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Hüseyin Kamacı

Department of Mathematics, Faculty of Science and Arts, Yozgat Bozok University, 66100 Yozgat, Turkey

Correspondence: huseyin.kamaci@hotmail.com; huseyin.kamaci@bozok.edu.tr

Abstract. In this paper, the notion of simplified neutrosophic multiplicative refined set (aka, simplified neutrosophic

multiplicative multi-set) is introduced and some basic operational relations are investigated. The correlation coefficient

is one of the most frequently used tools to provide the strength of relationship between two fuzzy/neutrosophic (refined)

sets. Two different methods are proposed to calculate the correlation coefficients between two simplified neutrosophic

multiplicative refined sets. Further, the effectiveness of these methods is demonstrated by dealing with the medical

pattern recognition problem under the simplified neutrosophic multiplicative refined set environment.
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1. Introduction

Most of the problems of real-life involve uncertainty or unknown data, and traditional mathematical

tools cannot deal with such problems. The fuzzy sets (FSs), originated by Zadeh [48], is a useful tool

to cope with vagueness and ambiguity. In 1986, Atanassov [6] initiated the theory of intuitionistic

fuzzy sets (IFSs) extending the FSs. In the following years, many authors studied the the fuzzy set

extensions [9,19,20,30,40] and their matrix representations [23,25,27–29]. However, the FSs and their

extensions failed to cope with indeterminate and inconsistent information which exist in beliefs system,

therefore, Smarandache [36] proposed new concept named neutrosophic set (NS) which generalizes the

FSs and IFSs. Later, Wang et al. [42] and Ye [46] introduced specific descriptions of NSs known as

single-valued neutrosophic set (SVNS) and simplified neutrosophic set (SNS), motivated from a practi-

cal point of view and can be used in real scientific and engineering applications. These theories of NSs

have proven useful in the different fields such as medical diagnosis [3,16], decision making [1–5,15,21,26]

and so on. In 1995, Smarandache put forward that in some cases the degrees of truth-membership,

indeterminacy-membership and falsity-membership in the structure of (single-valued/simplified) NS

can be not only in the interval [0,1] but also less than 0 or greater than 1, and presented some real

world arguments supporting this assertion. Based on this idea, he introduced the concepts of neutro-

sophic oversets (when some neutrosophic components are > 1), neutrosophic undersets (when some

neutrosophic component is < 0), and neutrosophic offsets (when some neutrosophic components are
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off the interval [0,1], i.e. some neutrosophic components > 1 and some neutrosophic components < 0)

and studied their fundamentals [35,37,38].

The multi-set theory was introduced by Yager [45] as generalization of the set theory and then the

multi-set was improved by Calude et al. [8]. Occasionally, several authors made a number of general-

izations of the multi-set theory. Sebastian and Ramakrishnan [33] described a multi fuzzy set (mFS)

which is a generalization of the multi-set. In [11,34], the authors presented an extension of the notion

of mFS to an intuitionstic fuzzy set which was termed to be an intuitionstic fuzzy multi-sets (IFmS).

As the concepts of mFS and IFmS failed to deal with indeterminacy, Smarandache [39] extended

the classical neutrosophic logic to n-valued refined neutrosophic logic, by refining each neutrosophic

component. Meanwhile, Ye and Ye [47] proposed the concept of neutrosophic multi-set (NmS) (aka,

neutrosophic refined set (NRS)) and investigated their characteristic properties. Deli et al. [10] studied

some aspects of NRSs such as intersection, union, convex and strongly convex in a new way. In recent

years, many seminal articles on the NmSs/NRSs have been published [7, 22,41].

In spite of the fact that the FSs, IFSs and NSs are effective mathematical tools for dealing with un-

certainties, these sets use the 0-1 scale, which is distributed symmetrically and uniformly. But, there

are real-life issues that need to be scaled as unsymmetrically and non-uniformly. The grading system

of universities is the most obvious example of such situations [17]. In dealing with such problems that

need to be scaled unsymmetrically and non-uniformly while assigning the variable grades, Saaty [31]

proposed the 1-9 scale (or 1
9 − 9 scale) as a useful tool. These different scales lead to the modelling

of multiplicative preference relation [32]. In 2013, Xia et al. [44] proposed the idea of intuitionistic

multiplicative sets (IMSs) and the intuitionistic multiplicative preference relations (IMPRs). Further,

they gave a comparison between 0.1-0.9 and 1
9 − 9 scales as in Table 1.

Table 1. The comparison between 0.1-0.9 and 1
9 − 9 scales [44]

1
9
− 9 scale 0.1-0.9 scale Meaning

1
9

0.1 Extremely not preferrred
1
7

0.2 Very strongly not preferrred
1
5

0.3 Strongly not preferrred
1
3

0.4 Moderately not preferrred

1 0.5 Equally preferrred

3 0.6 Moderately preferrred

5 0.7 Strongly preferrred

7 0.8 Very strongly preferrred

9 0.9 Extremely preferrred

Other values between 1
9
and 9 Other values between 0 and 1 Intermediate values used to present compromise

Recently, the theoretical aspects of IMSs and IMPRs have been studied in detail [12–14, 18, 43]. In

2019, Köseog̃lu et al. [24] put forward that the IMSs cannot handle real-life problems, which include the

indeterminate information in addition to the truth-membership information and falsity-membership in-

formation of IMS. To eradicate this restriction, they introduced the concepts of simplified neutrosophic

multiplicative set (SNMS) and simplified neutrosophic multiplicative preference relations (SNMPRs).
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Moreover, they gave several formulas for measuring the distance between two SNMSs.

There are two main objectives underlying this study. The first is to initiate the theory of simplified

neutrosophic multiplicative refined set (SNMRS) (aka, simplified neutrosophic multiplicative multi-

set). Obviously, the concept of SNMRS is a generalization of IMSs and SNMSs. The second is to

propose novel correlation coefficients to numerically determine the relationship between two SNMRSs.

By using the proposed correlation coefficients, the ranking of all alternatives (objects) can be achieved.

The layout of rest of this paper is presented as follows: In Section 2, the concepts of NSs, SNSs

and SNMSs are given. In Section 3, the SNMRSs are conceptualized and their fundamentals such

as subset, complement, intersection, union and aggregation operators are studied. In Section 4, the

conceptual approaches of correlation coefficients between two SNMRSs are proposed and their charac-

teristic properties are discussed. In Section 5, an example are given to validate the proposed correlation

measures and the comparative analysis is presented to demonstrate their effectiveness. In Section 6,

the conclusion of this study is summarized.

2. Preliminaries

In this section, some basic concepts of neutrosophic sets, simplified neutrosophic sets and simplified

neutrosophic multiplicative sets are recalled.

Let E be a space of points (object) with a generic element denoted by ε.

Definition 2.1. ( [36]) A neutrosophic set (NS)N in E is characterized by a truth-membership function

tN : E →]0−, 1+[, an indeterminacy-membership function ıN : E →]0−, 1+[, and a falsity-membership

function fN : E →]0−, 1+[. tN (ε), ıN (ε) and fN (ε) are real standard or non-standard subsets of ]0−, 1+[.

There is no restriction on the sum of tN (ε), ıN (ε) and fN (ε), so 0− ≤ sup tN (ε)+sup ıN (ε)+sup fN (ε) ≤
3+ for ε ∈ E .

However, Wang et al. [42] and Ye [46] stated the difficulty of using the NSs of non-standard intervals

in practice, and introduced the simplified neutrosophic sets as follows.

Definition 2.2. ( [46]) An NS N is characterized by a truth-membership function tN : E → [0, 1], an

indeterminacy-membership function ıN : E → [0, 1], and a falsity-membership function fN : E → [0, 1].

tN (ε), ıN (ε) and fN (ε) are singleton subintervals/subsets in the standard interval [0, 1], then it is

termed to be a simplified neutrosophic set (SNS) and described as

N = {(ε, ⟨tN (ε), ıN (ε), fN (ε)⟩) : ε ∈ E} (1)

This kind of NS is is named a single-valued neutrosophic set (SVNS) by Wang et al. [42]. Throughout

this paper, we will use the term ”simplified neutrosophic set (SNS)”.

Definition 2.3. ( [39,47]) A simplified neutrosophic refined set (SNRS) Ñ can be defined as follows:

Ñ = {(ε, ⟨(t1Ñ (ε), t2Ñ (ε), ..., tq
Ñ
(ε)), (ı1Ñ (ε), ı2Ñ (ε), ..., ıq

Ñ
(ε)), (f1Ñ (ε), f2Ñ (ε), ..., f q

Ñ
(ε))⟩) : ε ∈ E} (2)

where
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t1
Ñ
, t2

Ñ
, ..., tq

Ñ
: E → [0, 1], ı1

Ñ
, ı2

Ñ
, ..., ıq

Ñ
: E → [0, 1], and f1

Ñ
, f2

Ñ
, ..., f q

Ñ
: E → [0, 1]

such that

0− ≤ sup ti
Ñ
(ε) + sup ıi

Ñ
(ε) + sup f i

Ñ
(ε) ≤ 3+ ∀i ∈ Iq = {1, 2, ..., q}.

for each ε ∈ E . Further, the truth-membership sequence (t1
Ñ
(ε), t2

Ñ
(ε), ..., tq

Ñ
(ε)) may

be in decreasing/increasing order, and the corresponding indeterminacy-membership sequence

(ı1
Ñ
(ε), ı2

Ñ
(ε), ..., ıq

Ñ
(ε)) and falsity-membership sequence (f1

Ñ
(ε), f2

Ñ
(ε), ..., f q

Ñ
(ε)). Also, q is termed

to be the dimension of SNMS Ñ .

Note 1. In the literature, SNRSs are also referred to as simplified neutrosophic multisets (SNmSs).

Definition 2.4. ( [24]) A simplified neutrosophic multiplicative set (SNMS) M in E is defined as

M = {(ε, ⟨ζM(ε), ηM(ε), ϑM(ε)⟩) : ε ∈ E}, (3)

which assigns to each element ε a truth-membership information ζM(ε), an indeterminacy-membership

information ηM(ε), and a falsity-membership information ϑM(ε) with conditions

1

9
≤ ζM(ε), ηM(ε), ϑM(ε) ≤ 9 and 0 < ζM(ε)ϑM(ε) ≤ 1. (4)

for each ε ∈ E .

Note 1. In 1995, Smarandache put forward that in some cases the degrees of truth-membership,

indeterminacy-membership and falsity-membership in the structure of (single-valued/simplified) NS

can be not only in the interval [0,1] but also greater than 1. Thus, he described the truth-membership

function, indeterminacy-membership function and falsity-membership function as tN , ıN , fN : E →
[0,Ω] where 0 < 1 < Ω and Ω is named overlimit. He called this extended type of (single-

valued/simplified) NSs as neutrosophic overset [37, 38]. It is noted that the SNMSs are particular

case of the neutrosophic oversets.

3. Simplified Neutrosophic Multiplicative Refined Sets

In this section, we initiate the theory of simplified neutrosophic multiplicative refined sets. Also, we

derive some basic operations on simplified neutrosophic multiplicative refined sets and study the related

properties.

Definition 3.1. Let E be a space of points (object) with a generic element denoted by ε. A simplified

neutrosophic multiplicative refined set (SNMRS) M̃ in E is defined as

M̃ = {(ε, ⟨(ζ1M̃(ε), ζ2M̃(ε), ..., ζq
M̃
(ε)), (η1M̃(ε), η2M̃(ε), ..., ηq

M̃
(ε)), (ϑ1M̃(ε), ϑ2M̃(ε), ..., ϑq

M̃
(ε))⟩) : ε ∈ E}

= {⟨ε, (ζiM̃(ε))i∈Iq , (η
i
M̃(ε))i∈Iq , (ϑ

i
M̃(ε))i∈Iq⟩ : ε ∈ E} (5)

which assigns to each element ε a sequence of truth-membership information ζi
M̃
(ε) (i = 1, 2, ..., q), a

sequence of indeterminacy-membership information ηi
M̃
(ε) (i = 1, 2, ..., q), and a sequence of falsity-

membership information ϑi
M̃
(ε) (i = 1, 2, ..., q) with conditions

1

9
≤ ζiM̃(ε), ηiM̃(ε), ϑiM̃(ε) ≤ 9 and 0 < ζiM̃(ε)ϑiM̃(ε) ≤ 1 ∀i ∈ Iq (6)
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for each ε ∈ E . Further, the truth-membership sequence (ζi
M̃
(ε))i∈Iq = (ζ1

M̃
(ε), ζ2

M̃
(ε), ..., ζq

M̃
(ε))

may be in decreasing/increasing order, and the corresponding indeterminacy-membership se-

quence (ηi
M̃
(ε))i∈Iq = (η1

M̃
(ε), ζ2

M̃
(ε), ..., ζq

M̃
(ε)) and falsity-membership sequence (ϑi

M̃
(ε))i∈Iq =

(ϑ1
M̃
(ε), ϑ2

M̃
(ε), ..., ϑq

M̃
(ε)). Also, q is termed to be the dimension of SNMRS M̃. For convenience,

any element of M̃ can be represented as ψ = ⟨(ζi
M̃
)i∈Iq , (η

i
M̃
)i∈Iq , (ϑ

i
M̃
)i∈Iq)⟩ and it is said to be a

simplified neutrosophic multiplicative refined number (SNMRN).

From now on, SNMRS(E , q) denotes the collection of all q-dimension SNMRSs in E .

Example 3.2. Assume that E = {ε1, ε2, ε3, ε4} is the universal set where all the elements represent

some drugs suitable for different infections such as bronchitis, sinusitis, skin infections and ear infec-

tions. We can easily categorize these drugs according to their side effects. Thus, the (3-dimension)

SNMRS is given as follows:

M̃ =

{
(ε1, ⟨(14 , 1, 4), (1,

1
5 ,

1
2), (3,

2
5 ,

1
4)⟩), (ε2, ⟨(1, 3, 5), (

1
2 ,

1
4 , 2), (1,

1
4 ,

1
5)⟩),

(ε3, ⟨(19 ,
1
6 ,

1
2), (9, 1,

1
5), (2, 1,

1
2)⟩), (ε4, ⟨(

5
4 , 4, 5), (

1
4 , 4, 5), (

1
5 ,

1
5 ,

1
9)⟩)

}
.

Consider (ε1, ⟨(14 , 1, 4), (1,
1
5 ,

1
2), (3,

2
5 ,

1
4)⟩) ∈ M̃. Then, (14 , 1, 4) means the sequence of truth-

membership information (scaled between 1
9 and 9) of side effects of drug ε1. The sequences of

indeterminacy-membership information and falsity-membership information of ε1 can be interpreted

similarly.

Definition 3.3. Let M̃,M̃1,M̃2 ∈ SNMRS(E , q).

(a): If for each ε ∈ E ,

ζiM̃1
(ε) ≤ ζiM̃2

(ε), ηiM̃1
(ε) ≥ ηiM̃2

(ε), ϑiM̃1
(ε) ≥ ϑiM̃2

(ε) ∀i ∈ Iq

then M̃1 is an SNMR subset of M̃2, denoted by M̃1 ⊆ M̃2.

(b): If for each ε ∈ E ,

ζiM̃1
(ε) = ζiM̃2

(ε), ηiM̃1
(ε) = ηiM̃2

(ε), ϑiM̃1
(ε) = ϑiM̃2

(ε) ∀i ∈ Iq

then the SNMRSs M̃1 and M̃2 are equal, denoted by M̃1 = M̃2. That is, M̃1 = M̃2 iff

M̃1 ⊆ M̃2 and M̃2 ⊆ M̃1.

(c): The complement of M̃, is denoted and defined as

M̃c = {(ε, ⟨(ϑiM̃(ε))i∈Iq , (
1

ηi
M̃
(ε)

)i∈Iq , (ζ
i
M̃(ε))i∈Iq⟩) : ε ∈ E}.

where ( 1
ηi
M̃

(ε)
)i∈Iq represents the sequence ( 1

η1
M̃

(ε)
, 1
η2
M̃

(ε)
, ..., 1

ηq
M̃

(ε)
)

(d): The intersection of M̃1 and M̃2, denoted by M̃1 ∩ M̃2, is described as

M̃1 ∩ M̃2 =


 ε,

⟨ (
min{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq ,(

max{ηi
M̃1

(ε), ηi
M̃2

(ε)}
)
i∈Iq ,(

max{ϑi
M̃1

(ε), ϑi
M̃2

(ε)}
)
i∈Iq

⟩  : ε ∈ E

 .
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(e): The union of M̃1 and M̃2, denoted by M̃1 ∪ M̃2, is described as

M̃1 ∪ M̃2 =


 ε,

⟨ (
max{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq ,(

min{ηi
M̃1

(ε), ηi
M̃2

(ε)}
)
i∈Iq ,(

min{ϑi
M̃1

(ε), ϑi
M̃2

(ε)}
)
i∈Iq

⟩  : ε ∈ E

 .

For the sequences of truth-membership information in definitions of intersection and union of SNMRSs,(
min{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq

= (min{ζ1
M̃1

(ε), ζ1
M̃2

(ε)},min{ζ2
M̃1

(ε), ζ2
M̃2

(ε)}, ...,min{ζq
M̃1

(ε), ζq
M̃2

(ε)}) and(
max{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq

= (max{ζ1
M̃1

(ε), ζ1
M̃2

(ε)},max{ζ2
M̃1

(ε), ζ2
M̃2

(ε)}, ...,max{ζq
M̃1

(ε), ζq
M̃2

(ε)}). It can

be considered similar matches for the indeterminacy-membership information and falsity-membership

information in Definition 3.3 (d) and (e).

Theorem 3.4. Let M̃1,M̃2,M̃3 ∈ SNMRS(E , q).

(i): If M̃1 ⋆ M̃2 and M̃2 ⋆ M̃3 then M̃1 ⋆ M̃3 for each ⋆ ∈ {⊆,=}.
(ii): If M̃1 ⋆ M̃2 then (M̃1 • M̃3) ⋆ (M̃2 • M̃3) for each ⋆ ∈ {⊆,=} and • ∈ {∩,∪}.
(iii): M̃1 • M̃2 = M̃2 • M̃1 for each • ∈ {∩,∪}.
(iv): M̃1 • (M̃2 • M̃3) = (M̃1 • M̃2) • M̃3 for each • ∈ {∩,∪}.
(v): M̃1 • (M̃2�M̃3) = (M̃1 • M̃2)�(M̃1 • M̃3) for each •,� ∈ {∩,∪}.
(vi): (M̃1 • M̃2)

c = M̃c
1�M̃c

2 for each •,� ∈ {∩,∪} and • ̸= �.

Proof. Let us prove the properties (vi) for • = ∩ and � = ∪.
(iv): From Definition 3.3 (c) and (d), we can write

(M̃1 ∩ M̃2)
c =



 ε,

⟨ (
max{ϑi

M̃1
(ε), ϑi

M̃2
(ε)}

)
i∈Iq

,(
1

max{ηi
M̃1

(ε),ηi
M̃2

(ε)}

)
i∈Iq

,(
min{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq

⟩  : ε ∈ E

 (7)

For the right side of the equality, we can write

M̃c
k = {⟨ε, (ϑiM̃k

(ε))i∈Iq , (
1

ηi
M̃k

(ε)
)i∈Iq , (ζ

i
M̃k

(ε))i∈Iq⟩ : ε ∈ E}.

for k = 1, 2 and so

M̃c
1 ∪ M̃c

2 =



 ε,

⟨ (
max{ϑi

M̃1
(ε), ϑi

M̃2
(ε)}

)
i∈Iq

,(
min{ 1

ηi
M̃1

(ε)
, 1
ηi
M̃2

(ε)
}
)
i∈Iq

,(
max{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq

⟩  : ε ∈ E

 (8)

Since ηi
M̃1

(ε), ηi
M̃2

(ε) ∈ [19 , 9] for all i ∈ Iq, the equality 1
max{ηi

M̃1
(ε),ηi

M̃2
(ε)} = min{ 1

ηi
M̃1

(ε)
, 1
ηi
M̃2

(ε)
} is

valid. So, from the Eqs. (7) and (8), we deduce that (M̃1 ∩ M̃2)
c = M̃c

1 ∪ M̃c
2. Proceeding with

similar calculations, it can be demonstrated that (M̃1 ∪ M̃2)
c = M̃c

1 ∩ M̃c
2.

By using similar techniques, the properties (i)-(v) can be proved, therefore they are omitted.
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Definition 3.5. For ψ = ⟨(ζi)i∈Iq , (ηi)i∈Iq , (ϑi)i∈Iq)⟩, the score, accuracy and certainty functions of ψ

are described respectively as follows:

fS(ψ) =
1

q

∑
i∈Iq

ζi

ηiϑi
(9)

fA(ψ) =
1

q

∑
i∈Iq

ζiϑi (10)

and

fC(ψ) =
1

q

∑
i∈Iq

ζi (11)

To compare two SNMRNs ψ1 and ψ2, the steps detailed below can be followed:

(1): if fS(ψ1) > fS(ψ2) then ψ1 ≻ ψ2,

(2): if fS(ψ1) < fS(ψ2) then ψ1 ≺ ψ2,

(3): if fS(ψ1) = fS(ψ2) then

(i): if fA(ψ1) > fA(ψ2) then ψ1 ≻ ψ2,

(ii): if fA(ψ1) < fA(ψ2) then ψ1 ≺ ψ2,

(iii): if fA(ψ1) = fA(ψ2) then

(a): if fC(ψ1) > fC(ψ2) then ψ1 ≻ ψ2,

(b): if fC(ψ1) < fC(ψ2) then ψ1 ≺ ψ2,

(c): if fC(ψ1) = fC(ψ2) then ψ1 = ψ2.

Example 3.6. If we take ψ1 = ⟨(14 ,
1
2 , 1), (3,

3
4 , 3), (1, 1,

1
2)⟩ and ψ2 = ⟨(12 , 1, 1), (

3
4 , 3, 3), (1,

1
2 ,

1
4)⟩ then

we get fS(ψ1) = fS(ψ2) =
17
36 . Since the score values of ψ1 and ψ2 are equal, by using the accuracy

function, we obtain fA(ψ1) = fA(ψ2) = 5
12 . By considering the certainty function, we calculate as

fC(ψ1) =
17
12 and fC(ψ2) =

3
4 . Thus, we have ψ1 ≻ ψ2 since fC(ψ1) > fC(ψ2).

Definition 3.7. Let ψ = ⟨(ζi)i∈Iq , (ηi)i∈Iq , (ϑi)i∈Iq)⟩, ψ1 = ⟨(ζi1)i∈Iq , (ηi1)i∈Iq , (ϑi1)i∈Iq)⟩ and ψ2 =

⟨(ζi2)i∈Iq , (ηi2)i∈Iq , (ϑi2)i∈Iq)⟩ be three SNMRNs and ω > 0 be a real number. Then, some operational

laws of SNMRNs are described as follows.

(a):

ψ1 ⊕ ψ2 =
⟨ ( (1+2ζi1)(1+2ζi2)−1

2

)
i∈Iq ,

( 2ηi1η
i
2

(2+ηi1)(2+ηi2)−ηi1η
i
2

)
i∈Iq ,

( 2ϑi
1ϑ

i
2

(2+ϑi
1)(2+ϑi

2)−ϑi
1ϑ

i
2

)
i∈Iq

⟩
.

(b):

ψ1 ⊗ ψ2 =
⟨ ( 2ζi1ζ

i
2

(2+ζi1)(2+ζi2)−ζi1ζ
i
2

)
i∈Iq ,

( (1+2ηi1)(1+2ηi2)−1
2

)
i∈Iq ,

( (1+2ϑi
1)(1+2ϑi

2)−1
2

)
i∈Iq

⟩
.

(c):

ωψ =
⟨ ( (1+2ζi)ω−1

2

)
i∈Iq ,

( 2(ηi)ω

(2+ηi)ω−(ηi)ω

)
i∈Iq ,

( 2(ϑi)ω

(2+ϑi)ω−(ϑi)ω

)
i∈Iq

⟩
.

(d):

ψω =
⟨ ( 2(ζi)ω

(2+ζi)ω−(ζi)ω

)
i∈Iq ,

( (1+2ηi)ω−1
2

)
i∈Iq ,

( (1+2ϑi)ω−1
2

)
i∈Iq

⟩
.
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(e):

ψc =
⟨ (

ϑi
)
i∈Iq ,

(
1
ηi

)
i∈Iq ,

(
ζi
)
i∈Iq

⟩
.

Example 3.8. We consider ψ1 and ψ2 given in Example 3.6. Then, we obtain

ψ1 ⊕ ψ2 =

⟨ ( (1+2× 1
4
)(1+2× 1

2
)−1

2 ,
(1+2× 1

2
)(1+2×1)−1

2 , (1+2×1)(1+2×1)−1
2

)
,( 2×3× 3

4

(2+3)(2+ 3
4
)−3× 3

4

,
2× 3

4
×3

(2+ 3
4
)(2+3)− 3

4
×3
, 2×3×3
(2+3)(2+3)−3×3

)
,(

2×1×1
(2+1)(2+1)−1×1 ,

2×1× 1
2

(2+1)(2+ 1
1
)−1× 1

2

,
2× 1

2
× 1

4

(2+ 1
2
)(2+ 1

4
)− 1

2
× 1

4

)
⟩

= ⟨(1, 5
2
, 4), (

9

23
,
9

23
,
9

8
), (

1

4
,
1

7
,
1

22
)⟩

and

ψc
1 = ⟨(1, 1, 1

2
), (

1

3
,
4

3
,
1

3
), (

1

4
,
1

2
, 1)⟩.

Theorem 3.9. Let ψ = ⟨(ζi)i∈Iq , (ηi)i∈Iq , (ϑi)i∈Iq)⟩, ψ1 = ⟨(ζi1)i∈Iq , (ηi1)i∈Iq , (ϑi1)i∈Iq)⟩ and ψ2 =

⟨(ζi2)i∈Iq , (ηi2)i∈Iq , (ϑi2)i∈Iq)⟩ be three SNMRNs and ω, ω1, ω2 > 0 be real numbers, then the following

properties are valid.

(i): ψ1 • ψ2 = ψ2 • ψ1 for each • ∈ {⊕,⊗}.
(ii): ω(ψ1 ⊕ ψ2) = ωψ1 ⊕ ωψ2.

(iii): (ψ1 ⊗ ψ2)
ω = ψω

1 ⊗ ψω
2 .

(iv): ω1ψ ⊕ ω2ψ = (ω1 + ω2)ψ.

(v): ψω1 ⊗ ψω2 = ψω1+ω2.

(vi): (ψ1 • ψ2)
c = ψc

1�ψc
2 for each •,� ∈ {⊕,⊗} and • ̸= �.

Proof. Considering Definition 3.7, they can be achieved with simple calculations and so omitted.

4. Correlation Coefficients for SNMRSs

In this section, we propose some types of correlation coefficients for the SNMRSs, which can be applied

to real-life problems.

Suppose that M̃1 = {⟨εj , (ζiM̃1
(εj))i∈Iq , (η

i
M̃1

(εj))i∈Iq , (ϑ
i
M̃1

(εj))i∈Iq⟩ : εj ∈ E} and M̃2 =

{⟨εj , (ζiM̃2
(εj))i∈Iq , (η

i
M̃2

(εj))i∈Iq , (ϑ
i
M̃2

(εj))i∈Iq⟩ : εj ∈ E} be any two q-dimension SNMRSs in the

universal set E = {εj : j = 1, 2, ...,m} where ζi
M̃1

(εj), η
i
M̃1

(εj), ϑ
i
M̃1

(εj), ζ
i
M̃2

(εj), η
i
M̃2

(εj), ϑ
i
M̃2

(εj) ∈
[19 , 9], 0 < ζi

M̃1
(εj)ϑ

i
M̃1

(εj) ≤ 1 and 0 < ζi
M̃2

(εj)ϑ
i
M̃2

(εj) ≤ 1 (i = 1, 2, ..., q) for each εj ∈ E . The

informational energies of SNMRSs M̃1 and M̃2 are defined as

T(M̃1) =
1

q

∑
i∈Iq

m∑
j=1

( ζiM1
(εj)

2(1 + ζiM1
(εj))

+
ηiM1

(εj)

2(1 + ηiM1
(εj))

+
ϑiM1

(εj)

2(1 + ϑiM1
(εj))

)
(12)

and

T(M̃2) =
1

q

∑
i∈Iq

m∑
j=1

( ζiM2
(εj)

2(1 + ζiM2
(εj))

+
ηiM2

(εj)

2(1 + ηiM2
(εj))

+
ϑiM2

(εj)

2(1 + ϑiM2
(εj))

)
(13)
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The correlation of the SNMRSs M̃1 and M̃2 is described as

C(M̃1,M̃2) =
1

q

∑
i∈Iq

m∑
j=1


2ζiM1

(εj)ζ
i
M2

(εj)

(2+ζiM1
(εj))(2+ζiM2

(εj))−ζiM1
(εj)ζiM2

(εj)

+
2ηiM1

(εj)η
i
M2

(εj)

(2+ηiM1
(εj))(2+ηiM2

(εj))−ηiM1
(εj)ηiM2

(εj)

+
2ϑi

M1
(εj)ϑ

i
M2

(εj)

(2+ϑi
M1

(εj))(2+ϑi
M2

(εj))−ϑi
M1

(εj)ϑi
M2

(εj)

 (14)

It is clear that the Eq. (14) has the following axioms.

(1) C(M̃1,M̃1) = T(M̃1).

(2) C(M̃1,M̃2) = C(M̃2,M̃1).

The correlation coefficients between two SNMRs M̃1 and M̃2 are defined as follows.

Definition 4.1. Let M̃1,M̃2 ∈ SNMRS(E , q). Then, the (type-1) correlation coefficient between

M̃1 and M̃2 is denoted and defined as

κ1(M1,M2) =
C(M̃1,M̃2)√
T(M̃1) · T(M̃2)

=

1
q

∑
i∈Iq

m∑
j=1


2ζiM1

(εj)ζ
i
M2

(εj)

(2+ζiM1
(εj))(2+ζiM2

(εj))−ζiM1
(εj)ζiM2

(εj)

+
2ηiM1

(εj)η
i
M2

(εj)

(2+ηiM1
(εj))(2+ηiM2

(εj))−ηiM1
(εj)ηiM2

(εj)

+
2ϑi

M1
(εj)ϑ

i
M2

(εj)

(2+ϑi
M1

(εj))(2+ϑi
M2

(εj))−ϑi
M1

(εj)ϑi
M2

(εj)


√√√√√√√√√√

1
q

∑
i∈Iq

m∑
j=1


ζiM1

(εj)

2(1+ζiM1
(εj))

+
ηiM1

(εj)

2(1+ηiM1
(εj))

+
ϑi
M1

(εj)

2(1+ϑi
M1

(εj))

×

√√√√√√√√√√
1
q

∑
i∈Iq

m∑
j=1


ζiM2

(εj)

2(1+ζiM2
(εj))

+
ηiM2

(εj)

2(1+ηiM2
(εj))

+
ϑi
M2

(εj)

2(1+ϑi
M2

(εj))



(15)

Theorem 4.2. Let M̃1,M̃2 ∈ SNMRS(E , q). For the (type-1) correlation coefficient between M̃1

and M̃2, the following properties are satisfied.

(i): M̃1 = M̃2 ⇒ κ1(M1,M2) = 1.

(ii): κ1(M1,M2) = κ1(M2,M1).

(iii): 1
9 ≤ κ1(M1,M2) ≤ 9.

Proof. The proofs of (i) and (ii) are obvious from the Eq. (15). Let us prove the assertion (iii).

(iii): Let M̃1,M̃2 ∈ SNMRS(E , q). Since for each εj ∈ E ,

1

9
≤ ζiM1

(εj) ≤ 9 ∀i ∈ Iq (16)

it implies that

1

20
≤ 1

2(1 + ζiM1
(εj))

≤ 9

20
∀i ∈ Iq (17)
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Hence, we obtain

(ζiM1
(εj))

2

20
≤

(ζiM1
(εj))

2

2(1 + ζiM1
(εj))

≤
9(ζiM1

(εj))
2

20
∀i ∈ Iq (18)

for each εj ∈ E . Likewise, for the indeterminacy-membership and falsity-membership, we obtain the

following inequalities:

(ηiM1
(εj))

2

20
≤

(ηiM1
(εj))

2

2(1 + ηiM1
(εj))

≤
9(ηiM1

(εj))
2

20
∀i ∈ Iq (19)

and

(ϑiM1
(εj))

2

20
≤

(ϑiM1
(εj))

2

2(1 + ϑiM1
(εj))

≤
9(ϑiM1

(εj))
2

20
∀i ∈ Iq (20)

for each εj ∈ E . By adding Eqs. (18), (19) and (20), we have

(ζiM1
(εj))

2 + (ηiM1
(εj))

2 + (ϑiM1
(εj))

2

20
≤

(ζiM1
(εj))

2

2(1 + ζiM1
(εj))

+
(ηiM1

(εj))
2

2(1 + ηiM1
(εj))

+
(ϑiM1

(εj))
2

2(1 + ϑiM1
(εj))

≤
9((ζiM1

(εj))
2 + (ηiM1

(εj))
2 + (ϑiM1

(εj))
2)

20
∀i ∈ Iq (21)

for each εj ∈ E . By using Eq. (12), we have the following inequality for informational energy of

SNMRS M1.

1

20q

∑
i∈Iq

m∑
j=1

 (ζiM1
(εj))

2

+(ηiM1
(εj))

2

+(ϑiM1
(εj))

2

 ≤ T(M̃1) ≤
9

20q

∑
i∈Iq

m∑
j=1

 (ζiM1
(εj))

2

+(ηiM1
(εj))

2

+(ϑiM1
(εj))

2

 (22)

Similarly, we can obtain the following inequality for informational energy of SNMRS M2.

1

20q

∑
i∈Iq

m∑
j=1

 (ζiM2
(εj))

2

+(ηiM2
(εj))

2

+(ϑiM2
(εj))

2

 ≤ T(M̃2) ≤
9

20q

∑
i∈Iq

m∑
j=1

 (ζiM2
(εj))

2

+(ηiM2
(εj))

2

+(ϑiM2
(εj))

2

 (23)

On the other hand, we can easily deduce that

ζiM1
(εj)ζ

i
M2

(εj)

20
≤

2ζiM1
(εj)ζ

i
M2

(εj)

(2 + ζiM1
(εj))(2 + ζiM2

(εj))− ζiM1
(εj)ζiM2

(εj)
≤

9ζiM1
(εj)ζ

i
M2

(εj)

20
∀i ∈ Iq (24)

for each εj ∈ E , and so

1

20q

∑
i∈Iq

m∑
j=1

ζiM1
(εj)ζ

i
M2

(εj) ≤
1

20q

∑
i∈Iq

m∑
j=1

2ζiM1
(εj)ζ

i
M2

(εj)

(2 + ζiM1
(εj))(2 + ζiM2

(εj))− ζiM1
(εj)ζiM2

(εj)

≤ 9

20q

∑
i∈Iq

m∑
j=1

ζiM1
(εj)ζ

i
M2

(εj) (25)
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Likewise, for the indeterminacy-membership and falsity-membership, the following results can be ob-

tained:

1

20q

∑
i∈Iq

m∑
j=1

ηiM1
(εj)η

i
M2

(εj) ≤
1

20q

∑
i∈Iq

m∑
j=1

2ηiM1
(εj)η

i
M2

(εj)

(2 + ηiM1
(εj))(2 + ηiM2

(εj))− ηiM1
(εj)ηiM2

(εj)

≤ 9

20q

∑
i∈Iq

m∑
j=1

ηiM1
(εj)η

i
M2

(εj) (26)

and

1

20q

∑
i∈Iq

m∑
j=1

ϑiM1
(εj)ϑ

i
M2

(εj) ≤
1

20q

∑
i∈Iq

m∑
j=1

2ϑiM1
(εj)ϑ

i
M2

(εj)

(2 + ϑiM1
(εj))(2 + ϑiM2

(εj))− ϑiM1
(εj)ϑiM2

(εj)

≤ 9

20q

∑
i∈Iq

m∑
j=1

ϑiM1
(εj)ϑ

i
M2

(εj) (27)

So, by using Eq. (15), we obtain

1
20q ξ

9
20q (

√
µ×

√
ν)

≤ κ1(M1,M2) ≤
9

20q ξ
1

20q (
√
µ×

√
ν)

(28)

and so

1

9

ξ
√
µ×

√
ν
≤ κ1(M1,M2) ≤ 9

ξ
√
µ×

√
ν

(29)

where

ξ =
∑
i∈Iq

m∑
j=1


ζiM1

(εj)ζ
i
M2

(εj)

+ηiM1
(εj)η

i
M2

(εj)

+ϑiM1
(εj)ϑ

i
M2

(εj)

 , µ =
∑
i∈Iq

m∑
j=1


(ζiM1

(εj))
2

+(ηiM1
(εj))

2

+(ϑiM1
(εj))

2

 , ν =
∑
i∈Iq

m∑
j=1


(ζiM2

(εj))
2

+(ηiM2
(εj))

2

+(ϑiM2
(εj))

2


Thus, we conclude that 1

9 ≤ κ1(M1,M2) ≤ 9.

Definition 4.3. Let M̃1,M̃2 ∈ SNMRS(E , q). Then, the (type-2) correlation coefficient between

M̃1 and M̃2 is denoted and defined as

κ2(M1,M2) =
C(M̃1,M̃2)

max{T(M̃1),T(M̃2)}

=

1
q

∑
i∈Iq

m∑
j=1


2ζiM1

(εj)ζ
i
M2

(εj)

(2+ζiM1
(εj))(2+ζiM2

(εj))−ζiM1
(εj)ζiM2

(εj)

+
2ηiM1

(εj)η
i
M2

(εj)

(2+ηiM1
(εj))(2+ηiM2

(εj))−ηiM1
(εj)ηiM2

(εj)

+
2ϑi

M1
(εj)ϑ

i
M2

(εj)

(2+ϑi
M1

(εj))(2+ϑi
M2

(εj))−ϑi
M1

(εj)ϑi
M2

(εj)



max


1
q

∑
i∈Iq

m∑
j=1


ζiM1

(εj)

2(1+ζiM1
(εj))

+
ηiM1

(εj)

2(1+ηiM1
(εj))

+
ϑi
M1

(εj)

2(1+ϑi
M1

(εj))

 , 1q
∑
i∈Iq

m∑
j=1


ζiM2

(εj)

2(1+ζiM2
(εj))

+
ηiM2

(εj)

2(1+ηiM2
(εj))

+
ϑi
M2

(εj)

2(1+ϑi
M2

(εj))





(30)
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Theorem 4.4. Let M̃1,M̃2 ∈ SNMRS(E , q). For the (type-2) correlation coefficient between M̃1

and M̃2, the following properties are valid.

(i): M̃1 = M̃2 ⇒ κ2(M1,M2) = 1.

(ii): κ2(M1,M2) = κ2(M2,M1).

(iii): 1
9 ≤ κ2(M1,M2) ≤ 9.

Proof. They can be demonstrated similar to the proof of Theorem 4.2.

5. An Application of Correlation Coefficients of SNMRSs in Medical Pattern Recognition

In order to demonstrate the application of the proposed correlation coefficients, we consider the fol-

lowing medical pattern recognition problem under the SNMRS environment.

Example 5.1. Scientists divided coronaviruses into four sub-groupings, called alpha, beta, gamma and

delta. Five of beta viruses can infect people: OC43, HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2

(COVID-19). Specially, we focus on three dangerous types of beta viruses: (1) MERS-CoV, (2) SARS-

CoV and (3) SARS-CoV-2. We consider the patterns of MERS-CoV, SARS-CoV and SARS-CoV-2

based on the symptoms which are specified by experts as sequences of truth-membership information,

indeterminacy-membership information and falsity-membership information (they are scaled between
1
9 and 9) as a result of investigation and experiments. Suppose that the patterns of MERS-CoV,

SARS-CoV and SARS-CoV-2 for the symptoms ε1, ε2 and ε3 (i.e., E = {ε1, ε2, ε3}) are given as follows

respectively.

P1 =


(ε1, ⟨(2, 4, 5, 7, 8), (35 , 1, 2,

5
2 , 6), (

1
3 ,

1
6 ,

1
5 ,

1
8 ,

1
9)⟩),

(ε2, ⟨(29 ,
1
2 , 1, 3, 4), (

1
4 , 2,

3
4 , 1, 5), (

1
8 , 1,

1
3 ,

1
5 ,

1
7)⟩),

(ε3, ⟨(19 ,
1
3 ,

1
2 , 1, 4), (

1
5 , 7,

2
3 ,

1
5 ,

1
2), (9, 3, 2, 1,

1
6)⟩)

 ,

P2 =


(ε1, ⟨(18 ,

1
2 , 2, 3, 7), (3,

1
2 , 1,

1
5 ,

1
7), (8, 1,

1
6 ,

1
7 ,

1
6)⟩),

(ε2, ⟨(13 ,
1
2 , 1, 4, 6), (

1
3 ,

1
4 ,

1
8 , 2,

1
3), (6, 2,

1
2 ,

1
4 ,

1
6)⟩),

(ε3, ⟨(13 ,
1
2 , 2, 3, 9), (6,

1
2 ,

1
3 , 4,

1
7), (1, 2,

1
4 ,

1
5 ,

1
9)⟩)


and

P3 =


(ε1, ⟨(1, 4, 5, 6, 9), (12 ,

1
5 ,

1
8 , 2, 1), (

1
3 ,

1
4 ,

1
5 ,

1
7 ,

1
9)⟩),

(ε2, ⟨(12 , 2, 3, 5, 8), (
1
4 ,

1
9 , 1, 3, 2), (

1
6 ,

1
2 ,

1
4 ,

1
7 ,

1
8)⟩),

(ε3, ⟨(13 ,
1
2 , 1, 2, 3), (

1
4 ,

1
7 , 1,

1
2 , 1), (2, 2,

1
6 ,

1
6 ,

1
9)⟩)

 .

Experts (or doctors) often come across slightly different versions (i.e., unknown patterns) of viruses:

MERS-CoV, SARS-CoV and SARS-CoV-2. Suppose that an expert come across an unknown pattern

P which will be reorganized as an SNMRS in E , where

P =


(ε1, ⟨(2, 4, 5, 7, 9), (13 ,

1
5 ,

1
8 , 2, 2), (

1
2 ,

1
4 ,

1
6 ,

1
7 ,

1
9)⟩),

(ε2, ⟨(14 ,
1
2 , 3, 4, 9), (

1
2 ,

1
9 , 1, 3, 4), (

1
4 ,

1
2 ,

1
4 ,

1
6 ,

1
9)⟩),

(ε3, ⟨(15 ,
1
3 , 1, 2, 4), (

1
4 ,

1
8 , 1,

1
2 , 1), (1, 2,

1
6 ,

1
6 ,

1
9)⟩)

 .
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The motivation of this problem is to classify the pattern P in one of the classes P1,P2 and P3. For

this purpose, the correlation coefficients κ1 and κ2 described in Eqs. (4.1) and (4.3) can be used.

By calculating the the (type-1) correlation coefficients between P and Pk (k = 1, 2, 3), we can get

κ1(P1,P) = 2.507027, κ1(P2,P) = 2.078367 and κ1(P3,P) = 2.727818

As a result of (type-1) correlation coefficients, the ranking of P1, P2 and P3 is obtained as P2 ≺ P1 ≺ P3,

and thus it is most convenient to classify the pattern P with the pattern P3 (SARS-CoV-2).

Similarly, by using Eq. (4.3), we have the following (type-2) correlation coefficients between P and Pk

(k = 1, 2, 3)

κ2(P1,P) = 2.365829, κ2(P2,P) = 2.032161 and κ2(P3,P) = 2.718598

Consequently, the ranking of these three patterns is P2 ≺ P1 ≺ P3, and therefore it is most convenient

to classify the pattern P with the pattern P3.

Comparison and Discussion: In 2018, Garg [14] proposed new correlation coefficients for IMSs and

presented their applications in handling decision making. For Examples 1, 2 and 3 in Section 4 of [14],

if we assume the 1-dimension simplified neutrosophic multiplicative refined value (i.e., simplified neu-

trosophic multiplicative value) ⟨ρ, 1, σ⟩ instead of the priority value ⟨ρ, σ⟩ of alternative under the IMS

environment then the proposed (type-1 and type-2) correlation coefficients (in this paper) can be ap-

plied to these problems and the comparison results in Table 2 are obtained.

Table 2. Results of comparing the proposed ones with the correlation coefficients of IMSs

Problems Ranking for correlation coefficients of IMSs Ranking for correlation coefficients of SNMRSs

Example 1 in [14]

K1(X4, X
∗) > K1(X1, X

∗) >

K1(X3,X
∗) > K1(X2,X

∗)

κ1(X4, X
∗) > κ1(X1, X

∗) >

κ1(X3,X
∗) > κ1(X2, X

∗)

K2(X4, X
∗) > K2(X1, X

∗) >

K2(X3,X
∗) > K2(X2,X

∗)

κ2(X4, X
∗) > κ2(X1, X

∗) >

κ2(X3,X
∗) > κ2(X2, X

∗)

Example 2 in [14]
K1(C2, P ) > K1(C1, P ) > K1(C3, P ) κ1(C2, P ) > κ1(C1, P ) > κ1(C3, P )

K2(C2, P ) > K2(C1, P ) > K2(C3, P ) κ2(C2, P ) > κ2(C1, P ) > κ2(C3, P )

Example 3 in [14]

K1(P,Q2) > K1(P,Q1) >

K1(P,Q5) > K1(P,Q3) > K1(P,Q4)

κ1(P,Q2) > κ1(P,Q1) >

κ1(P,Q5) > κ1(P,Q3) > κ1(P,Q4)

K2(P,Q2) > K2(P,Q5) >

K2(P,Q1) > K2(P,Q3) > K2(P,Q4)

κ2(P,Q2) > κ2(P,Q5) >

κ2(P,Q1) > κ2(P,Q3) > κ2(P,Q4)

In 2016, Broumi and Deli [7] studied the correlation measure of (simplified) neutrosophic refined sets

and applied them to the problems of medical diagnosis and pattern recognition. For Examples 4.1

and 4.2 in Section 4 of [7], considering the matches between 0 − 1 and 1
9 − 9 scales given in Table 1

in the Introduction for the priority value ⟨(T 1, T 2, ..., T p), (I1, I2, ..., Ip), (F 1, F 2, ..., F p)⟩ of alternative
under the (simplified) NRS environment, we can apply the proposed (type-1 and type-2) correlation

coefficients to these problems and the comparison results are presented in Table 3.
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Table 3. Results of comparing the proposed ones with the correlation coefficients of NRSs

Problems Ranking for correlation coefficient of NRSs Ranking for correlation coefficients of SNMRSs

Example 4.1 in [7]

ρNRS(P1, D2) > ρNRS(P1, D3) >

ρNRS(P1, D4) > ρNRS(P1, D1)

κ1(P1, D2) > κ1(P1, D3) >

κ1(P1, D4) > κ1(P1, D1)

ρNRS(P2, D3) > ρNRS(P2, D2) >

ρNRS(P2, D1) > ρNRS(P2, D4)

κ1(P2, D3) > κ1(P2, D2) >

κ1(P2, D1) > κ1(P2, D4)

ρNRS(P3, D3) > ρNRS(P3, D2) >

ρNRS(P3, D4) > ρNRS(P3, D1)

κ1(P3, D3) > κ1(P3, D2) >

κ1(P3, D4) > κ1(P3, D1)

Example 4.2 in [7]ρNRS(Pat.I, Pat.III) > ρNRS(Pat.II, Pat.III)
κ1(Pat.I, Pat.III) > κ1(Pat.II, Pat.III)

κ2(Pat.I, Pat.III) > κ2(Pat.II, Pat.III)

Consequently, we can say that the correlation coefficients of SNMRSs are generalized forms of correla-

tion coefficients of both IMSs and NRSs (by considering Table 1 in the Introduction). These support

that the range of application areas of the proposed correlation coefficients is quite wide and therefore

advantageous in many situations.

6. Conclusions

In this paper, we have established a new extension of SNMS named as SNMRS which is more efficient

and flexible structure to deal with ambiguity. The space for SNMRSs is larger than those of IMSs and

SNMSs. We have founded some significant results in the framework of SNMRS. We have presented

new correlation coefficients under the SNMRS environment and their application in medical pattern

recognition. We hope that the findings in this study will be helpful for researchers handling with var-

ious real-life problems that involve uncertainties. Further, the proposed approaches may be extended

in new directions including information fusion, aggregation and measures. The next research will aim

to explore the real-life applications related to the concepts based on the extensions of SNMRSs.
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