

Pairwise Neutrosophic *b*-Continuous Function in Neutrosophic

Bitopological Spaces

Binod Chandra Tripathy¹ and Suman Das^{2,*}

^{1,2}Department of Mathematics, Tripura University, Agartala, 799022, Tripura, India. E-mail:¹tripathybc@gmail.com, tripathybc@yahoo.com and ²sumandas18842@gmail.com, suman.mathematics@tripurauniv.in

*Correspondence: sumandas18842@gmail.com

Abstract: The main focus of this article is to procure notions of pairwise neutrosophic continuous and pairwise neutrosophic *b*-continuous mappings in neutrosophic bitopological spaces. Then, we formulate some results on them via neutrosophic bitopological spaces.

Keywords: Neutrosophic Topology; Neutrosophic Bitopology; Pairwise Neutrosophic*b*-Interior; Pairwise Neutrosophic *b*-Closure; Pairwise Neutrosophic Continuous.

1. Introduction

Zadeh [31] presented the notions of fuzzy set (in short FS) in the year 1965. Afterwards, Chang [4] applied the idea of topology on fuzzy sets and introduced the fuzzy topological space. In the year 2017, Dutta and Tripathy [15] studied on fuzzy b- θ open sets via fuzzy topological space. Later on, Smarandache [23] grounded the idea of neutrosophic set (in short N-set) in the year 1998, as anextension of the concept of intuitionistic fuzzy set (in short IF-set) [3], where every element has threeindependent memberships values namely truth, indeterminacy, and false membership values respectively. Afterwards, Salama and Alblowi [21] applied the notions of topology on N-sets and introduced neutrosophic topological space (in short NT-space) by extending the notions of fuzzy topological spaces. Salama and Alblowi [22] also defined generalized N-set and introduced the concept of generalized NT-space. Later on, Arokiarani et al. [2] introduced the ideas of neutrosophic point and studied some functions in neutrosophic topological spaces. The notions of neutrosophic pre-open (in short NP-O) and neutrosophic pre-closed (in short NP-C) sets via NT-spaces are studied by Rao and Srinivasa [20]. The idea of *b*-open sets via topological spaces was established by Andrijevic [1]. Afterwards, Ebenanjar et al. [16] presents the concept of neutrosophic b-open set (in short N-b-O-set) via NT-spaces. In the year 2020, Das and Pramanik [8] presents the generalized neutrosophic *b*-open sets in NT-spaces. The notions of neutrosophic Φ -open set and neutrosophic Φ -continuous functions via NT-spaces was also presented by Das and Pramanik [9]. The concept of neutrosophic simply soft open set in neutrosophic soft topological space was studied by Das and Pramanik [10]. In the year 2021, Das and Tripathy [14] presented the notions of neutrosophic simply *b*-open set via NT-spaces. In the year 2020, Das and Tripathy [12] grounded the notions of neutrosophic multiset and applied topology on it. In the year 2021, Das et al. [5] studied the concept of quadripartitioned neutrosophic topological spaces. The notion of bitopological space was introduced by Kelly [17] in the year 1963. In the year 2011, Tripathy and Sarma [26] studied on *b*-locally open sets via bitopological spaces. The idea of pairwise *b*-locally

open and *b*-locally closed functions in bitopological spaces was studied by Tripathy and Sarma [27]. Tripathy and Sarma [28] also studied on weakly *b*-continuous mapping via bitopological spaces in the year 2013. Later on, the concept of generalized *b*-closed sets in ideal bitopological spaces was studied by Tripathy and Sarma [29]. Afterwards, Tripathy and Debnath [25] presented the notions of fuzzy *b*-locally open sets in fuzzy bitopological space. Thereafter, Ozturk and Ozkan [19] introduced the idea of neutrosophic bitopological space (in short NBi-T-space) in the year 2019. Recently, Das and Tripathy [13] presented the idea of pairwise N-*b*-O-sets and studied their different properties.

The main focus of this article is to procure the notions of pairwise τ_{ij} -neutrosophic-*b*-interior (in short P- τ_{ij} - N_{b-int}), pairwise τ_{ij} -neutrosophic-*b*-closure (in short P- τ_{ij} - N_{b-cl}), pairwise neutrosophic continuous mapping (in short P-N-C-mapping), pairwise neutrosophic *b*-continuous mapping (in short pairwise N-*b*C-mapping) via NBi-T-spaces.

2. Preliminaries and Definitions:

The notion of N-set is defined as follows:

```
Let X be a fixed set. Then, an N-set [23] L over X is denoted as follows:
```

 $L=\{(t,T_L(t),I_L(t),F_L(t)):t\in X\}$, where T_L , I_L , $F_L:X\rightarrow[0,1]$ are called the truth-membership, indeterminacy-membership and false-membership functions and $0 \leq T_L(t) + I_L(t) \leq 3$, for all $t\in X$.

The neutrosophic null set (0_N) and neutrosophic whole set (1_N) over a fixed set *X* are defined as follows:

(*i*) $0_N = \{(t,0,0,1): t \in X\};$

(*ii*) $1_N = \{(t, 1, 0, 0): t \in X\}.$

The N-sets 0_N and 1_N also has three other representations. They are given below:

 $\begin{aligned} &0_{N}=\{(t,0,0,0): t\in X\} \& 1_{N}=\{(t,1,1,1): t\in X\};\\ &0_{N}=\{(t,0,1,0): t\in X\} \& 1_{N}=\{(t,1,0,1): t\in X\};\\ &0_{N}=\{(t,0,1,1): t\in X\} \& 1_{N}=\{(t,1,1,0): t\in X\}. \end{aligned}$

Let *p*, *q*, $r \in [0,1]$. An neutrosophic point (in short N-point) [2] $x_{p,q,r}$ is an N-set over X given by

$$x_{p.q.r}(y) = \begin{cases} (p,q,r), & \text{if } x = y, \\ (0,0,1), & \text{if } x \neq y, \end{cases}$$

where p, q, r denotes the truth, indeterminacy and false membership value of $x_{p,q,r}$.

The notion of NT-space is defined as follows:

A family τ of N-sets over X is called an [21] neutrosophic topology (in short N-topology) on X if the following axioms hold:

(*i*) 0_N , $1_N \in \tau$;

(*ii*) $L_1, L_2 \in \tau \Longrightarrow L_1 \cap L_2 \in \tau$;

(*iii*) $\cup L_i \in \tau$, for every { $L_i: i \in \Delta$ } $\subseteq \tau$, where Δ is the support set.

Then, (X,τ) is called an NT-space. Each element of τ is an neutrosophic open set (in short NO-set). If *L* is an NO-set in (X, τ) , then *L*^{*c*} is called an neutrosophic closed set (in short NC-set).

The notion of NBi-T-space is defined as follows:

Let τ_1 and τ_2 be two different N-topologies on *X*. Then, (X,τ_1,τ_2) is [19] called an NBi-T-space. An N-set *L* is called a pairwise NO-set in (X,τ_1,τ_2) , if there exist an NO-set L_1 in τ_1 and an NO-set L_2 in τ_2 such that $L=L_1\cup L_2$. The complement of *L* i.e., L^c is called a pairwise neutrosophic closed set (in short pairwise NC-set) in (X,τ_1,τ_2) .

Remark 2.1.[13] In an NBi-T-space(X, τ_1 , τ_2), every τ_i -NO-set is a pairwise τ_{ij} -NO-set.

Remark 2.2. Let *G* be an N-set over *X* and (X,τ_1,τ_2) be an NBi-T-space. Then, we shall use the following notations throughout the article:

(*i*) $N_{cl}^{i}(G)$ = Neutrosophic closure of *G* in (*X*, τ_i) (*i*=1, 2);

(*ii*) $N_{int}^i(G)$ = Neutrosophic interior of G in $(X,\tau_i)(i=1, 2)$.

Definition 2.1.[13] Let (X, τ1, τ2) be an NBi-T-space. Then, P is called a

(*i*) τ_i -neutrosophic semi-open set (in short τ_i -NSO-set) if and only if $P \subseteq N_{cl}^i N_{int}^i(P)$;

(*ii*) τ_i -neutrosophic pre-open set (in short τ_i -NPO-set) if and only if $P \subseteq N_{int}^i N_{cl}^i(P)$;

(*iii*) τ_i -neutrosophic *b*-open set (in short τ_i -N-*b*O-set) if and only if $P \subseteq N_{cl}^i N_{int}^i(P) \cup N_{int}^i N_{cl}^i(P)$.

Remark 2.3.[13] Let (X, τ_1, τ_2) be an NBi-T-space. Then, an N-set *P* over *X* is called a τ_i -neutrosophic *b*-closed set (in short τ_i -N-*b*C-set) if and only if *P*^{*c*} is a τ_i -N-*b*O-set.

Proposition 2.1.[13] In an NBi-T-space (X, τ_1 , τ_2), if P is τ_i -NSO-set (τ_i -NPO-set), then P is a τ_i -N-bO-set.

Proposition 2.2.[13] Let (X, τ_1, τ_2) be an NBi-T-space. Then, the union of any two τ_i -N-*b*O-sets is a τ_i -N-*b*O-set.

Definition 2.2.[13] Let (X, τ_1, τ_2) be an NBi-T-space. Then, *P* is called a

(*i*) τ_{ij} -neutrosophic semi-open set (in short τ_{ij} -NSO-set) if and only if $P \subseteq N_{cl}^i N_{int}^j(P)$;

(*ii*) τ_{ij} -neutrosophic pre-open set (in short τ_{ij} -NPO-set) if and only if $P \subseteq N_{int}^{j} N_{cl}^{i}(P)$;

(*iii*) τ_{ij} -neutrosophic *b*-open set (in short τ_{ij} -N-*b*-O-set) if and only if $P \subseteq N_{cl}^i N_{int}^j (P) \cup N_{int}^j N_{cl}^i (P)$.

Remark 2.4.[13] An N-set *L* over *X* is called a τ_{ij} -neutrosophic *b*-closed set (in short τ_{ij} -N-*b*C-set) if and only if *L*^{*c*} is a τ_{ij} -N-*b*O-set in (*X*, τ_1 , τ_2).

Theorem 2.1.[13] Let (X,τ_1,τ_2) be an NBi-T-space. Then, every τ_{ij} -NSO-set $(\tau_{ij}$ -NPO-set) is a τ_{ij} -N-bO-set.

Definition 2.3.[13] An N-set *L* is called a pairwise τ_{ij} -NPO-set (pairwise τ_{ij} -NSO-set) in an NBi-T-space(X,τ_1,τ_2) if $L=K\cup M$, where *K* is a τ_{ij} -NPO-set (τ_{ij} -NSO-set) and *M* is a τ_{ji} -NPO-set (τ_{ij} -NSO-set) in (X,τ_1,τ_2).

Definition 2.4.[13] An N-set *L* is called a pairwise τ_{ij} -N-*b*O-set in a NBi-T-space(X,τ_1,τ_2) if $L=K \cup M$, where *K* is a τ_{ij} -N-*b*O-set and *M* is a τ_{ji} -N-*b*O-set in (X,τ_1,τ_2). If *L* is a pairwise τ_{ij} -N-*b*O-set in (X,τ_1,τ_2), then L^c is called a pairwise τ_{ij} -neutrosophic-*b*-closed set (in short pairwise τ_{ij} -N-*b*C-set) in (X,τ_1,τ_2).

Lemma 2.1.[13] In an NBi-T-space(X, τ_1, τ_2), every pairwise τ_{ij} -NPO-set (pairwise τ_{ij} -NSO-set) is a pairwise τ_{ij} -N-bO-set.

Proposition 2.3.[13] Let(X, τ_1, τ_2) be an NBi-T-space. Then, the union of two pairwise τ_{ij} -N-bO-set in (X, τ_1, τ_2) is also a pairwise τ_{ij} -N-bO-set.

Theorem 2.2. Let (X, τ_1 , τ_2) be an NBi-T-space. Then, the union of two pairwise τ_{ij} -NSO-set in (X, τ_1 , τ_2) is also a pairwise τ_{ij} -NSO-set.

Binod Chandra Tripathy, Suman Das, Pairwise Neutrosophic b-Continuous Mapping in Neutrosophic Bitopological Spaces.

Proof. Let *L* and *M* be two pairwise τ_{ij} -NSO-sets in an NBi-T-space(X, τ_1, τ_2). So, one can write $L=L_1\cup L_2$ and $M=M_1\cup M_2$, where L_1 , M_1 are τ_{ij} -NSO-sets and L_2 , M_2 are τ_{ji} -NSO-sets in (X, τ_1, τ_2). Since, L_1 and M_1 are τ_{ij} -NSO-sets, so $L_1 \subseteq N_{cl}^i N_{int}^j (L_1)$ and $M_1 \subseteq N_{cl}^i N_{int}^j (M_1)$. Further, Since L_2 and M_2 are τ_{ji} -NSO-sets, so $L_2 \subseteq N_{cl}^j N_{int}^i (L_2)$, $M_2 \subseteq N_{cl}^j N_{int}^i (M_2)$.

Now, $L \cup M = (L_1 \cup L_2) \cup (M_1 \cup M_2) = (L_1 \cup M_1) \cup (L_2 \cup M_2).$

Therefore, $L_1 \cup M_1 \subseteq N_{cl}^i N_{int}^j (L_1) \cup N_{cl}^i N_{int}^j (M_1)$ = $N_{cl}^i (N_{int}^j (L_1) \cup N_{int}^j (M_1))$ $\subseteq N_{cl}^i N_{int}^j (L_1 \cup M_1).$

This implies, $L_1 \cup M_1$ is a τ_{ij} -NSO-set in (X, τ_1, τ_2).

Similarly, it can be established that $L_2 \cup M_2$ is a τ_{ji} -NSO-set in (X, τ_1, τ_2) . Therefore, $L \cup M$ is a pairwise τ_{ij} -NSO-set in (X, τ_1, τ_2) . Hence, the union of two pairwise τ_{ij} -NSO-set in (X, τ_1, τ_2) is again a pairwise τ_{ij} -NSO-set in (X, τ_1, τ_2) .

Theorem 2.4. Let (X, τ_1, τ_2) be an NBi-T-space. Then, the union of two pairwise τ_{ij} -NPO-set in (X, τ_1, τ_2) is a pairwise τ_{ij} -NPO-set.

Proof. Let *L* and *M* be two pairwise τ_{ij} -NPO-sets in an NBi-T-space(X, τ_1, τ_2). So, one can write $L=L_1\cup L_2$ and $M=M_1\cup M_2$, where L_1 , M_1 are τ_{ij} -NPO-sets and L_2 , M_2 are τ_{ji} -NPO-sets in (X, τ_1, τ_2). Since, L_1 and M_1 are τ_{ij} -NPO-sets, so $L_1 \subseteq N_{int}^j N_{cl}^i(L_1)$ and $M_1 \subseteq N_{int}^j N_{cl}^i(M_1)$. Further, since L_2 and M_2 are τ_{ji} -NPO-sets, so $L_2 \subseteq N_{int}^i N_{cl}^j(L_2)$ and $M_2 \subseteq N_{int}^i N_{cl}^j(M_2)$.

Now, $L \cup M = (L_1 \cup L_2) \cup (M_1 \cup M_2) = (L_1 \cup M_1) \cup (L_2 \cup M_2).$

Therefore, $L_1 \cup M_1 \subseteq N_{int}^j N_{cl}^i(L_1) \cup N_{int}^j N_{cl}^i(M_1)$ = $N_{int}^j (N_{cl}^i(L_1) \cup N_{cl}^i(M_1))$

$$= N_{int}^{j} (N_{cl}(L_1) \cup N_{cl}(M_1))$$
$$= N_{int}^{j} N_{cl}^{i} (L_1 \cup M_1).$$

This implies, $L_1 \cup M_1$ is a τ_{ij} -NPO-set in (X, τ_1, τ_2) . Similarly, it can be established that $L_2 \cup M_2$ is a τ_{ji} -NPO-set in (X, τ_1, τ_2) . Therefore, $L \cup M$ is a pairwise τ_{ij} -NPO-set in (X, τ_1, τ_2) . Hence, the union of two pairwise τ_{ij} -NPO-sets in (X, τ_1, τ_2) is again a pairwise τ_{ij} -NPO-set.

3. Pairwise *b*-Continuous Function:

In this section, we procure the notions of pairwise *b*-continuous functions via neutrosophic bitopological space and formulate some results on it.

Definition 3.1. Let (X,τ_1,τ_2) be an NBi-T-space. Then, the pairwise τ_{ij} -neutrosophic-*b*-interior (in short P- τ_{ij} - N_{b-int}) of an N-set *L* is the union of all pairwise τ_{ij} -N-*b*O-sets contained in *L*, i.e. P- τ_{ij} - $N_{b-int}(L)=\cup\{K:K \text{ is a pairwise } \tau_{ij}$ -N-*b*O-set in *X* and $K\subseteq L\}$.

Clearly, P- τ_{ij} -N_{b-int}(L) is the largest pairwise τ_{ij} -N-bO-set which contained in L.

Definition 3.2. Let (X,τ_1,τ_2) be an NBi-T-space. Then, the pairwise τ_{ij} -neutrosophic-*b*-closure (in short P- τ_{ij} - N_{b-cl}) of an N-set *L* is the intersection of all pairwise τ_{ij} -N-*b*C-sets containing *L*, i.e. P- τ_{ij} - $N_{b-cl}(L)= \cap \{K:K \text{ is a pairwise } \tau_{ij}$ -N-*b*C-set in *X* and $L \subseteq K\}$.

Clearly, P- τ_{ij} -N_{b-cl}(L) is the smallest pairwise τ_{ij} -N-bC-set which containing L.

Theorem 3.1. Let *L* and *K* be two neutrosophic subsets of an NBi-T-space (X, τ_1, τ_2) . Then,

(*i*) $P-\tau_{ij}-N_{b-int}(0_N)=0_N$, $P-\tau_{ij}-N_{b-int}(1_N)=1_N$;

(*ii*) P- τ_{ij} -Nb-int(L) \subseteq L;

(*iii*) $L \subseteq M \Rightarrow P - \tau_{ij} - N_{b-int}(L) \subseteq P - \tau_{ij} - N_{b-int}(M);$

(*iv*) P- τ_{ij} -N_{b-int}(L)=L if L is a pairwise τ_{ij} -N-bO-set.

Proof. (*i*) Straight forward.

(*ii*) By Definition 3.1, we have $P-\tau_{ij}-N_{b-int}(L)=\cup\{K:K \text{ is a pairwise } \tau_{ij}-N-bO-\text{set in } X \text{ and } K\subseteq L\}$. Since, each $K\subseteq L$, so $\cup\{K:K \text{ is a pairwise } \tau_{ij}-N-bO-\text{set in } X \text{ and } K\subseteq L\}\subseteq L$, i.e. $P-\tau_{ij}-N_{b-int}(L)\subseteq L$. Therefore, $P-\tau_{ij}-N_{b-int}(L)\subseteq L$.

(*iii*) Let *L* and *M* be two neutrosophic subset of an NBi-T-space (X, τ_1, τ_2) such that $L \subseteq M$.

Now, $P-\tau_{ij}-N_{b-int}(L)=\cup\{K:K \text{ is a pairwise } \tau_{ij}-N-bO-\text{set in } X \text{ and } K\subseteq L\}$

$$\subseteq \cup$$
{*K*:*K* is a pairwise τ_{ij} -N-*b*O-set in *X* and *K* \subseteq *M*} [since *L* \subseteq *M*]

=P- τ_{ij} -Nb-int(M)

 \Rightarrow P- τ_{ij} -N_{b-int}(L) \subseteq P- τ_{ij} -N_{b-int}(M).

Therefore, $L \subseteq M \Rightarrow P - \tau_{ij} - N_{b-int}(L) \subseteq P - \tau_{ij} - N_{b-int}(M)$.

(*iv*) Let *L* be a pairwise τ_{ij} -N-*b*O-set in an NBi-T-space (X, τ_1, τ_2).

Now, $P-\tau_{ij}-N_{b-int}(L)=\bigcup\{K: K \text{ is a pairwise } \tau_{ij}-N-bO-\text{set in } X \text{ and } K\subseteq L\}$. Since, *L* is a pairwise $\tau_{ij}-N-bO-\text{set}$ in (X,τ_1,τ_2) , so *L* is the largest pairwise $\tau_{ij}-N-bO-\text{set}$ in (X,τ_1,τ_2) , which is contained in *L*. Therefore, $\bigcup\{K:K \text{ is a pairwise } \tau_{ij}-N-bO-\text{set} \text{ in } X \text{ and } K\subseteq L\}=L$. This implies, $P-\tau_{ij}-N_{b-int}(L)=L$.

Theorem 3.2. Let *L* and *K* be two neutrosophic subsets of an NBi-T-space (X, τ_1 , τ_2). Then,

(*i*) $P-\tau_{ij}-N_{b-cl}(0_N)=0_N \& P-\tau_{ij}-N_{b-cl}(1_N)=1_N;$

(*ii*) $L \subseteq P-\tau_{ij}-N_{b-cl}(L)$;

 $(iii) \ L \underline{\subseteq} M \Longrightarrow \operatorname{P-\tau_{ij-}N_{b-cl}}(L) \underline{\subseteq} \operatorname{P-\tau_{ij-}N_{b-cl}}(M);$

(*iv*) P- τ_{ij} -N_{b-cl}(L)=L if L is a pairwise τ_{ij} -N-bC-set.

Proof. (*i*) Straightforward.

(*ii*) It is clear that $P-\tau_{ij}-N_{b-cl}(L)= \cap \{K:K \text{ is a pairwise } \tau_{ij}-N-bC-\text{set in } X \text{ and } L\subseteq K\}$.

Since, each $L \subseteq K$, so $L \subseteq \cap \{K: K \text{ is a pairwise } \tau_{ij}\text{-N-bC-set in } X \text{ and } L \subseteq K\}$, i.e. $L \subseteq P \text{-} \tau_{ij}\text{-}N_{b-cl}(L)$.

(*iii*) Let *L* and *M* be two neutrosophic subset of an NBi-T-space (X, τ_1, τ_2) such that $L \subseteq M$.

Now, $P-\tau_{ij}-N_{b-cl}(L)= \cap \{K:K \text{ is a pairwise } \tau_{ij}-N-bC\text{-set in } X \text{ and } L\subseteq K\}.$

 $\subseteq \cap \{K:K \text{ is a pairwise } \tau_{ij}: N-bC\text{-set in } X \text{ and } M \subseteq K\}$ [since $L \subseteq M$]

=P- τ_{ij} -Nb-cl(M)

 \Rightarrow P- τ_{ij} -N_{b-cl}(L) \subseteq P- τ_{ij} -N_{b-cl}(M).

Therefore, $L \subseteq M \Rightarrow P - \tau_{ij} - N_{b-cl}(L) \subseteq P - \tau_{ij} - N_{b-cl}(M)$.

(*iv*) Let *L* be a pairwise τ_{ij} -N-*b*C-set in an NBi-T-space (X,τ_1,τ_2). Now, P- τ_{ij} -N_{*b*-*cl*}(*L*)= \cap {*K*:*K* is a pairwise τ_{ij} -N-*b*C-set in *X* and *L* \subseteq *K*}. Since, *L* is a pairwise τ_{ij} -N-*b*C-set in a (X,τ_1,τ_2), so *L* is the smallest pairwise τ_{ij} -N-*b*C-set, which contains *L*. This implies, \cap {*K*:*K* is a pairwise τ_{ij} -N-*b*C-set in *X* and *L* \subseteq *K*}=*L*. Therefore, P- τ_{ij} -N_{*b*-*cl*}(*L*)=*L*.

Proposition 3.3. Let *L* be a neutrosophic subset of an NBi-T-space (X, τ_1 , τ_2). Then,

(i) $[P-\tau_{ij}-N_{b-int}(L)]^{c} = P-\tau_{ij}-N_{b-cl}(L^{c});$

(*ii*) $[P-\tau_{ij}-N_{b-cl}(L)]^c = P-\tau_{ij}-N_{b-int}(L^c).$

Proof. (*i*) Let (X,τ_1,τ_2) be an NBi-T-space. Let $L=\{(w, T_L(w), I_L(w), F_L(w)): w \in X\}$ be an neutrosophic subset of (X,τ_1,τ_2) .

Now, $P-\tau_{ij}-N_{b-int}(L) = \bigcup \{K: K \text{ is a pairwise } \tau_{ij}-N-bO-\text{set in } X \text{ and } K \subseteq L \}$

 $= \{ (w, \lor T_{L_p}(w), \land I_{L_p}(w), \land F_{L_p}(w)) : w \in X \},$

where L_p is a pairwise τ_{ij} -N-bO-set in X such that $L_p \subseteq L$, for each $p \in \Delta$.

Here $\wedge T_{L_p}(w) \leq T_L(w), I_{L_p}(w) \geq I_L(w), F_{L_p}(w) \geq F_L(w)$, for each $w \in X$. Therefore, P- τ_{ij} - $N_{b-int}(L^c) = \{(w, \wedge T_{L_p}(w), \vee I_{L_p}(w), \vee F_{L_p}(w)): w \in X\}$ $= \cap \{L_p: p \in \Delta \text{ and } L_p \text{ is a pairwise } \tau_{ij}$ -N-bC-set in X such that $L^c \subseteq L_p\}$ Hence, $[P-\tau_{ij}-N_{b-int}(L)]^c = P-\tau_{ij}-N_{b-cl}(L^c)$. (*ii*) Let (X,τ_1,τ_2) be an NBi-T-space and $L=\{(w, T_L(w), I_L(w), F_L(w)): w \in X\}$ be a N-set over X. Then, $P-\tau_{ij}-N_{b-cl}(L) = \cap \{K:K \text{ is a pairwise } \tau_{ij}-N$ -bC-set in X and $L \subseteq K\}$ $= \{(w, \wedge T_{L_p}(w), \vee I_{L_p}(w), \vee F_{L_p}(w)): w \in X\}$, where L_p is a pairwise τ_{ij} -N-bC-set in X such that $L \subseteq L_p$, for each $p \in \Delta$. This implies, $[P-\tau_{ij}-N_{b-cl}(L)]^c = \{(w, \vee T_{L_p}(w), \wedge I_{L_p}(w), \wedge F_{L_p}(w)): w \in X\}$. Here, $\vee T_{L_p}(w) \geq T_L(w), \wedge I_{L_p}(w) \leq I_L(w), \wedge F_{L_p}(w) \leq F_L(w)$, for each $w \in X$. Therefore, $P-\tau_{ij}-N_{b-int}(L^c)=\{(w, \vee T_{L_p}(w), \wedge I_{L_p}(w), (w)): w \in X\}$

This implies, $[P-\tau_{ij}-N_{b-int}(L)]^c = \{(w, \wedge T_{L_n}(w), \vee I_{L_n}(w), \vee F_{L_n}(w)): w \in X\}.$

= \bigcup {*L_p*: *p* \in Δ and *L_p* is a pairwise τ_{ij} -N-*b*O-set in *X* such that *L_p* \subseteq *L^c*}.

Hence, $[P-\tau_{ij}-N_{b-cl}(L)]^{c} = P-\tau_{ij}-N_{b-int}(L^{c})$.

Theorem 3.1. Let (X, τ_1, τ_2) be an NBi-T-space. Then, the neutrosophic null set (0_N) and the neutrosophic whole set (1_N) are both τ_{ij} -N-*b*O-set and τ_{ji} -N-*b*O-set.

Proof. Let (X,τ_1,τ_2) be an NBi-T-space. Now, $N_{cl}^i N_{int}^j(0_N) \cup N_{int}^j N_{cl}^i(0_N) = N_{cl}^i(0_N) \cup N_{int}^j(0_N) = 0_N \cup 0_N = 0_N$. Therefore, $0_N \subseteq 0_N = N_{cl}^i N_{int}^j(0_N) \cup N_{int}^j N_{cl}^i(0_N)$. Hence, the neutrosophic null set (0_N) is a τ_{ij} -N-bO-set.

Similarly, it can be established that the neutrosophic null set (0_N) is a τ_{ii} -N-bO-set.

Further, one can show that the neutrosophic whole set (1*N*) are both τ_{ij} -N-*b*O-set and τ_{ji} -N-*b*O-set. **Theorem 3.2.** In an NBi-T-space(X, τ_1, τ_2), every τ_i -NO-set is a τ_{ji} -N-*b*O-set.

Proof. Let *L* be a τ_i -NO-set in an NBi-T-space(X, τ_1, τ_2). Therefore, $N_{int}^i(L)=L$. Now, $L \subseteq N_{cl}^j(L)=N_{cl}^j N_{int}^i(L)$. This implies, $L \subseteq N_{cl}^j N_{int}^i(L) \cup N_{int}^i N_{cl}^j(L)$. Hence, *L* is a τ_{ji} -N-*b*O-set in (X, τ_1, τ_2).

Theorem 3.3. In an NBi-T-space (X, τ_1, τ_2) ,

(*i*) every τ_{ij}-N-bO-set is a pairwise τ_{ij}-N-bO-set;

(*ii*) every τ_{ji} -N-bO-set is a pairwise τ_{ji} -N-bO-set;

(*iii*) every τ_{*ij*}-N-*b*C-set is a pairwise τ_{*ij*}-N-*b*C-set;

(*iv*) every τ_{ji} -N-*b*C-set is a pairwise τ_{ji} -N-*b*C-set.

Proof. (*i*) Let *L* be a τ_{ij} -N-*b*O-set in an NBi-T-space (X,τ_1,τ_2). Then, *L* can be expressed as $L=L\cup 0_N$, where *L* is a τ_{ij} -N-*b*O-set and 0_N is a τ_{ji} -N-*b*O-set in (X,τ_1,τ_2). This implies, *L* is a pairwise τ_{ij} -N-*b*O-set in (X,τ_1,τ_2).

(ii) Straightforward.

(*iii*) Let *L* be a τ_{ij} -NC-set in an NBi-T-space (X,τ_1,τ_2). Then, *L* can be expressed as $L=L\cap 1_N$, where *L* is a τ_{ij} -NC-set and 1_N is a τ_{ji} -NC-set in (X,τ_1,τ_2). This implies, *L* is a pairwise τ_{ij} -N-*b*C-set in (X,τ_1,τ_2). (*iv*) Straightforward.

Theorem 3.4. In an NBi-T-Space (X_i , τ_1 , τ_2), every τ_i -NO-set is a pairwise τ_{ij} -N-bO-set.

Proof. Let *L* be a τ_i -NO-set in an NBi-T-space(X, τ_1, τ_2). By Theorem 3.2., it is clear that *L* is a τ_{ji} -N-*b*O-set. Further, by Theorem 3.3., it is clear that *L* is a pairwise τ_{ij} -N-*b*O-set.

Theorem 3.5. Let (X, τ_1, τ_2) be an NBi-T-space. Then, 0_N and 1_N are both pairwise τ_{ij} -N-*b*O-set and pairwise τ_{ij} -N-*b*O-set.

Proof. Let (X, τ_1, τ_2) be an NBi-T-space. One can write $0_N = A \cup B$, where $A = 0_N$ is a τ_{ij} -N-*b*O-set and $B = 0_N$ is a τ_{ji} -N-*b*O-set in (X, τ_1, τ_2) . This implies, 0_N is a pairwise τ_{ij} -N-*b*O-set in (X, τ_1, τ_2) .

Similarly, it can be established that 0_N is a pairwise τ_{ji} -N-bO-set in (X, τ_1, τ_2).

Again, one can write $1_N = L \cup M$, where $L = 1_N$ is a τ_{ij} -N-*b*O-set and $M = 1_N$ is a τ_{ji} -N-*b*O-set in (X, τ_1, τ_2). This implies, 1_N is a pairwise τ_{ij} -N-*b*O-set in (X, τ_1, τ_2).

Similarly, it can be also established that 1_N is a pairwise τ_{ji} -N-bO-set in (X, τ_1, τ_2) .

Theorem 3.6. Let (X, τ_1, τ_2) be an NBi-T-space. Then, both 0_N and 1_N are pairwise τ_{ij} -N-*b*C-set and pairwise τ_{jj} -N-*b*C-set.

Proof. By Theorem 3.5, it is clear that 0_N is both pairwise τ_{ij} -N-*b*O-set and pairwise τ_{ji} -N-*b*O-set. Hence, its complement 1_N is both pairwise τ_{ij} -N-*b*C-set and pairwise τ_{ji} -N-*b*C-set.

Similarly, from Theorem 3.5, it is clear that 1_N is both pairwise τ_{ij} -N-*b*O-set and pairwise τ_{ji} -N-*b*O-set. Hence, its complement 0_N is both pairwise τ_{ij} -N-*b*C-set and pairwise τ_{ji} -N-*b*C-set.

Remark 3.1. Throughout the article, we denote τ_{ij}^b as a collection of all pairwise τ_{ij} -N-*b*O-sets and τ_{ij}^c as a collection of all pairwise τ_{ij} -N-*b*C-sets in (X, τ_1, τ_2). The collection τ_{ij}^b forms an neutrosophic supra topology on X.

Definition 3.3. Let (X,τ_1,τ_2) and (Y,δ_1,δ_2) be two NBi-T-spaces. Then, an one to one and onto mapping $\xi : (X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is called a

(*i*) pairwise neutrosophic semi continuous mapping (in short P-NS-C-mapping) if and only if $\xi^{-1}(L)$ is a τ_i -NSO-set in *X*, whenever *L* is a pairwise δ_{ij} -NO-set in *Y*.

(*ii*) pairwise neutrosophic pre continuous mapping (in short P-NP-C-mapping) if and only if $\xi^{-1}(L)$ is a τ_i -NPO-set in *X*, whenever *L* is a pairwise δ_{ij} -NO-set in *Y*.

(*iii*) pairwise neutrosophic continuous mapping (in short P-N-C-mapping) if and only if $\xi^{-1}(L)$ is a τ_i -NO-set in *X*, whenever *L* is a pairwise δ_{ij} -NO-set in *Y*.

(*iv*) pairwise neutrosophic *b*-continuous mapping (in short P-N-*b*-C-mapping) if and only if $\xi^{-1}(L)$ is a τ_i -N-*b*O-set in *X*, whenever *L* is a pairwise δ_{ij} -NO-set in *Y*.

Theorem 3.7. Let (X,τ_1,τ_2) and (Y,δ_1,δ_2) be two NBi-T-spaces. Then, every P-N-C-mapping from (X,τ_1,τ_2) to (Y,δ_1,δ_2) is a P-NP-C-mapping (P-NS-C-mapping).

Proof. Let *L* be a pairwise δ_{ij} -NO-set in (Y, δ_1, δ_2) . Since, $\xi:(X, \tau_1, \tau_2) \rightarrow (Y, \delta_1, \delta_2)$ is a P-N-C-mapping from (X, τ_1, τ_2) to (Y, δ_1, δ_2) , so $\xi^{-1}(L)$ is a τ_i -NO-set in (X, τ_1, τ_2) . It is known that every τ_i -NO-set is a τ_i -NPO-set $(\tau_i$ -NSO-set). Therefore, $\xi^{-1}(L)$ is a τ_i -NPO-set $(\tau_i$ -NSO-set) in (X, τ_1, τ_2) . Hence, $\xi:(X, \tau_1, \tau_2) \rightarrow (Y, \delta_1, \delta_2)$ is a P-NP-C-mapping (P-NS-C-mapping).

Theorem 3.8. Let (X,τ_1,τ_2) and (Y,δ_1,δ_2) be two NBi-T-spaces. Then, every P-NS-C-mapping (P-NP-C-mapping) from (X,τ_1,τ_2) to (Y,δ_1,δ_2) is a P-N-*b*-C-mapping.

Proof. Let *L* be a pairwise δ_{ij} -NO-set in (Y,δ_1,δ_2) . Since, $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a P-NS-C-mapping (P-NP-C-mapping) from (X,τ_1,τ_2) to (Y,δ_1,δ_2) , so $\xi^{-1}(L)$ is a τ_i -NSO-set (τ_i -NPO-set) in (X,τ_1,τ_2) . It is known that, every τ_i -NSO-set (τ_i -NPO-set) is a τ_i -N-*b*O-set. Therefore, $\xi^{-1}(L)$ is a τ_i -N-*b*O-set in $(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a P-N-*b*-C-mapping.

Theorem 3.9. Let (X,τ_1,τ_2) and (Y,δ_1,δ_2) be two NBi-T-spaces. Then, every P-N-C-mapping from (X,τ_1,τ_2) to (Y,δ_1,δ_2) is a P-N-*b*-C-mapping.

Proof. Let *L* be a pairwise δ_{ij} -NO-set in (Y, δ_1, δ_2) . Since, $\xi: (X, \tau_1, \tau_2) \rightarrow (Y, \delta_1, \delta_2)$ is a P-N-C-mapping from (X, τ_1, τ_2) to (Y, δ_1, δ_2) , so $\xi^{-1}(L)$ is a τ_i -NO-set in (X, τ_1, τ_2) . It is known that, every τ_i -NO-set is a

Binod Chandra Tripathy, Suman Das, Pairwise Neutrosophic b-Continuous Mapping in Neutrosophic Bitopological Spaces.

 τ_i -N-*b*-O-set. Therefore, $\xi^{-1}(L)$ is a τ_i -N-*b*-O-set in (X,τ_1,τ_2) . Hence, $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a p-N-*b*-C-mapping.

Theorem 3.10. If $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ and $\chi:(Y,\delta_1,\delta_2) \rightarrow (Z,\theta_1,\theta_2)$ be two P-N-C-mapping, then the composition mapping $\chi^{\circ}\xi:(X,\tau_1,\tau_2) \rightarrow (Z,\theta_1,\theta_2)$ is also a P-N-C-mapping.

Proof. Let $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ and $\chi:(Y,\delta_1,\delta_2) \rightarrow (Z,\theta_1,\theta_2)$ be two P-N-C-mappings. Let *L* be a pairwise θ_{ij} -NO-set in (Z,θ_1,θ_2) . Since, $\chi:(Y,\delta_1,\delta_2) \rightarrow (Z,\theta_1,\theta_2)$ is a P-N-C-mapping, so $\chi^{-1}(L)$ is a δ_i -NO-set in *Y*. Since, $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a P-N-C-mapping, so $\xi^{-1}(\chi^{-1}(L)) = (\chi^{\circ}\xi)^{-1}(L)$ is a τ_i -NO-set in *X*.

Theorem 3.11. If $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be an one to one and onto mapping between two NBi-T-spaces, then the following two are equivalent:

(*i*) ξ is a P-N-*b*-C-mapping.

(*ii*) $\xi^{-1}(P-\delta_{ij}-N_{int}(A)) \subseteq \tau_i - N_{b-int}(\xi^{-1}(A))$, for every neutrosophic subset *A* of *Y*.

Proof. (*i*) \Rightarrow (*ii*)

Let $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a P-N-*b*-C-mapping. Let *A* be an neutrosophic subset of *Y*. Here, P- δ_{ij} - $N_{int}(A)$ is a pairwise δ_{ij} -NO-set in *Y* and P- δ_{ij} - $N_{int}(A)\subseteq A$. This implies, $\xi^{-1}(P-\delta_{ij}-N_{int}(A))\subseteq\xi^{-1}(A)$. By the hypothesis, $\xi^{-1}(P-\delta_{ij}-N_{int}(A))$ is a τ_i -N-*b*-O-set in *X*. Therefore, $\xi^{-1}(P-\delta_{ij}-N_{int}(A))$ is a τ_i -N-*b*-O-set in *X* such that $\xi^{-1}(P-\delta_{ij}-N_{int}(A))\subseteq\xi^{-1}(A)$. It is known that τ_i - $N_{b-int}(\xi^{-1}(A))$ is the largest τ_i -N-*b*-O-set in *X*, which is contained in $\xi^{-1}(A)$. Hence, $\xi^{-1}(P-\delta_{ij}-N_{int}(A))\subseteq\tau_i$ - $N_{b-int}(\xi^{-1}(A))$.

$$(ii) \Rightarrow (i)$$

Let *A* be a pairwise δ_{ij} -NO-set in (Y, δ_1, δ_2) . Therefore, $P-\delta_{ij}-N_{int}(A)=A$. By hypothesis, $\xi^{-1}(P-\delta_{ij}-N_{int}(A))\subseteq \tau_i-N_{b-int}(\xi^{-1}(A))$. This implies, $\xi^{-1}(A)\subseteq \tau_i-N_{b-int}(\xi^{-1}(A))$. It is known that $\tau_i-N_{b-int}(\xi^{-1}(A))\subseteq \xi^{-1}(A)$. Therefore, $\tau_i-N_{b-int}(\xi^{-1}(A))=\xi^{-1}(A)$. Hence, $\xi^{-1}(A)$ is a τ_i-N-b -O-set in (X,τ_1,τ_2) . Therefore, ξ is a P-N-*b*-C-mapping from an NBi-T-space (X,τ_1,τ_2) to another NBi-T-space (Y,δ_1,δ_2) .

Theorem 3.12. An one to one and onto mapping $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a P-N-*b*-C-mapping if and only if P- δ_{ij} - $N_{int}(\xi(A)) \subseteq \xi(\tau_i - N_{b-int}(A))$, for every N-set *A* over *X* and *i*, *j*= 1,2, and *i* \neq *j*.

Proof. Let $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a P-N-*b*-C-mapping. Let *A* be an N-set over *X*. Then, $\xi(A)$ is also an N-set over *Y*. By Theorem 3.11, we have $\xi^{-1}(P-\delta_{ij}-N_{int}(\xi(A))) \subseteq \tau_i - N_{b-int}(\xi(A))$. This implies, $\xi^{-1}(P-\delta_{ij}-N_{int}(\xi(A))) \subseteq \tau_i - N_{b-int}(A)$. Hence, $P-\delta_{ij}-N_{int}(\xi(A)) \subseteq \xi(\tau_i - N_{b-int}(A))$. Therefore, $P-\delta_{ij}-N_{int}(\xi(A)) \subseteq \xi(\tau_i - N_{b-int}(A))$, for every N-set *A* over *X* and *i*, *j*= 1,2; and *i* \neq *j*.

Conversely, let $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a mapping between two NBi-T-spaces such that

 $P-\delta_{ij}-N_{int}(\xi(A)) \subseteq \xi(\tau_i-N_{b-int}(A))$

(1)

for every N-set *A* over*X* and *i*, *j* = 1,2; and $i \neq j$.

Let *A* be an N-set over *Y*. Then, $\xi^{-1}(A)$ is an N-set over *X*. By putting $A = \xi^{-1}(A)$ in eq. (1), we have,

 $P-\delta_{ij}-N_{int}(\xi(\xi^{-1}(A))) \subseteq \xi(\tau_i-N_{b-int}(\xi^{-1}(A)))$

 $\Rightarrow P-\delta_{ij}-N_{int}(A) \subseteq \xi(\tau_i-N_{b-int}(\xi^{-1}(A)))$

 $\Rightarrow \xi^{-1}(P-\delta_{ij}-N_{int}(A) \subseteq \tau_i - N_{b-int}(\xi^{-1}(A)).$

Therefore, $\xi^{-1}(P-\delta_{ij}-N_{int}(A) \subseteq \tau_i - N_{b-int}(\xi^{-1}(A))$, for every N-set *A* of *Y*. Hence, by Theorem 3.11., the mapping $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a P-N-*b*-C-mapping.

Corollary 3.1. If $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is an one to one and onto mapping from an NBi-T-space (X,τ_1,τ_2) to another NBi-T-space (Y,δ_1,δ_2) , then the following two are equivalent:

(*i*) ξ is a P-N-C-mapping.

(*ii*) $\xi^{-1}(P-\delta_{ij}-N_{int}(Q)) \subseteq \tau_i - N_{int}(\xi^{-1}(Q))$, for every N-set Q over Y.

Binod Chandra Tripathy, Suman Das, Pairwise Neutrosophic b-Continuous Mapping in Neutrosophic Bitopological Spaces.

Definition 3.4. Let (X, τ_1, τ_2) be an NBi-T-space. Let $x_{a,b,c}$ be an N-point in X. Then, an N-set Q over X is called a pairwise τ_{ij} -neutrosophic b-neighbourhood (in short P- τ_{ij} -N-b-nbd) of $x_{a,b,c}$, if there exist a pairwise τ_{ij} -N-bO-set U such that $x_{a,b,c} \in U \subseteq Q$.

Theorem 3.13. Let (X, τ_1, τ_2) be an NBi-T-space. An N-set Q over X is a pairwise τ_{ij} -N-bO-set if and only if Q is a P- τ_{ij} -N-b-nbd of all of its N-points.

Proof. Let *Q* be a pairwise τ_{ij} -N-*b*O-set in an NBi-T-space (X,τ_1,τ_2). Let $x_{a,b,c}$ be an N-point in X such that $x_{a,b,c} \in Q$. Therefore, $x_{a,b,c} \in Q \subseteq Q$. This implies, *Q* is a P- τ_{ij} -N-*b*-nbd of $x_{a,b,c}$. Hence, *Q* is the P- τ_{ij} -N-*b*-nbd of all of its N-points.

Conversely, let Q be a P- τ_{ij} -N-b-nbd of all of its N-points. Assume that $x_{a,b,c}$ be an N-point in X, such that $x_{a,b,c} \in Q$. Therefore, there exist a pairwise τ_{ij} -N-bO-set G such that $x_{a,b,c} \in G \subseteq Q$.

Now, $Q = \bigcup_{x_{a,b,c} \in Q} x_{a,b,c} \subseteq \bigcup_{x_{a,b,c} \in Q} G \subseteq \bigcup_{x_{a,b,c} \in Q} Q = Q$. This implies, $Q = \bigcup_{x_{a,b,c} \in Q} G$, which is a pairwise τ_{ij} -N-*b*O-set. Therefore, Q is a pairwise τ_{ij} -N-*b*O-set in (X, τ_1, τ_2) .

Theorem 3.14. An one to one and onto mapping $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a P-N-*b*-C-mapping if and only if for every N-point $x_{a,b,c} \in Y$ and for any P- δ_{ij} -N-*b*-nbd V of $x_{a,b,c}$ in Y, there exist a τ_i -neutrosophic-*b*-neighbourhood (in short τ_i -N-*b*-nbd) U of $\xi^{-1}(x_{a,b,c})$ in X such that $U \subseteq \xi^{-1}(V)$.

Proof. Let $\xi:(X,\tau_1,\tau_2)\to(Y,\delta_1,\delta_2)$ be a P-N-*b*-C-mapping. Let $x_{a,b,c}$ be an N-point in Y and V be a P- δ_{ij} -N-*b*-nbd of $x_{a,b,c}$. Then, there exist a pairwise δ_{ij} -NO-set G in Y such that $x_{a,b,c}\in G\subseteq V$. This implies, $\xi^{-1}(x_{a,b,c})\in\xi^{-1}(G)\subseteq\xi^{-1}(V)$. Since, $\xi:(X,\tau_1,\tau_2)\to(Y,\delta_1,\delta_2)$ is a P-N-*b*-C-mapping, so $\xi^{-1}(G)$ is a τ_i -N-*b*O-set in X. By taking $U=\xi^{-1}(G)$, we see that U is a τ_i -N-*b*O-set in X such that $\xi^{-1}(x_{a,b,c})\in U\subseteq\xi^{-1}(V)$. Hence, $U=\xi^{-1}(G)$ is a τ_i -N-*b*-nbd of $\xi^{-1}(x_{a,b,c})$ and $U\subseteq\xi^{-1}(V)$.

Conversely, let for every N-point $x_{a,b,c} \in Y$ and for any P- δ_{ij} -N-nbd V of $x_{a,b,c}$ in Y, there exist a τ_i -N-b-nbd U of $\xi^{-1}(x_{a,b,c})$ in X such that $U \subseteq \xi^{-1}(V)$. Let G be a pairwise δ_{ij} -NO-set in Y and $x_{a,b,c} \in G$. By Theorem 3.13., G is a P- δ_{ij} -N-nbd of $x_{a,b,c}$. By hypothesis, there exists a τ_i -N-b-nbd H of $\xi^{-1}(x_{a,b,c}) \in X$ such that $\xi^{-1}(x_{a,b,c}) \in H \subseteq \xi^{-1}(G)$. This implies, $\xi^{-1}(G)$ is the τ_i -N-b-nbd of each of its N-points. Therefore, $\xi^{-1}(G)$ is a τ_i -N-bO-set in X. Hence, $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a P-N-b-C-mapping.

Theorem 3.15. If $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a P-N-*b*-C-mapping and $\chi:(Y,\delta_1,\delta_2) \rightarrow (Z,\theta_1,\theta_2)$ be a P-N-C-mapping, then the composition mapping $\chi^{\circ}\xi:(X,\tau_1,\tau_2) \rightarrow (Z,\theta_1,\theta_2)$ is a P-N-*b*-C-mapping.

Proof. Let $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ be a P-N-*b*-C-mapping and $\chi:(Y,\delta_1,\delta_2) \rightarrow (Z,\theta_1,\theta_2)$ be a P-N-C-mapping. Let *L* be a pairwise θ_{ij} -NO-set in (Z,θ_1,θ_2) . Since, $\chi:(Y,\delta_1,\delta_2) \rightarrow (Z,\theta_1,\theta_2)$ is a P-N-C-mapping, so $\chi^{-1}(L)$ is a δ_i -NO-set in *Y*. Now, by Lemma 2.1., it is clear that $\chi^{-1}(L)$ is a pairwise δ_{ij} -NO-set in (Y,δ_1,δ_2) . Since, $\xi:(X,\tau_1,\tau_2) \rightarrow (Y,\delta_1,\delta_2)$ is a P-N-*b*-C-mapping, so $\xi^{-1}(\chi^{-1}(L))=(\chi^{\circ}\xi)^{-1}(L)$ is a τ_i -NO-set in *X*. Since, every τ_i -NO-set is a τ_i -N-*b*O-set, so $(\chi^{\circ}\xi)^{-1}(L)$ is a τ_i -N-*b*O-set in *X*. Hence, $\chi^{\circ}\xi:(X,\tau_1,\tau_2) \rightarrow (Z,\theta_1,\theta_2)$ is a P-N-*b*-C-mapping.

4. Conclusion

In this article, we introduce the notion of pairwise neutrosophic-*b*-interior, pairwise neutrosophic-*b*-closure, pairwise neutrosophic *b*-continuous mapping, we prove some propositions and theorems on NBi-T-spaces. In the future, we hope that based on these notions in NBi-T-spaces, many new investigations can be carried out.

Conflict of Interest: The authors declare that they have no conflict of interest.

Binod Chandra Tripathy, Suman Das, Pairwise Neutrosophic b-Continuous Mapping in Neutrosophic Bitopological Spaces.

Acknowledgement: The work of the second author is financially supported by the University Grants Commission. The fellowship no is: F.No.16-6(DEC.2018)/2019(NET/CSIR).

References:

- [1]. Andrijevic, D. (1996). On *b*-open sets. *MatematickiVesnik*, 48, 59-64.
- [2]. Arokiarani, I., Dhavaseelan, R., Jafari, S., & Parimala, M. (2017). On some new notations and functions in neutrosophic topological spaces. *Neutrosophic Sets and Systems*, 16, 16-19.
- [3]. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96.
- [4]. Chang, C.L. (1968). Fuzzy Topological Spaces. *Journal of Mathematical Analysis and Applications*, 24, 182-190.
- [5]. Das, S., Das, R., & Granados, C. (2021). Topology on Quadripartitioned Neutrosophic Sets. *Neutrosophic Sets and Systems*. (In Press).
- [6]. Das, S., Das, R., Granados, C., & Mukherjee, A. (2021). Pentapartitioned Neutrosophic *Q*-Ideals of *Q*-Algebra. *Neutrosophic Sets and Systems*, 41, 52-63.
- [7]. Das, S., Das, R., &Tripathy, B.C. (2020). Multi-criteria group decision making model using single-valued neutrosophic set. *LogForum*, 16 (3), 421-429.
- [8]. Das, S., & Pramanik, S. (2020). Generalized neutrosophic *b*-open sets in neutrosophic topological space, *Neutrosophic Sets and Systems*, 35, 522-530.
- [9]. Das, S., & Pramanik, S. (2020). Neutrosophic Φ-open sets and neutrosophic Φ-continuous functions.*Neutrosophic Sets and Systems*, 38, 355-367.
- [10]. Das, S., & Pramanik, S. (2020). Neutrosophic simply soft open set in neutrosophic soft topological space. *Neutrosophic Sets and Systems*, 38, 235-243.
- [11]. Das, R., Smarandache, F., &Tripathy, B.C. (2020). Neutrosophic fuzzy matrices and some algebraic operation. *Neutrosophic Sets and Systems*, 32, 401-409.
- [12]. Das, R., & Tripathy B.C. (2020). Neutrosophic multiset topological space. Neutrosophic Sets and Systems, 35, 142-152.
- [13]. Das, S., & Tripathy, B.C. (2020). Pairwise neutrosophic-*b*-open set in neutrosophic bitopological spaces. *Neutrosophic Sets and Systems*, 38, 135-144.
- [14]. Das, S., & Tripathy, B.C. (2021). Neutrosophic simply *b*-open set in neutrosophic topological spaces. *Iraqi Journal of Science*, In Press.
- [15]. Dutta, A., & Tripathy, B.C. (2017). On fuzzy b-θ open sets in fuzzy topological space. Journal of Intelligent and Fuzzy Systems, 32 (1), 137-139.
- [16]. Ebenanjar, E., Immaculate, J., & Wilfred, C.B. (2018). On neutrosophic *b*-open sets in neutrosophic topological space. *Journal of Physics Conference Series*, 1139 (1), 012062.
- [17]. Kelly, J.C. (1963). Bitopological Spaces. *Proceedings of the London Mathematical Society*, 3 (1), 71-89.
- [18]. Mukherjee, A., & Das, R. (2020). Neutrosophic Bipolar Vague Soft Set and Its Application to Decision Making Problems. *Neutrosophic Sets and Systems*, 32, 410-424.
- [19]. Ozturk, T.Y., & Ozkan, A. (2019). Neutrosophic Bitopological Spaces. Neutrosophic Sets and Systems, 30, 88-97.

- [20]. Rao, V.V., & Srinivasa, R. (2017). Neutrosophic pre-open sets and pre-closed sets in Neutrosophic topology. *International Journal of Chemical Technology Research*, 10 (10), 449-458.
- [21]. Salama, A.A., & Alblowi, S.A. (2012a). Neutrosophic set and neutrosophic topological space. *ISOR Journal of Mathematics*, 3 (4), 31-35.
- [22]. Salama, A.A., & Alblowi, S.A. (2012b). Generalized Neutrosophic Set and Generalized Neutrosophic Topological Space. *Computer Science and Engineering*, 2, 129-132.
- [23]. Smarandache, F. (1998). A unifying field in logics, neutrosophy: neutrosophic probability, set and logic. *Rehoboth: American Research Press*.
- [24]. Smarandache, F. (2005). Neutrosophic set: a generalization of the intuitionistic fuzzy sets. *International Journal of Pure and Applied Mathematics*, 24, 287-297.
- [25]. Tripathy, B.C., & Debnath, S. (2015). On fuzzy *b*-locally open sets in bitopological spaces. Songklanakarin Journal of Science and Technology, 37 (1), 93-96.
- [26]. Tripathy, B.C., & Sarma, D.J. (2011). On *b*-Locally Open Sets in Bitopological Spaces. *Kyungpook Mathematical Journal*, 51, 429-433.
- [27]. Tripathy, B.C., & Sarma, D.J. (2012). On pairwise *b*-locally open and pairwise *b*-locally closed functions in bitopological spaces. *Tamkang Journal of Mathematics*, 43 (4), 533-539.
- [28]. Tripathy, B.C., & Sarma, D.J. (2013). On weakly *b*-continuous functions in bitopological spaces. *ActaScientiarum Technology*, 35 (3), 521-525.
- [29]. Tripathy, B.C., & Sarma, D.J. (2014). Generalized *b*-closed sets in Ideal bitopological spaces. *Proyecciones Journal of Mathematics*, 33 (3), 315-324.
- [30]. Tripathy, B.C., & Sarma, D.J. (2017). Pairwise generalized *b*-*R*⁰ spaces in bitopological spaces. *Proyecciones Journal of Mathematics*, 36 (4), 589-600.
- [31]. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338-353.

Received: March 8, 2021. Accepted: Jun 7, 2021