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Abstract: The aim of this paper is to establish a partial foundation of number theoretical concepts in 

the neutrosophic ring of integers 𝑍(𝐼) because it is based on a partial order relationship. This work 

partially generalizes and deals with necessary and sufficient conditions for division, Euler's 

function, congruencies, and some other classical concepts in 𝑍(𝐼). The main result of this work is to 

show that Euler's famous theorem is still true in the case of neutrosophic integers for our partial 

ordering relationship. Also, this work introduces an algorithm to solve Pell's equation in the 

neutrosophic ring of integers Z(I).
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1. Introduction

Neutrosophy is a new branch of philosophy founded by Smarandache to deal with indeterminacy 

in nature and science [12]. Neutrosophy has many important applications in many fields of 

knowledge such as computing [21], decision making [20], medical research [15], and applied science 

[22]. Then, it plays an important role in algebra, where many neutrosophic algebraic structures 

were defined and studied widely such as neutrosophic rings [1,8], neutrosophic vector spaces 

[4,14], neutrosophic modules [5,18], and refined neutrosophic rings [2,3,6,7,19]. Also, neutrosophy 

has many applications and effects on the progression of optimization [16], intelligent systems [13], 

and medical researches [15]. 

In the literature, number theory was a mathematical way to deal with the properties of integers 

such as Diophantine equations, primes, Euclidean division, and congruencies [10]. 
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Neutrosophic number theory began in [9], where some properties of neutrosophic integers were 

introduced such as the form of primes in Z(I). Also, neutrosophic linear Diophantine equation was 

solved for the first time in [11]. 

This work is devoted to establish the theoretical partial foundations of neutrosophic number theory 

to deal with properties of neutrosophic integers. We aim to close an important research gap by 

determining algorithms and conditions for division, congruencies, neutrosophic Pell's equation, 

and Euler's function and theorem in Z(I). 

Preliminaries 

Definition 2.1: [1] 

Let 𝑅 be any ring, I be an indeterminacy with the property 𝐼2 = 𝐼. Then 𝑅(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅} is 

called a neutrosophic ring. 

If 𝑅 = 𝑍 is the ring of integers, then 𝑍(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍} is called the neutrosophic ring of 

integers. Elements of 𝑍(𝐼) are called neutrosophic integers. 

Remark: The notion of indeterminacy I was proposed by Smarandache and Kandasamy in [8] as an 

algebraic element instead of logical meaning. We deal with it by using its multiplicative property 

𝐼2 = 𝐼 , which helps in the building of neutrosophic algebraic structures. 

Definition 2.2: [10] 

Pell's equation is the Diophantine equation with form 𝑋2 − 𝐷𝑌2 = 𝑁; where 𝐷, 𝑁 ∈ 𝑍. 

Theorem 2.3: [10] 

If the equation 𝑋2 − 𝐷𝑌2 = 1 has a solution, then 𝐷 > 0 and 𝐷 is square free. 

Theorem 2.4: [10] 

𝑍[√𝑑1] is an integral domain, where 𝑑1 is a square free integer.

 Theorem 2.5: [9] 

Let Z(I)= {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍} the neutrosophic ring of integers. Then primes in Z(I) have one of the 

following forms: 

 𝑥 = ±𝑝 + (±1 ± 𝑝)𝐼 𝑜𝑟 𝑥 = ±1 + (±𝑝 ± 1)𝐼; 𝑝 𝑖𝑠 𝑎𝑛𝑦 𝑝𝑟𝑖𝑚𝑒 𝑖𝑛 𝑍. 

Definition 2.6: [19] 

Let 𝑅(𝐼) = {𝑎 + 𝑏𝐼;  𝑎, 𝑏 ∈ 𝑅} be the real neutrosophic field, we say that 𝑎 + 𝑏𝐼 ≤ 𝑐 + 𝑑𝐼 if and only 

if 𝑎 ≤ 𝑐 𝑎𝑛𝑑 𝑎 + 𝑏 ≤ 𝑐 + 𝑑. 
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Theorem 2.7: [19] 

The relation defined in Definition 2.6 is a partial order relation. 

Remark 2.8: [19] 

According to Theorem 2.7, we are able to define positive neutrosophic real numbers as follows: 

𝑎 + 𝑏𝐼 ≥ 0 = 0 + 0. 𝐼 implies that 𝑎 ≥ 0, 𝑎 + 𝑏 ≥ 0. 

Absolute value on R(I) can be defined as follows: 

|𝑎 + 𝑏𝐼| = |𝑎| + 𝐼[|𝑎 + 𝑏| − |𝑎|], we can see that |𝑎 + 𝑏𝐼| ≥ 0. 

Example 2.9: [19] 

𝑥 = 2 − 𝐼 is a neutrosophic positive real number, since 2 ≥ 0 𝑎𝑛𝑑 (2 − 1) = 1 ≥ 0. 

2 + 𝐼 ≥ 2, that is because 2 ≥ 2 𝑎𝑛𝑑 (2 + 1) = 3 ≥ (2 + 0) = 2. 

3. Number Theory in 𝒁(𝑰)

Definition 3.1: (Division) 

Let 𝑍(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍} the neutrosophic ring of integers. For any 𝑥, 𝑦 ∈ 𝑍(𝐼), we say that 𝑥|𝑦 

if there is 𝑟 ∈ 𝑍(𝐼); 𝑟. 𝑥 = 𝑦. 

Theorem 3.2: (Form of division in Z(I)) 

Let Z(I)= {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍} the neutrosophic ring of integers, 𝑥 = 𝑥1 + 𝑥2𝐼, 𝑦 = 𝑦1 + 𝑦2𝐼 be two 

arbitrary elements in Z(I). Then 𝑥|𝑦 if and only if 𝑥1|𝑦1 𝑎𝑛𝑑 𝑥1 + 𝑥2|𝑦1 + 𝑦2. 

Proof: 

Suppose that 𝑥|𝑦, hence there is 𝑟 = 𝑟1 + 𝑟2𝐼 ∈ 𝑍(𝐼); 𝑟. 𝑥 = 𝑦. This implies 

(I) 𝑟1𝑥1 = 𝑦1, i.e. 𝑥1|𝑦1. 

(𝐼𝐼) 𝑟1𝑥2 + 𝑟2𝑥1 + 𝑟2𝑥2 = 𝑦2. By adding (I) to (II) we get 

  𝑟1𝑥1 + 𝑟1𝑥2 + 𝑟2𝑥1 + 𝑟2𝑥2 = 𝑦1 + 𝑦2, this means that (𝑟1 + 𝑟2)(𝑥1 + 𝑥2) = 𝑦1 + 𝑦2. 

Thus 𝑥1 + 𝑥2|𝑦1 + 𝑦2. 

Conversely, assume that 𝑥1|𝑦1 𝑎𝑛𝑑 𝑥1 + 𝑥2|𝑦1 + 𝑦2, hence there is 𝑎, 𝑏 ∈ 𝑍 such that 𝑎𝑥1 =

𝑦1 𝑎𝑛𝑑 𝑏(𝑥1 + 𝑥2) = 𝑦1 + 𝑦2. We put 𝑟 = 𝑎 + (𝑏 − 𝑎)𝐼. 

It is easy to see that 𝑟. 𝑥 = 𝑦 and 𝑥|𝑦. 

Definition 3.3: (primes) 

Let Z(I)= {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍} the neutrosophic ring of integers. An arbitrary element 𝑥 ∈ 𝑍(𝐼) is 

called prime if 𝑥|𝑦. 𝑧 implies 𝑥|𝑦 𝑜𝑟 𝑥|𝑧. 
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Theorem 3.4: (Form of primes in Z(I)) 

This result was proved in [9].  

Let Z(I)= {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍} the neutrosophic ring of integers. Then primes in Z(I) have one of the 

following forms: 

 𝑥 = ±𝑝 + (±1 ± 𝑝)𝐼 𝑜𝑟 𝑥 = ±1 + (±𝑝 ± 1)𝐼; 𝑝 𝑖𝑠 𝑎𝑛𝑦 𝑝𝑟𝑖𝑚𝑒 𝑖𝑛 𝑍. 

Definition 3.5: (Congruence) 

(a) Let 𝑥 = 𝑎 + 𝑏𝐼, 𝑦 = 𝑐 + 𝑑𝐼, 𝑧 = 𝑚 + 𝑛𝐼 be three elements in Z(I). We say that 𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑧) if and 

only if 𝑧|𝑥 − 𝑦.  

(b) We say that 𝑧 = gcd (𝑥, 𝑦) if and only if 𝑧|𝑥 𝑎𝑛𝑑 𝑧|𝑦 and for each divisor 𝑐|𝑥 𝑎𝑛𝑑 𝑐|𝑦, then 𝑐|𝑧. 

𝑥, 𝑦 are called relatively prime in Z(I) if and only if gcd(𝑥, 𝑦) = 1.  

Theorem 3.6: (Form of congruencies in Z(I)) 

Let 𝑥 = 𝑎 + 𝑏𝐼, 𝑦 = 𝑐 + 𝑑𝐼, 𝑧 = 𝑚 + 𝑛𝐼 be three elements in Z(I). Then 𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑧) if and only if 

𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑚), 𝑎 + 𝑏 ≡ 𝑐 + 𝑑(𝑚𝑜𝑑 𝑚 + 𝑛). 

Proof: 

We suppose that 𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑧), hence 𝑧|𝑥 − 𝑦, i.e. 𝑚 + 𝑛𝐼|(𝑎 − 𝑐) + (𝑏 − 𝑑)𝐼. This implies 

𝑚|𝑎 − 𝑐 𝑎𝑛𝑑 𝑚 + 𝑛|(𝑎 + 𝑏) − (𝑐 + 𝑑), thus 𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑚), 𝑎 + 𝑏 ≡ 𝑐 + 𝑑(𝑚𝑜𝑑 𝑚 + 𝑛). 

Conversely, we suppose that 𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑚), 𝑎 + 𝑏 ≡ 𝑐 + 𝑑(𝑚𝑜𝑑 𝑚 + 𝑛), hence 

𝑚|𝑎 − 𝑐 𝑎𝑛𝑑 𝑚 + 𝑛|(𝑎 + 𝑏) − (𝑐 + 𝑑), this implies that 𝑚 + 𝑛𝐼|(𝑎 − 𝑐) + (𝑏 − 𝑑)𝐼, i.e. 

 𝑧|𝑥 − 𝑦, which means that 𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑧). 

Theorem 3.7: 

Let 𝑥 = 𝑎 + 𝑏𝐼, 𝑦 = 𝑐 + 𝑑𝐼, 𝑧 = 𝑚 + 𝑛𝐼 be three elements in Z(I). Then 

𝑧 = gcd (𝑥, 𝑦) if 𝑚 = gcd(𝑎, 𝑐) 𝑎𝑛𝑑 𝑚 + 𝑛 = gcd (𝑎 + 𝑏, 𝑐 + 𝑑). 

Proof: 

Consider 𝑧 = 𝑚 + 𝑛𝐼, where 𝑚 = gcd(𝑎, 𝑐) 𝑎𝑛𝑑 𝑚 + 𝑛 = gcd (𝑎 + 𝑏, 𝑐 + 𝑑). 

It is easy to check that 𝑧|𝑥 𝑎𝑛𝑑 𝑧|𝑦, that is because 𝑚 = gcd(𝑎, 𝑐) |𝑎, 𝑚 = gcd(𝑎, 𝑐) |𝑐, and 

𝑚 + 𝑛 = gcd(𝑎 + 𝑏, 𝑐 + 𝑑) |𝑎 + 𝑏, 𝑚 + 𝑛 = gcd (𝑎 + 𝑏, 𝑐 + 𝑑)|𝑐 + 𝑑. On the other hand, we assume 

that 𝑙 = 𝑓 + 𝑔𝐼 is a common divisor of 𝑥 and 𝑦. We shall prove that 𝑙|𝑧. 

Since 𝑙 is a common divisor, then we have 𝑓|𝑎 𝑎𝑛𝑑 𝑓|𝑐, hence 𝑓| gcd(𝑎, 𝑐) = 𝑚. Also, we have 
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𝑓 + 𝑔|𝑎 + 𝑏 𝑎𝑛𝑑 𝑓 + 𝑔|𝑐 + 𝑑, hence 𝑓 + 𝑔| gcd(𝑎 + 𝑏, 𝑐 + 𝑑) = 𝑚 + 𝑛. This implies that 

𝑙|𝑧, and 𝑧 = gcd (𝑥, 𝑦). 

Example 3.8: 

(a) 3 + 5𝐼 ≡ (1 + 3𝐼)(𝑚𝑜𝑑 2 + 2𝐼). This is because 3 ≡ 1(𝑚𝑜𝑑 2), 3 + 5 = 8 ≡ 1 + 3 = 4(𝑚𝑜𝑑4). 

(b) gcd(3 + 5𝐼, 1 + 3𝐼) = 1 + 3𝐼, that is because gcd(3,1) = 1 = 𝑚, gcd(3 + 5,1 + 3) = gcd(8,4) = 4 =

𝑚 + 𝑛, thus 𝑚 + 𝑛𝐼 = 1 + 3𝐼 = gcd(3 + 5𝐼, 1 + 3𝐼). 

Theorem 3.9: (Euclidian division theorem in Z(I)) 

Let Z(I) be the neutrosophic ring of integers, 𝑥 = 𝑎 + 𝑏𝐼, 𝑦 = 𝑐 + 𝑑𝐼 be two arbitrary elements in 

Z(I). There are two elements 𝑞 = 𝑠 + 𝑡𝐼, 𝑟 = 𝑚 + 𝑛𝐼 such that 𝑥 = 𝑞. 𝑦 + 𝑟. 

Proof: 

This proof is different from the proof which was introduced in [9]. 

By the division theorem in Z, we can find the following integers: 

𝑞1, 𝑞2, 𝑟1, 𝑟2: 𝑎 = 𝑞1𝑐 + 𝑟1, 𝑎𝑛𝑑 𝑎 + 𝑏 = (𝑐 + 𝑑)𝑞2 + 𝑟2. By putting 𝑠 = 𝑞1, 𝑡 = (𝑞2 − 𝑞1), 𝑚 = 𝑟1, 𝑛 =

(𝑟2 − 𝑟1), we find that 𝑥 = 𝑞. 𝑦 + 𝑟. 

Example 3.10: 

 Consider the following neutrosophic integers 𝑥 = 5 + 4𝐼, 𝑦 = 3 + 𝐼. There are 𝑞 = 1 + 𝐼, 𝑟 = 2 − 𝐼 

such that 𝑥 = 𝑞. 𝑦 + 𝑟.  

Remark 3.11: (Solvability of a linear congruence in Z(I)) 

To solve a linear congruence 𝑥 + 𝑦𝐼 ≡ 𝑎 + 𝑏𝐼(𝑚𝑜𝑑 𝑚 + 𝑛𝐼). We should take its equivalent 

congruencies according to Theorem 3.6: 

𝑥 ≡ 𝑎(𝑚𝑜𝑑 𝑚), 𝑎𝑛𝑑 𝑥 + 𝑦 ≡ (𝑎 + 𝑏)(𝑚𝑜𝑑 𝑚 + 𝑛). We solve the equivalent system, and compute 𝑥, 𝑦. 

Example 3.12: 

Consider the following neutrosophic linear congruence (*) 𝑥 + 𝑦𝐼 ≡ 1 + 7𝐼(𝑚𝑜𝑑 4 + 𝐼). Its 

equivalent system is: 

(a) 𝑥 ≡ 1(𝑚𝑜𝑑 4). (It has a solution 𝑥 = 1). 

(𝑏)𝑥 + 𝑦 ≡ 8(𝑚𝑜𝑑 5). (It has a solution 𝑥 + 𝑦 = 3, ℎ𝑒𝑛𝑐𝑒 𝑦 = 2. This means that 1 + 2𝐼 is a solution 

of the neutrosophic congruence (*). 

We can see that 4 + 𝐼|(1 + 2𝐼) − (1 + 7𝐼), that is because (4 + 𝐼)(−𝐼) = −5𝐼.  
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Definition 3.14: (Euler's function in Z(I)) 

We define the neutrosophic Euler's function on Z(I) as follows: 

𝜑(𝑎 + 𝑏𝐼) = |{𝑥 = 𝑐 + 𝑑𝐼; gcd(𝑐 + 𝑑𝐼, 𝑎 + 𝑏𝐼) = 1}|, 𝑤ℎ𝑒𝑟𝑒 𝑐 + 𝑑𝐼 ≤ 𝑎 + 𝑏𝐼. 

Theorem 3.15: (Euler's Theorem in Z(I)) 

(a) Let 𝑥 = 𝑎 + 𝑏𝐼 be any element in Z(I), then 𝜑(𝑥) = 𝜑(𝑎) × 𝜑(𝑏 + 𝑎). 

(b) If 𝑦 = 𝑐 + 𝑑𝐼 is a neutrosophic integer with gcd(𝑥, 𝑦) = 1, hence 𝑦𝜑(𝑥) ≡ 1(𝑚𝑜𝑑 𝑥). 

(neutrosophic Euler's Theorem). 

Proof: 

(a) Let 𝑦 = 𝑐 + 𝑑𝐼 be any neutrosophic integer with, 𝑐 + 𝑑𝐼 ≤ 𝑎 + 𝑏𝐼, 𝑎𝑛𝑑 gcd(𝑥, 𝑦) = 1. We can see 

by Theorem 3.7 that 

gcd(𝑎, 𝑐) = 1, gcd(𝑎 + 𝑏, 𝑐 + 𝑑) = 1, i.e. (𝑎, 𝑐) are relatively prime and (𝑎 + 𝑏, 𝑐 + 𝑑) are relatively 

prime,  hence we get that 𝜑(𝑥) = 𝜑(𝑎) × 𝜑(𝑏 + 𝑎). 

(b) By classical Euler's Theorem, we have 𝑐𝜑(𝑎) ≡ 1(𝑚𝑜𝑑 𝑎), 𝑎𝑛𝑑 (𝑐 + 𝑑)𝜑(𝑎+𝑏) ≡ 1(𝑚𝑜𝑑 𝑎 + 𝑏), that 

is because gcd(𝑎, 𝑐) = gcd(𝑎 + 𝑏, 𝑐 + 𝑑) = 1 under the assumption of gcd(𝑥, 𝑦) = 1. Now, we can 

write 𝑐𝜑(𝑎)×𝜑(𝑏+𝑎) = 𝑐𝜑(𝑥) ≡ 1(𝑚𝑜𝑑 𝑎), (𝑐 + 𝑑)𝜑(𝑎)×𝜑(𝑏+𝑎) = (𝑐 + 𝑑)𝜑(𝑥) ≡ 1(𝑚𝑜𝑑 𝑎 + 𝑏). 

Now, we compute 

𝑦𝜑(𝑥) = (𝑐 + 𝑑𝐼)𝜑(𝑥) = 𝑐𝜑(𝑥) + 𝐼[∑ (
𝜑(𝑥)

𝑖
)𝑐𝜑(𝑥)−𝑖𝑑𝑖]

𝜑(𝑥)
𝑖=1 = 𝑐𝜑(𝑥) + 𝐼[(𝑐 + 𝑑)𝜑(𝑥) − 𝑐𝜑(𝑥)] = 𝑚 + 𝑛𝐼.

We remark that 𝑚 = 𝑐𝜑(𝑥) ≡ 1(𝑚𝑜𝑑 𝑎), 𝑚 + 𝑛 = (𝑐 + 𝑑)𝜑(𝑥) ≡ 1(𝑚𝑜𝑑 𝑎 + 𝑏), this implies that 

𝑦𝜑(𝑥) = 𝑚 + 𝑛𝐼 ≡ 1(𝑚𝑜𝑑 𝑎 + 𝑏𝐼), according to Theorem 3.6. 

The previous theorem will open a new door in the study of neutrosophic number theory, since it 

clarifies that Euler's famous theorem is still true in the case of neutrosophic integers. 

Remark 3.16: (Solving a congruence linear system in Z(I)) 

To solve a linear system of congruencies in Z(I), we can solve the corresponding equivalent system 

in 𝑍. 

Example 3.17: 

Consider the following linear system of congruencies in Z(I). 

2𝑥 + (3𝑦 − 2𝑥)𝐼 ≡ 3 + 𝐼(𝑚𝑜𝑑 7 + 4𝐼), 4𝑥 + (𝑦 − 4𝑥)𝐼 ≡ 7 − 5𝐼(𝑚𝑜𝑑 13 − 10𝐼), we aim to find 𝑥, 𝑦. 

The corresponding linear system  in 𝑍 according to Theorem 3.6 is 
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2𝑥 ≡ 3(𝑚𝑜𝑑7), 3𝑦 ≡ 4(𝑚𝑜𝑑 11), 4𝑥 ≡ 7(𝑚𝑜𝑑 13), 𝑦 ≡ 2(𝑚𝑜𝑑3), it has a solution 𝑥 = 𝑦 = 5. 

Thus the neutrosophic congruence in Z(I) has a solution 10 + 5𝐼, 20 − 15𝐼. 

4. Neutrosophic Pell's equation

Definition 4.1: 

Let 𝑍(𝐼) = {𝑎 + 𝑏𝐼;  𝑎, 𝑏 ∈ 𝑍} be the neutrosophic ring of integers. The neutrosophic Pell's Equation 

in Z(I) is defined as follows: 

𝑋2 − 𝐷𝑌2 = 𝐶; 𝑋, 𝑌, 𝐷, 𝐶 ∈ 𝑍(𝐼). 

We show the sufficient condition for solvability of neutrosophic Pell's equation. 

Theorem 4.2: 

Let 𝑍(𝐼) = {𝑎 + 𝑏𝐼;  𝑎, 𝑏 ∈ 𝑍} be the neutrosophic ring of integers,(*) 𝑋2 − 𝐷𝑌2 = 𝐶; 𝑋, 𝑌, 𝐷, 𝐶 ∈ 𝑍(𝐼) 

be a neutrosophic Pell's equation with 𝑋 = 𝑥1 + 𝑥2𝐼, 𝑌 = 𝑦1 + 𝑦2𝐼, 𝐷 = 𝑑1 + 𝑑2𝐼, 𝐶 = 𝑐1 + 𝑐2𝐼. This 

equation is equivalent to the following two classical Pell's equations: 

(a) 𝑥1
2 − 𝑑1𝑦1

2 = 𝑐1.

(b) (𝑥1 + 𝑥2)2 − (𝑑1 + 𝑑2)(𝑦1 + 𝑦2)2 = 𝑐1 + 𝑐2.

Proof: 

It is sufficient to prove that equation (*) implies (a), (b). 

By computing (*), we get 

(𝑥1 + 𝑥2𝐼)2 − (𝑑1 + 𝑑2𝐼)(𝑦1 + 𝑦2𝐼)2 = 𝑐1 + 𝑐2𝐼, this implies

[𝑥1
2 − 𝑑1𝑦1

2] + 𝐼[2𝑥1𝑥2 + 𝑥2
2 − 𝑑1𝑦2

2 − 𝑑2𝑦1
2 − 2𝑑1𝑦1𝑦2 − 2𝑑2𝑦1𝑦2 − 𝑑2𝑦1

2 − 𝑑2𝑦2
2 − 2𝑑1𝑑2𝑦1

2 −

2𝑑1𝑑2𝑦1𝑦2 − 2𝑑1𝑑2𝑦2
2] = 𝑐1 + 𝑐2𝐼, thus

𝑥1
2 − 𝑑1𝑦1

2 = c1. (Equation (a)), and

(**) 2𝑥1𝑥2 + 𝑥2
2 − 𝑑1𝑦2

2 − 𝑑2𝑦1
2 − 2𝑑1𝑦1𝑦2 − 2𝑑2𝑦1𝑦2 − 𝑑2𝑦1

2 − 𝑑2𝑦2
2 − 2𝑑1𝑑2𝑦1

2 − 2𝑑1𝑑2𝑦1𝑦2 −

2𝑑1𝑑2𝑦2
2 = 𝑐2, by adding equation (a) to (**), we get

𝑥1
2 − 𝑑1𝑦1

2 + 2𝑥1𝑥2 + 𝑥2
2 − 𝑑1𝑦2

2 − 𝑑2𝑦1
2 − 2𝑑1𝑦1𝑦2 − 2𝑑2𝑦1𝑦2 − 𝑑2𝑦1

2 − 𝑑2𝑦2
2 − 2𝑑1𝑑2𝑦1

2 −

2𝑑1𝑑2𝑦1𝑦2 − 2𝑑1𝑑2𝑦2
2 = 𝑐1 + 𝑐2, hence

(𝑥1 + 𝑥2)2 − (𝑑1 + 𝑑2)(𝑦1 + 𝑦2)2 = 𝑐1 + 𝑐2. (Equation (b)).

Remark 4.3: 

To solve the neutrosophic Pell's equation 𝑋2 − 𝐷𝑌2 = 𝐶, follow these steps 

1) Solve 𝑥1
2 − 𝑑1𝑦1

2 = 𝑐1, if it is possible.
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2) Solve (𝑥1 + 𝑥2)2 − (𝑑1 + 𝑑2)(𝑦1 + 𝑦2)2 = 𝑐1 + 𝑐2, if it is possible.

3) Compute 𝑥2, 𝑦2.

We study some special neutrosophic Pell's equations. 

Theorem 4.4: 

If the neutrosophic Pell's equation 𝑋2 − 𝐷𝑌2 = 1 has non trivial solutions, then 

𝑑1 > 0, 𝑑1 + 𝑑2 > 0, and 𝑑1, 𝑑1 + 𝑑2 are square free.

Proof: 

According to Theorem 4.2, the equation 𝑋2 − 𝐷𝑌2 = 1 is equivalent to 

(a) 𝑥1
2 − 𝑑1𝑦1

2 = 1.

(b) (𝑥1 + 𝑥2)2 − (𝑑1 + 𝑑2)(𝑦1 + 𝑦2)2 = 1.

By Theorem , thus (a), (b) have non trivial solutions. By Theorem 2.3 , we find that 𝑑1 > 0, 𝑑1 + 𝑑2 >

0, and 𝑑1, 𝑑1 + 𝑑2 are square free. 

Example 4.5: 

The equation 𝑋2 − (2 + 3𝐼)𝑌2 = 1 has non trivial solution, that is because: 

The equivalent system is: (a) 𝑥1
2 − 2𝑦1

2 = 1, (b) (𝑥1 + 𝑥2)2 − 5(𝑦1 + 𝑦2)2 = 1.

Equation (a) has a solution 𝑥1 = 3, 𝑦1 = 2. Equation (b) has a solution 𝑥1 + 𝑥2 = 9, 𝑦1 + 𝑦2 = 4, thus 

𝑥2 = 9 − 𝑥1 = 6, 𝑦2 = 4 − 𝑦1 = 2. So 𝑋 = 3 + 6𝐼, 𝑌 = 2 + 2𝐼. We can see easily that 2 > 0,2 + 3 = 5 >

0, 𝑎𝑛𝑑 2,2 + 3 = 5 are square free. 

Example 4.6: 

Let 𝑋2 − (3 − 𝐼)𝑌2 = −3 + 𝐼 be a neutrosophic Pell's equation. Its equivalent system is 

𝑥1
2 − 3𝑦1

2 = −3, (𝑥1 + 𝑥2)2 − (2)(𝑦1 + 𝑦2)2 = −2. The first equation has the solution

𝑥1 = 3, 𝑦1 = 2, the second one has the solution 

𝑥1 + 𝑥2 = 4, 𝑦1 + 𝑦2 = 3, thus 𝑥2 = 1, 𝑦2 = 1. We find that 𝑋 = 3 + 𝐼, 𝑌 = 2 + 𝐼 is a solution of 𝑋2 −

(3 − 𝐼)𝑌2 = −3 + 𝐼. 

Theorem 4.7: 

If the Pell's equation 𝑥1
2 − 𝑑1𝑦1

2 = 𝑐1;  𝑑1, 𝑐1 ∈ 𝑍 has 𝑚 solutions exactly. Then the neutrosophic

Pell's equation 
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𝑋2 − 𝑑1𝑌2 = 𝑐1; 𝑋 = 𝑥1 + 𝑥2𝐼, 𝑌 = 𝑦1 + 𝑦2𝐼 has exactly 𝑚2 solutions.

Proof: 

𝑋2 − 𝑑1𝑌2 = 𝑐1 is equivalent to the system:

(a) 𝑥1
2 − 𝑑1𝑦1

2 = 𝑐1.

(b) (𝑥1 + 𝑥2)2 − 𝑑1(𝑦1 + 𝑦2)2 = 𝑐1.

We can see that (a), (b) are the same Pell's equation, thus each one has m solutions. Hence we have 

for each value of 𝑥1, (m) corresponding values of 𝑥2, and we get the same thing for 𝑦1, 𝑦2. Thus we 

have  exactly 𝑚2 solutions for equation  𝑋2 − 𝑑1𝑌2 = 𝑐1.

Theorem 4.8: 

If the neutrosophic Pell's equation 𝑋2 − 𝐷𝑦2 = 𝐶; 𝐷 = 𝑎 − 𝑎𝐼 ; 𝑎 ∈ 𝑍 is solvable, then 𝑐1 + 𝑐2 is a

square. 

Proof: 

Suppose that 𝑋2 − 𝐷𝑦2 = 𝐶 has a solution 𝑋 = 𝑥1 + 𝑥2𝐼, 𝑌 = 𝑦1 + 𝑦2𝐼, then

𝑥1
2 − 𝑎𝑦1

2 = 𝑐1, (𝑥1 + 𝑥2)2 − (𝑎 − 𝑎)(𝑦1 + 𝑦2)2 = 𝑐1 + 𝑐2 are solvable equations, thus

(𝑥1 + 𝑥2)2 = 𝑐1 + 𝑐2, and  𝑐1 + 𝑐2 is a square.

Theorem 4.9: 

If the neutrosophic Pell's equation 𝑋2 − 𝐷𝑦2 = 𝐶; 𝐷 = 𝑎𝐼; 𝑎 ∈ 𝑍 is solvable, then 𝑐1 is a square.

Proof: 

Suppose that 𝑋2 − 𝐷𝑦2 = 𝐶 has a solution 𝑋 = 𝑥1 + 𝑥2𝐼, 𝑌 = 𝑦1 + 𝑦2𝐼, then

𝑥1
2 − 0. 𝑦1

2 = 𝑐1, (𝑥1 + 𝑥2)2 − (𝑎)(𝑦1 + 𝑦2)2 = 𝑐1 + 𝑐2 are solvable equations, thus

x1
2 = c1, and 𝑐1 is a square.

Remark 4.10: 

If the neutrosophic Pell's equation 𝑋2 − 𝐷𝑦2 = 𝐶; 𝐷 = 𝑎𝐼; 𝑎 ∈ 𝑍 is solvable, then it has an infinite 

number of solutions. This is because 𝑥1 = ±√𝑐1 and (𝑦1 + 𝑦2)2 is constant, i.e there is an infinite

number of possible solutions. For every value of 𝑦1, there is a single related value of 𝑦2. 

Example 4.11: 

Consider the following neutrosophic Pell's equation 𝑋2 − 𝐼𝑌2 = 1 + 4𝐼, the equivalent system is 
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𝑥1
2 = 1, (𝑥1 + 𝑥2)2 − (𝑦1 + 𝑦2)2 = 5. It has a solution 𝑥1 = 1, 𝑥2 = 2, 𝑦1 + 𝑦2 = 2.

We can see that the solutions of  𝑋2 − 𝐼𝑌2 = 1 + 4𝐼 are: 

𝑋 = 1 + 2𝐼 𝑜𝑟 𝑋 = −1 + 4𝐼, 𝑌 = 𝑦1 + (2 − 𝑦1)𝐼.

Theorem 4.12: 

Let 𝑥1
2 − 𝑑1𝑦1

2 = 𝑐1, 𝑥2
2 − 𝑑2𝑦2

2 = 𝑐2 be two classical Pell's equations. They can be transformed

into one corresponding neutrosophic Pell's equation (*) 𝑋2 − 𝐷𝑌2 = 𝐶; 𝑋 = 𝑥1 + (𝑥2 − 𝑥1)𝐼, 𝑌 =

𝑦1 + (𝑦2 − 𝑦1)𝐼, 

𝐷 = 𝑑1 + (𝑑2 − 𝑑1)𝐼, 𝐶 = 𝑐1 + (𝑐2 − 𝑐1)𝐼. 

Proof: 

The proof holds directly by easy computing of equation (*). 

Example 4.13: 

Let 𝑥1
2 − 2𝑦1

2 = 1, 𝑥2
2 − 3𝑦2

2 = 5 be two Pell's equations. The corresponding neutrosophic Pell's

equation is [𝑥1 + (𝑥2 − 𝑥1)𝐼]2 − (2 + 𝐼)[𝑦1 + (𝑦2 − 𝑦1)𝐼]2 = 1 + 4𝐼.

Theorem 4.14: 

The neutrosophic Pell's equation (*) 𝑋2 − 𝐷𝑌2 = 𝑎𝐼; (𝑑1 is a positive integer and square free) has

solutions if and only if the equation 

𝑥2
2 − (𝑑1 + 𝑑2)𝑦2

2 = 𝑎 has solutions. Its solution has the form 𝑋 = 𝑥2𝐼, 𝑌 = 𝑦2𝐼.

Proof: 

The equivalent system of (*) is: 

(a) 𝑥1
2 − 𝑑1𝑦1

2 = 0.

(b) (𝑥1 + 𝑥2)2 − (𝑑1 + 𝑑2)(𝑦1 + 𝑦2)2 = 𝑎.

Equation (a) has only the zero solution, that is because 𝑍[√𝑑1] is an integral domain, thus 𝑥1 =

𝑦1 = 0. 

Equation (b) becomes 𝑥2
2 − (𝑑1 + 𝑑2)𝑦2

2 = 𝑎. Hence (*) has solutions if and only if (b) has 

solutions. 

The solutions of (*) have the property 𝑥1 = 𝑦1 = 0, so they have the form 𝑋 = 𝑥2𝐼, 𝑌 = 𝑦2𝐼. 

4. Conclusions



Neutrosophic Sets and Systems, Vol. 39, 2021 130

Mohammad Abobala, Partial Foundation of Neutrosophic Number Theory 

In this article, we have established the partial basic theory of neutrosophic numbers. Concepts such 

as division, relatively primes, congruencies, and Pell's equation were discussed and handled in the 

case of neutrosophic integers. Also, we have proved that Euler's famous theorem is still true in Z(I). 

This work can be considered as a primary step in the study of neutrosophic number theory, we aim 

that it will be very effective in the study of neutrosophic integers. 

We want to refer that we obtained our results about Euler's theorem under a partial order relation on 

neutrosophic integers. 

As a future research direction, we aim to find a total order relation and to check Euler's theorem 

under it.  
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