (x) if ω ≥ 1

2

(15)

Qω(x) =


n
∑

k=1
G−k,2ω Ak (x) if ω ≤ 1

2
n
∑

k=1
G+

k,2(1−ω)
Ak (x) if ω ≥ 1

2 .
(16)

As we mentioned in the introduction, historical simulation for Value at Risk estimation is the
most widely implemented nonparametric approach but it is not always the best performing. Its main
advantages can be phrased as follows—(1) generally the implementation is very easy, (2) it does not
depend on parametric assumptions on returns distribution implying that it can accommodate wide
tails, skewness and any other non-normal features in financial observations.

On the other hand, the strongest weakness is its completely dependence on the data set.
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Many contributions find that historical simulation underestimates risk in an unusually quiet
period and it is sometimes slow to reflect market turbulence. The non parametric smoothing methods
based on F-transform can weaken these distortions as we show in some simple experiments.

In our findings, when no smoothing technique is applied, the value VaRHist is computed for the
time series of returns of S&P500 index which are plotted in Figure 3 and, as it is expected, show a quite
modest volatility with a low numbers of values in the left tail. The 95% confidence level and the time
period of one day imply that VaRHist corresponds to the 5th quantile of the daily S&P500 returns with
a negative sign because VaR is always interpreted as a loss.

Figure 3. Distribution of S&P500 returns from June 2007 to June 2019.

In Figure 4 the effects of the smoothing procedure based on L2 − norm minimization (Figure 5
shows the dynamics of left and right minimizers) are applied for 3020 daily values of the S&P500 index,
proving itself to be an efficient methodology.

Figure 4: Effects of the expectile smoothing on a twelve years time series of
daily returns of the S&P500 index.

Figure 6 shows that the bandwidth of the quantile smoothing is slightly
smaller than the expectile one, especially for the downside returns which mostly
affect the Value at Risk; more evident differences could be appreciated in case
of higher volatile time series.
In Figure 7 the left and right minimizers in the smoothing procedure based

on L1 − norm minimization are represented.
Given the smoothed time series, VaREXP is the value obtained with the

expectile smoothing, whereas VaRQUA is the same value obtained with the
quantile smoothing.
We consider rolling windows, each one made up of 500 observations (two

financial years). S&P500 index returns within the first window are sorted in
ascending order and the 5-quantile of interest is given by the return that leaves
5% of the observations on its left side and (95)% on its right side. The 5%
allows to include an higher number of returns, considering the small number of
outliers. To compute the VaR the following day, the whole window is moved
forward by one observation and the entire procedure is repeated.
Consequently, the first window consists of the returns from June 2007 to

May 2009 for a total amount of 503 returns over a total of 3020. It implies that
the first VaR is related to June 1st 2009 and the next values are related to each
following day.

9

Figure 4. Effects of the expectile smoothing on a twelve years time series of daily returns of the
S&P500 index.
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Figure 5: Graphical representation of the minimizers in equation (2) when de-
veloping expectile smoothing.

95% N VaRHist VaREXP VaRQUA
2009 150 7.8% 7.2% 6.2%
2010 251 14.6% 13.76% 12.4%
2011 252 8.5% 7.1% 6.4%
2012 250 7.7% 7.2% 6.3%
2013 251 5.3% 5.1% 4.4%
2014 252 6.4% 5.9% 5.2%
2015 250 7.5% 7.1% 6.8%
2016 252 6.6% 6.6% 6.2%
2017 250 6.4% 6.3% 5.8%
2018 251 12.5% 11.3% 10.7%
2019 107 8.2% 7.7% 7.2%

Table 1. Violations percentages

A back-testing procedure is adopted to compare the three VaRs in terms of
violations which are the unpredicted losses with the actual losses realized on
each day.
The back-testing analysis takes into account 2516 rolling windows for a total

number of 2515 VaR values. The results are shown in Table 1 which offers the
possibility of some observations: first of all the number of violations is slightly
reduced when a smoothing methodology is applied and the reduction is more
evident when the quantile one is performed, confirming its results extensively
analyzed in [17].

10

Figure 5. Graphical representation of the minimizers in Equation (2) when developing
expectile smoothing.

Figure 6 shows that the bandwidth of the quantile smoothing is slightly smaller than the
expectile one, especially for the downside returns which mostly affect the Value at Risk; more evident
differences could be appreciated in case of higher volatile time series.

Figure 6: Quantile smoothing for twelve years of daily S&P500 index returns.

4 Average Cumulative Function

The ACF-representation and its properties are studied in [20] where the rela-
tionship between ACF and quantile functions, which we apply to Value at Risk
hereafter, is proved and resumed in what follows.
The ACF is a representation based on the following assumptions:

• u are real fuzzy intervals with compact support [a, b] and compact non-
empty core [c, d] ⊂ [a, b] where a ≤ c ≤ d ≤ b ∈ R, their space is RF ;

• the membership function of u ∈ RF can be represented in the form

u(x) =


0 if x < a

uL(x) if a ≤ x < c
1 if c ≤ x ≤ d

uR(x) if d < x ≤ b
0 if x > b

(17)

where uL : [a, c] −→ [0, 1[ is a nondecreasing right-continuous function,
uL(x) > 0 for x ∈]a, c], called the left side of the fuzzy interval and
uR : [d, b] −→ [0, 1] is a nonincreasing left-continuous function, uR(x) > 0
for x ∈ [d, b[, called the right side of the fuzzy interval. The two functions
uL(x) and uR(x) are extended to the real domain by setting

uLext(x) =

 0 if x < a
uL(x) if a ≤ x < c

1 if x ≥ c
(18)

11

Figure 6. Quantile smoothing for twelve years of daily S&P500 index returns..

In Figure 7 the left and right minimizers in the smoothing procedure based on L1-norm
minimization are represented.
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Figure 7: Minimizers of equation (8) in quantile smoothing.

uRext(x) =

 1 if x ≤ d
uR(x) if d < x ≤ b

0 if x > b.
(19)

• there exists a pair of cumulative distribution functions, called the lower cdf
and the upper cdf of u, based on the extended left side function uLext(x) and
the extended right side function uRext(x) such that u (x) = FLu (x)−FRu (x)
∀x ∈ R, where

FRu (x) = 1− uRext(x) =

 0 if x ≤ d
1− uR(x) if d < x ≤ b

1 if x > b.
(20)

and
FLu (x) = uLext(x). (21)

implying that the λ-Average Cumulative function (λ-ACF) of u is defined
for a fixed value of λ ∈ [0, 1] as the following convex combination of FLu and

12

Figure 7. Minimizers of Equation (8) in quantile smoothing.

Given the smoothed time series, VaREXP is the value obtained with the expectile smoothing,
whereas VaRQUA is the same value obtained with the quantile smoothing.

We consider rolling windows, each one made up of 500 observations (two financial years). S&P500
index returns within the first window are sorted in ascending order and the 5-quantile of interest is
given by the return that leaves 5% of the observations on its left side and 95% on its right side. The 5%
allows to include an higher number of returns, considering the small number of outliers. To compute
the VaR the following day, the whole window is moved forward by one observation and the entire
procedure is repeated.

Consequently, the first window consists of the returns from June 2007 to May 2009 for a total
amount of 503 returns over a total of 3020. It implies that the first VaR is related to 1 June 2009 and the
next values are related to each following day.

A back-testing procedure is adopted to compare the three VaRs in terms of violations which are
the unpredicted losses with the actual losses realized on each day.

The back-testing analysis takes into account 2516 rolling windows for a total number of 2515
VaR values. The results are shown in Table 1 which offers the possibility of some observations: first
of all, the number of violations is slightly reduced when a smoothing methodology is applied and
the reduction is more evident when the quantile one is performed, confirming its results extensively
analyzed in [17].

Table 1. Violations percentages.

95% N VaRHist VaREXP VaRQU A

2009 150 7.8% 7.2% 6.2%
2010 251 14.6% 13.76% 12.4%
2011 252 8.5% 7.1% 6.4%
2012 250 7.7% 7.2% 6.3%
2013 251 5.3% 5.1% 4.4%
2014 252 6.4% 5.9% 5.2%
2015 250 7.5% 7.1% 6.8%
2016 252 6.6% 6.6% 6.2%
2017 250 6.4% 6.3% 5.8%
2018 251 12.5% 11.3% 10.7%
2019 107 8.2% 7.7% 7.2%
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4. Average Cumulative Function

The ACF-representation and its properties are studied in [20] where the relationship between
ACF and quantile functions, which we apply to Value at Risk hereafter, is proved and resumed in
what follows.

The ACF is a representation based on the following assumptions:

• u are real fuzzy intervals with compact support [a, b] and compact nonempty core [c, d] ⊂ [a, b]
where a ≤ c ≤ d ≤ b ∈ R, their space is RF ;

• the membership function of u ∈ RF can be represented in the form

u(x) =



0 if x < a
uL(x) if a ≤ x < c

1 if c ≤ x ≤ d
uR(x) if d < x ≤ b

0 if x > b

, (17)

where uL : [a, c] −→ [0, 1] is a nondecreasing right-continuous function, uL(x) > 0 for x ∈ [a, c],
called the left side of the fuzzy interval and uR : [d, b] −→ [0, 1] is a nonincreasing left-continuous
function, uR(x) > 0 for x ∈ [d, b], called the right side of the fuzzy interval. The two functions
uL(x) and uR(x) are extended to the real domain by setting

uL
ext(x) =


0 i f x < a

uL(x) i f a ≤ x < c
1 i f x ≥ c

(18)

uR
ext(x) =


1 i f x ≤ d

uR(x) i f d < x ≤ b
0 i f x > b.

(19)

• There exists a pair of cumulative distribution functions, called the lower cdf and the upper cdf of
u, based on the extended left side function uL

ext(x) and the extended right side function uR
ext(x)

such that u (x) = FL
u (x)− FR

u (x) ∀x ∈ R, where

FR
u (x) = 1− uR

ext(x) =


0 i f x ≤ d

1− uR(x) i f d < x ≤ b
1 i f x > b.

(20)

and
FL

u (x) = uL
ext(x), (21)

implying that the λ-Average Cumulative function (λ-ACF) of u is defined for a fixed value of λ ∈ [0, 1]
as the following convex combination of FL

u and FR
u , for all x ∈ R,

F(λ)
u (x) = (1− λ)FL

u (x) + λFR
u (x) (22)

=



0 if x < a
(1− λ)uL(x) if a ≤ x < c

1− λ if c ≤ x ≤ d
1− λuR(x) if d < x ≤ b

1 if x > b,
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where F(λ)
u is non-decreasing, right continuous on [−∞, d], left continuous on [c,+∞] and above all, its

generalized inverse, defined by

(F(λ)
u )−1(t) = inf{x ∈ R|F(λ)

u (x) ≥ t} = sup{x ∈ R|F(λ)
u (x) < t} (23)

is the quantile function of F(λ)
u .

A quantile of order p ∈ [0, 1] for a cdf FX (or for the associated random variable X) is a real value
κp such that

lim
x↑κp

FX(x) ≤ p and FX(κp) ≥ p (24)

and considering a simple sample x1, x2, . . . , xN from a real random variable X; for a value of
p ∈ [0, 1], the (empirical) p-quantile κ̂p(N) is obtained by minimizing, with respect to k, the following
(empirical) function

Sp,N(k) = (1− p)
N

∑
i=1
xi<k

(k− xi) + p
N

∑
i=1
xi>k

(xi − k); (25)

furthermore,
κ̂p(N) = arg min

k
Sp,N(k) (26)

is an unbiased estimate of κp.
A relevant property states that when the fuzzy intervals u ∈ RF have continuous membership

function and Fu(x), x ∈ R is their 1
2 -ACF, then for all α ∈ [0, 1], the α-cuts [u−α , u+

α ] of u are such that
u−α is the α

2 -quantile of Fu(x) and u+
α is the α

2 -quantile of F−u(x).
In our financial experiments the fuzzy number u ∈ RF is “measured” at N (independent)

observations (ti, u(ti)) which are the daily data of S&P500 index and this is equivalent to consider a
set of independent variables X1, X2, . . . , XN identically distributed on the support [a, b] and to extract
a simple sample of N distinct values ti from each Xi, i = 1, 2, . . . , N.

Consider the decomposition PN= {x1 < x2 < · · · < xN} of the support [a, b], obtained by
ordering the ti such that t(1) < t(2) · · · < t(N) and defining xi = t(i) for i = 1, 2 . . . , N. We define the
corresponding empirical AC function as:

F̂PN (x) =
1
N

N

∑
i=1

Î (x ≥ xi) (27)

where

Î (x ≥ xi) =

{
1 if x ≥ xi
0 if x < xi

. (28)

For α ∈]0, 1], the α-cuts of u can be estimated by computing the empirical α
2 -quantile of the sample

data {xi|i : 1, . . . , N} and the empirical α
2 -quantile of the data {−xi|i : 1, . . . , N}. The two following

empirical functions, as in Equation (25):

S−α (m) = (1− α

2
)

N

∑
i=1

xi<m

(m− xi) +
α

2

N

∑
i=1

xi>m

(xi −m) (29)

and

S+
α (m) =

α

2

N

∑
i=1

xi<m

(m− xi) + (1− α

2
)

N

∑
i=1

xi>m

(xi −m) (30)
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are minimized and the obtained values

m−α (N) = arg min
m

S−α (m) (31)

m+
α (N) = arg min

m
S+

α (m) (32)

give an estimate [m−α (N), m+
α (N)] of the α-cut [u−α , u+

α ] of u and are obtained without computing
directly the (empirical) AC function from the data; in addition, the estimated value m+

α (N) is exactly
the (1− α

2 )-quantile of the sample data {xi|i : 1, . . . , N}; so, the extreme values u−α and u+
α of each

α-cut of u can be estimated, statistically, by an α
2 -quantile and an (1− α

2 )-quantile, respectively.

5. Value at Risk Based on ACF

The ACF representation allows obtaining the guess quantiles directly from the time series because
it has the same properties of a cumulative distribution function (CDF) of a (real) random variable X,
defined on the same (support) domain.

Generally, the p-quantile of Fα(x) is the value

VaRACF = xp = inf {x | Fα(x) ≥ p} = inf {t : Pr (t ≤ x) ≥ p} (33)

for any CDF of Fα(x) and for the given confidence level p ∈ (0, 1) .
Given the daily S&P500 index time series X, the quantile function (23) deduced from ACF

allows the evaluation of VaRACF [X; p] = (F(λ)
u )−1(t), where in our experiments p is equal to 0.95.

Consequently, VaR[X; 0.95] gives the maximum risk, for the time horizon of one day, for the
100p% = 95% of the cases.

The quantiles obtained through the ACF refine the recognition of the left side of the daily returns
of S&P500 index in such a way that the forecasting capability is augmented and obviously the number
of violations is strongly reduced. The percentage of violations for VaRACF (as shown in Table 2) is
considerably smaller in every year and the reduction becomes crucial in 2010 and 2018 when the high
volatility in financial markets caused unsuitable capital allocations.

Table 2. Percentages of violations.

95% N VaRHist VaRACF

2009 150 7.8% 6.1%
2010 251 14.6% 10.3%
2011 252 8.5% 5.9%
2012 250 7.7% 6.1%
2013 251 5.3% 4.3%
2014 252 6.4% 5.3%
2015 250 7.5% 6.2%
2016 252 6.6% 5.5%
2017 250 6.4% 5.2%
2018 251 12.5% 8.6%
2019 107 8.2% 6.5%

6. Closing Considerations

The adopted back-testing procedure studies the performance of the three values VaREXP, VaRQUA,
VaRACF in terms of the number of violations over 2515 values when they are compared to the value
VaRHist; violations have a strong concrete meaning because they detect all the days in which the
actual losses are not predicted by the VaR estimation implying a scarce amount of capital for facing
adverse situations.

Despite the limitation regarding the fact that only one single asset (S&P500 index) is tested,
Tables 1 and 2 show that VaRACF performing is effectively the best; in 2010 the percentage of violations
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moves from 14.6% for VaRHist to 10.3% for VaRACF, also in 2018 the reduction has a similar order
of magnitude. However, also the smoothing effects on returns are evident because the number of
violations for VaREXP and VaRQUA is reduced, even if in a more soft way. The limitation of a single
asset can have a strong impact because an index is generally less volatile than a stock price, as it is
computed as a weighted mean, and the smoothing effect could be theoretically mostly effective when
the volatility is higher.

In VaR estimation through the ACF, the investigation of the properties which relate the non
parametric estimation and the uncertainty modeling deserves a further appropriate theoretical
investigation devoted to the combination between probability and possibility settings.

However, preliminary results strongly encourage the adoption of models based on Fuzzy set
theory for calculating VaR and possibly several more risk measures, due to their capability to
contemplate uncertainty in a rigorous way. The paradigm of uncertainty is crucial not only in financial
time series but in the whole field of data science which includes all real life data, from social media to
medicine, from ecology to history.

7. Paths for Future Research

The amount of promising research paths for uncertainty theories in risk management is huge
(as described in [22]), here we just give a flavour of the most appealing from our point of view.
Vagueness sources in real data can be viewed as a mixture of stochastic and fuzzy approaches as in [23]
where a given interval describes the available information regarding the evolution of certain variables
is vague. Also the possibility of introducing random-fuzzy variables (as in [24]) in the evaluation
of risk measures deserves more efforts in order to be combined with the stochastic nature of the
traditional model.

In order to extend the research from a unique stock to a portfolio, a possible research is to apply
the introduced non parametric estimation in the case of a portfolio selection model with VaR constraint
under different attitudes, as studied in [25].

A challenging future research path can be the extension of the proposed approaches within the 
field of neutrosophic logic (derived from the seminal philosophical paper by Smarandache in [26]) 
which is compared in [27] with well-known frameworks for reasoning with uncertainty and vagueness.

The concept of set highlights the main difference between fuzzy logic and neutrosophic logic;
a fuzzy set is defined through association with a scale of grades of membership, its generalization is
called intuitionistic fuzzy set and it assigns two values called membership degree and non-membership
degree respectively, when an additional parameter for neutrality is introduced, then the neutrosophic
fuzzy set is defined.

In particular, many contributions based on neutrosophic statistics (broadly detailed in [28]) are
decisively successful when data have indeterminate observations. Consequently, classical statistical
tests can be rephrased as in [29], where the Kolmogorov–Smirnov tests is applied when the data contain
neutrosophic observations, or in [30], where a chi-square test of independence under indeterminacy is
introduced; moreover, in [31] the Dixon’s test is extended within a complex systems when observations
are not all determined as it happens in experiment’s results when testing the normality of the data
through neutrosophic statistics as in [32]. In social sciences as Economics and Management the scarce
availability of certain data can be approached through neutrosophic statistics as in [33], where an
efficient and flexible acceptance criterion is introduced for a two-stage process for multiple lines.
Also in medical science uncertainty is a common feature and neutrosophic statistics is a rigorous way
to model it as it is shown in [34] where uncertain data from an healthcare department are analyzed
and in [35] where an investigation is introduced to classify when patients have the diabetes or not.

In addition, widening the scenario of uncertainty modelling, the tail VaR metric on a tree network,
as shown in [36], computes the probability of the loss and its severity in an uncertain environment.

Finally, the classical statistical research path in risk management is largely fertile; just to give an
example, a recent nonparametric method (detailed in [37]) for VaR extracts the quantile of a conditional
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distribution which is estimated considering the density of the copula describing the dependence
observed in the series of returns.
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