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Abstract . In this paper, the concept of single valued neutrosophic number (SV N -number) is presented in a gener-
alized way. Using this notion, a crisp linear programming problem (LP -problem) is extended to a neutrosophic linear
programming problem (NLP -problem). The coefficients of the objective function of a crisp LP -problem are consid-
ered as generalized single valued neutrosophic number (GSV N -number). This modified form of LP -problem is here
called an NLP -problem. An algorithm is developed to solve NLP -problem by simplex method. Finally, this simplex
algorithm is applied to a real life problem. The problem is illustrated and solved numerically.
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1 Introduction
Introduction of fuzzy set by Zadeh [10] and then intuitionistic fuzzy set by Atanassov [8] brought a golden
opportunity to handle the uncertainty and vagueness in our daily life activities. The fuzzy sets are evaluated by
the membership grade of an object only, whereas intuitionistic fuzzy set meets the membership and the non-
membership grade of an object simultaneously. To deal with uncertainty more precisely, Smarandache [3,4]
initiated the notion of neutrosophic set (NS), a generalised version of classical set, fuzzy set, intuitionistic fuzzy
set etc. In the neutrosophic logic, each proposition is estimated by a triplet viz., truth grade, indeterminacy grade
and falsity grade. The indeterministic part of uncertain data, introduced in NS theory, plays an important role
to make a proper decision which is not possible by intuitionistic fuzzy set theory. Since indeterminacy always
appears in our routine activities, theNS theory can analyse the various situations smoothly. But it is too difficult
to apply the NS theory in real life scenario for it’s initial character as pointed out by Smarandache. So to apply
in real spectrum, Wang et al. [6] brought the concept of single valued neutrosophic set (SV N -set). Ranking of
fuzzy number and intuitionistic fuzzy number is an interesting subject needed in decision making, optimization,
even in developing of various mathematical structures. From time to time, several ranking methods [2,5,9,13-
15] have been adopted by researchers. Naturally, the ranking of neutrosophic number also was come into
consideration from beginning of NS theory. Deli and Subas [7] considered a ranking way of neutrosophic
numbers and have used it to a decision making problems. Abdel-Baset [11,12] solved group decision making
problems based on TOPSIS technique by use of neutrosophic number. To estimate and solve the NLP -problem
in different direction, some respective attempts [1,16] by researchers are seen.

This paper introduces the structure of SV N -number in a different way to opt the notion of generalized single
valued trapezoidal neutrosophic number (GSV TN -number), generalized single valued triangular neutrosophic
number (GSV TrN -number) and develops an algorithm to solveNLP -problem by simplex method. The proposed
simplex algorithm is applied to a real life problem. The problem is illustrated and solved numerically.

The organisation of this paper is as follows. Section 2 deals some preliminary definitions. The concept of
GSV N -number, GSV TN -number, GSV TrN -number and their respective parametric form are presented in Sec-
tion 3. The concept of NLP -problem and it’s solution procedure are proposed in Section 4 and Section 5,

T. Bera and N. K. Mahapatra, Generalised single valued neutrosophic number and its application to
neutrosophic linear programming.

Neutrosophic Sets and Systems, Vol. 25, 2019



86

respectively. In Section 6, the simplex method is illustrated by suitable examples. Finally, the present work is
summarised in Section 7.

2 Preliminaries
Some basic definitions are provided to bring the main thought of this paper here.

2.1 Definition [18]

A continuous t- norm ∗ and t- conorm � are two continuous binary operations assigning [0, 1]× [0, 1]→ [0, 1]
and obey the under stated principles :
(i) ∗ and � are both commutative and associative.
(ii) x ∗ 1 = 1 ∗ x = x and x � 0 = 0 � x = x, ∀x ∈ [0, 1].
(iii) x ∗ y ≤ p ∗ q and x � y ≤ p � q if x ≤ p, y ≤ q with x, y, p, q ∈ [0, 1].
x ∗ y = xy, x ∗ y = min{x, y}, x ∗ y = max{x+ y − 1, 0} are most useful t-norms and
x � y = x+ y − xy, x � y = max{x, y}, x � y = min{x+ y, 1} are most useful t-conorms.

2.2 Definition [3]

An NS Q on an initial universe X is presented by three characterisations namely true value TQ, indeter-
minant value IQ and false value FQ so that TQ, IQ, FQ : X →]−0, 1+[. Thus Q can be designed as : {<
u, (TQ(u), IQ(u), FQ(u)) >: u ∈ X} with −0 ≤ supTQ(u) + sup IQ(u) + supFQ(u) ≤ 3+. Here 1+ = 1 + δ,
where 1 is standard part and δ is non-standard part. Similarly −0 = 0 − δ. The non-standard set ]−0, 1+[ is
basically practiced in philosophical ground and because of the difficulty to adopt it in real field, the standard
subset of ]−0, 1+[ i.e., [0,1] is applicable in real neutrosophic environment.

2.3 Definition [6]

An SV N -set Q over a universe X is a set Q = {< x, TQ(x), IQ(x), FQ(x) >: x ∈ X and TQ(x), IQ(x),
FQ(x) ∈ [0, 1]} with 0 ≤ supTQ(x) + sup IQ(x) + supFQ(x) ≤ 3.

2.4 Definition [7]

Let ai, bi, ci, di ∈ R (the set of all real numbers) with ai ≤ bi ≤ ci ≤ di (i = 1, 2, 3) and wp̃, up̃, yp̃ ∈ [0, 1] ⊂ R.
Then an SV N -number p̃ = 〈([a1, b1, c1, d1];wp̃), ([a2, b2, c2, d2];up̃), ([a3, b3, c3, d3]; yp̃)〉 is a special SV N -set
on R whose true value, indeterminant value, false value are respectively defined by the mappings Tp̃ : R →
[0, wp̃], Ip̃ : R→ [up̃, 1], Fp̃ : R→ [yp̃, 1] and they are given as :

Tp̃(x) =


glT (x), a1 ≤ x ≤ b1,
wp̃, b1 ≤ x ≤ c1,
grT (x), c1 ≤ x ≤ d1,
0, otherwise.

Ip̃(x) =


glI(x), a2 ≤ x ≤ b2,
up̃, b2 ≤ x ≤ c2,
grI(x), c2 ≤ x ≤ d2,
1, otherwise.

Fp̃(x) =


glF (x), a3 ≤ x ≤ b3,
yp̃, b3 ≤ x ≤ c3,
grF (x), c3 ≤ x ≤ d3,
1, otherwise.

The functions glT : [a1, b1] → [0, wp̃], g
r
I : [c2, d2] → [up̃, 1], g

r
F : [c3, d3] → [yp̃, 1] are continuous and non-

decreasing functions satisfying : glT (a1) = 0, glT (b1) = wp̃, g
r
I(c2) = up̃, g

r
I(d2) = 1, grF (c3) = yp̃, g

r
F (d3) = 1.
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The functions grT : [c1, d1] → [0, wp̃], g
l
I : [a2, b2] → [up̃, 1], g

l
F : [a3, b3] → [yp̃, 1] are continuous and non-

increasing functions satisfying : grT (c1) = wp̃, g
r
T (d1) = 0, glI(a2) = 1, glI(b2) = up̃, g

l
F (a3) = 1, glF (b3) = yp̃.

2.4.1 Definition [7]

If [a1, b1, c1, d1] = [a2, b2, c2, d2] = [a3, b3, c3, d3], then the SV N -number p̃ is reduced to a single valued trape-
zoidal neutrosophic number as : p̃ = 〈([a1, b1, c1, d1];wp̃, up̃, yp̃)〉.
p̃ = 〈([a1, b1, d1];wp̃, up̃, yp̃)〉 is called a single valued triangular neutrosophic number if b1 = c1.

2.5 Definition [17]
The (α, β, γ)-cut of an NS P is denoted by P(α,β,γ) and is defined as : P(α,β,γ) = {x ∈ X : TP (x) ≥
α, IP (x) ≤ β, FP (x) ≤ γ} with α, β, γ ∈ [0, 1] and 0 ≤ α + β + γ ≤ 3. Clearly, it is a crisp subset X .

2.6 Definition [14]
In parametric form, a fuzzy number P is a pair (PL, PR) of functions PL(r), PR(r), r ∈ [0, 1] satisfying the
followings.
(i) Both are bounded functions.
(ii) PL is monotone increasing left continuous and PR is monotone decreasing right continuous function.
(iii) PL(r) ≤ PR(r), 0 ≤ r ≤ 1.
A trapezoidal fuzzy number is put as P = (x0, y0, δ, ζ) where [x0, y0] is interval defuzzifier and δ(> 0), ζ(> 0)
are respectively called left fuzziness, right fuzziness. (x0 − δ, y0 + ζ) is the support of P and it’s membership
function is :

P (x) =


1
δ
(x− x0 + δ), x0 − δ ≤ x ≤ x0,

1, x ∈ [x0, y0],
1
ζ
(y0 − x+ ζ), y0 ≤ x ≤ y0 + ζ,

0, otherwise.

In parametric form PL(r) = x0 − δ + δr, PR(r) = y0 + ζ − ζr.
For arbitrary trapezoidal fuzzy numbers P = (PL, PR), Q = (QL, QR) and scalar k > 0, the addition and scalar
multiplication are P +Q, kQ and they are defined by :

(P +Q)L(r) = PL(r) +QL(r), (P +Q)R(r) = PR(r) +QR(r) and
(kQ)L(r) = kQL(r), (kQ)R(r) = kQR(r).

3 Generalised single valued neutrosophic number
Here, the structure of GSV N -number, GSV TN -number and GSV TrN -number have been presented.

3.1 Definition
• The support of three components of an SV N -set Q over X are given by a triplet (SQT , SQI , SQF ) where
SQT = {u ∈ X|TQ(u) > 0}, SQI = {u ∈ X|IQ(u) < 1}, SQF = {u ∈ X|FQ(u) < 1}.
• The height of the components of Q are given by a triplet (HQT , HQI , HQF ) where HQT = max{TQ(u)|u ∈
X}, HQI = max{IQ(u)|u ∈ X}, HQF = max{FQ(u)|u ∈ X}.
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3.1.1 Example

Define an SV N -setQ on {0, 1, · · · , 10} ⊂ Z (the set of integers) as : {< u, ( u
1+u

, 1− 1
2u
, 1
1+u

) > |0 ≤ u ≤ 10}.
Then SQT = {1, · · · , 10}, SQI = {0, · · · , 10}, SQF = {1, · · · , 10} and HQT = 0.909 at u = 10, HQI = 0.999
at u = 10, HQF = 1 at u = 0.

3.2 Definition

A GSV N -number p̃ = 〈([a1, b1, σ1, η1];wp̃), ([a2, b2, σ2, η2];up̃), ([a3, b3, σ3, η3]; yp̃)〉 is a special SV N -set on R
where σi(> 0), ηi(> 0) are respectively called left spreads, right spreads and [ai, bi] are the modal intervals of
truth, indeterminacy and falsity functions for i = 1, 2, 3 respectively in p̃ and wp̃, up̃, yp̃ ∈ [0, 1] ⊂ R. The truth,
indeterminacy and falsity functions are defined as follows :

Tp̃(x) =


1
σ1
wp̃(x− a1 + σ1), a1 − σ1 ≤ x ≤ a1,

wp̃, x ∈ [a1, b1],
1
η1
wp̃(b1 − x+ η1), b1 ≤ x ≤ b1 + η1,

0, otherwise.

Ip̃(x) =


1
σ2
(a2 − x+ up̃(x− a2 + σ2)), a2 − σ2 ≤ x ≤ a2,

up̃, x ∈ [a2, b2],
1
η2
(x− b2 + up̃(b2 − x+ η2)), b2 ≤ x ≤ b2 + η2,

1, otherwise.

Fp̃(x) =


1
σ3
(a3 − x+ yp̃(x− a3 + σ3)), a3 − σ3 ≤ x ≤ a3,

yp̃, x ∈ [a3, b3],
1
η3
(x− b3 + yp̃(b3 − x+ η3)), b3 ≤ x ≤ b3 + η3,

1, otherwise.

In parametric form, aGSV N -number p̃ consists of three pairs (T lp̃, T
u
p̃ ), (I

l
p̃, I

u
p̃ ), (F

l
p̃, F

u
p̃ ) of functions T lp̃(r), T

u
p̃ (r),

I lp̃(r), I
u
p̃ (r), F

l
p̃(r), F

u
p̃ (r), r ∈ [0, 1] satisfying the followings.

(i) T lp̃, I
u
p̃ , F

u
ã are bounded monotone increasing continuous function.

(ii) T up̃ , I
l
p̃, F

l
ã are bounded monotone decreasing continuous function.

(iii) T lp̃(r) ≤ T up̃ (r), I
l
p̃(r) ≥ Iup̃ (r), F

l
p̃(r) ≥ F u

p̃ (r), r ∈ [0, 1].

3.2.1 Definition

• The support of the components of a GSV N -number p̃ are given by a triplet (SPT , SPI , SPF ) where SPT = {x ∈
R|Tp̃(x) > 0}, SPI = {x ∈ R|Ip̃(x) < 1}, SPF = {x ∈ R|Fp̃(x) < 1}.
• The height of the components of p̃ are given by a triplet (HPT , HPI , HPF ) where Hp̃T = wp̃, Hp̃I = 1 −
up̃, Hp̃F = 1− yp̃.
• The boundaries of the truth function of p̃ are : LBp̃T = (a1 − σ1, a1) and RBp̃T = (b1, b1 + η1). LBp̃T

and RBp̃T are respectively called left boundary and right boundary for truth function of p̃. Similarly, LBp̃I =
(a2 − σ2, a2), RBp̃I = (b2, b2 + η2) and LBp̃F = (a3 − σ3, a3), RBp̃F = (b3, b3 + η3).
• The core for the truth function of p̃ is a set of points at which it’s height is measured. Similarly, the core for
other two components are defined.
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3.2.2 Example

Consider a GSV N -number p̃ on R whose three components are as follows :

Tp̃(x) =


0.6(x−11)

4
, x ∈ [11, 15]

0.6, x ∈ [15, 25]
0.6(36−x)

11
, x ∈ [25, 36]

0, otherwise.

Ip̃(x) =


4.4−0.1x

4
, x ∈ [4, 8]

0.9, x ∈ [8, 13]
0.1x+5

7
, x ∈ [13, 20]

1, otherwise.

Fp̃(x) =


26−x
3
, x ∈ [23, 26]

0, x ∈ [26, 30]
x−30
8
, x ∈ [30, 38]

1, otherwise.

Then SPT = (11, 36), SPI = (4, 20) and SPF = (23, 38).
For that p̃, Hp̃T = 0.6, Hp̃I = 0.1, Hp̃F = 1. Here,
LBp̃T = (11, 15), RBp̃T = (25, 36); LBp̃I = (4, 8), RBp̃I = (13, 20); LBp̃F = (23, 26), RBp̃F = (30, 38).
The core of truth, indeterminacy and falsity function are [15, 25], [8, 13], [26, 30] respectively.

3.3 Definition

Let us assume two GSV N -numbers p̃ and q̃ as follows :
p̃ = 〈([a1, a′1, σ1, η1];wp̃), ([a2, a′2, σ2, η2];up̃), ([a3, a′3, σ3, η3]; yp̃)〉,
q̃ = 〈([b1, b′1, ξ1, δ1];wq̃), ([b2, b′2, ξ2, δ2];uq̃), ([b3, b′3, ξ3, δ3]; yq̃)〉.

Then for any real number x,
(i) Image of p̃ :
−p̃ = 〈([−a′1,−a1, η1, σ1];wp̃), ([−a′2,−a2, η2, σ2];up̃), ([−a′3,−a3, η3, σ3]; yp̃)〉.

(ii) Addition :
p̃+ q̃ = 〈([a1 + b1, a

′
1 + b′1, σ1 + ξ1, η1 + δ1];wp̃ ∗ wq̃), ([a2 + b2, a

′
2 + b′2, σ2 + ξ2, η2 + δ2];up̃ � uq̃),

([a3 + b3, a
′
3 + b′3, σ3 + ξ3, η3 + δ3]; yp̃ � yq̃)〉.

(iii) Scalar multiplication :
xp̃ = 〈([xa1, xa′1, xσ1, xη1];wp̃), ([xa2, xa′2, xσ2, xη2];up̃), ([xa3, xa′3, xσ3, xη3]; yp̃)〉

for x > 0.
xp̃ = 〈([xa′1, xa1,−xη1,−xσ1];wp̃), ([xa′2, xa2,−xη2,−xσ2];up̃), ([xa′3, xa3,−xη3,−xσ3]; yp̃)〉

for x < 0.

3.4 Corollary

Let p̃ = 〈([a1, b1, σ1, η1];wp̃), ([a2, b2, σ2, η2];up̃), ([a3, b3, σ3, η3]; yp̃)〉 be an GSV N -number.
1. Any α-cut set of the GSV N -number p̃ for truth function is denoted by p̃α and is given by a closed interval as :

p̃α = [Lp̃(α), Rp̃(α)] = [a1 − σ1 +
σ1α

wp̃
, b1 + η1 −

η1α

wp̃
], for α ∈ [0, wp̃].

The value of p̃ corresponding α-cut set is denoted by VT (p̃) and is calculated as :

VT (p̃) =

∫ wp̃

0

[(a1 − σ1 +
σ1α

wp̃
) + (b1 + η1 −

η1α

wp̃
)]α dα

=

∫ wp̃

0

[a1 + b1 + η1 − σ1 −
(η1 − σ1)α

wp̃
]α dα

=
1

6
(3a1 + 3b1 − σ1 + η1)w

2
p̃.
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2. Any β- cut set of the GSV N -number p̃ for indeterminacy membership function is denoted by p̃β and is given
by a closed interval as :

p̃β = [L′p̃(β), R
′
p̃(β)]

= [
(up̃ − β)σ2 + (1− up̃)a2

1− up̃
,
(β − up̃)η2 + (1− up̃)b2

1− up̃
], for β ∈ [up̃, 1].

The value of p̃ corresponding β- cut set is denoted by VI(p̃) and is calculated as :

VI(p̃) =

∫ 1

up̃

[
(up̃ − β)σ2 + (1− up̃)a2

1− up̃
+

(β − up̃)η2 + (1− up̃)b2
1− up̃

](1− β) dβ

=

∫ 1

up̃

[a2 + b2 − σ2 + η2 +
(σ2 − η2)(1− β)

1− up̃
](1− β) dβ

=
1

6
(3a2 + 3b2 − σ2 + η2)(1− up̃)2.

3. Any γ-cut set of the GSV N -number p̃ for falsity membership function is denoted by γ p̃ and is given by a
closed interval as :

γ p̃ = [L′′p̃(γ), R
′′
p̃(γ)]

= [
(up̃ − γ)σ3 + (1− yp̃)a3

1− yp̃
,
(γ − yp̃)η3 + (1− yp̃)b3

1− yp̃
], for γ ∈ [yp̃, 1].

The value of p̃ corresponding γ-cut set is denoted by VF (p̃) and is calculated as :

VF (p̃) =

∫ 1

yp̃

[
(up̃ − γ)σ3 + (1− yp̃)a3

1− yp̃
+

(γ − yp̃)η3 + (1− yp̃)b3
1− yp̃

](1− γ) dγ

=

∫ 1

yp̃

[a3 + b3 − σ3 + η3 +
(σ3 − η3)(1− γ)

1− yp̃
](1− γ) dγ

=
1

6
(3a3 + 3b3 − σ3 + η3)(1− yp̃)2.

3.5 Definition
For κ ∈ [0, 1], the κ-weighted value of an GSV N -number b̃ is denoted by Vκ(b̃) and is defined as :
Vκ(b̃) = κnVT (b̃) + (1− κn)VI(b̃) + (1− κn)VF (b̃), n being any natural number.

Thus, the κ - weighted value for the GSV N - number p̃ defined in Corollary 3.4 is :

Vκ(p̃) =
1

6
[(3a1 + 3b1 − σ1 + η1)κ

nw2
p̃ + (3a2 + 3b2 − σ2 + η2)(1− κn)(1− up̃)2

+(3a3 + 3b3 − σ3 + η3)(1− κn)(1− yp̃)2].

3.5.1 Property of κ - weighted value function

The κ- weighted value Vκ(p̃) and Vκ(q̃) of two GSV N -numbers p̃, q̃ respectively obey the followings.
(i) Vκ(p̃± q̃) ≤ Vκ(p̃) + Vκ(q̃), Vκ(p̃+ q̃) ≥ Vκ(p̃) ∼ Vκ(q̃).
(ii) Vκ(p̃− p̃) = Vκ(0̃), Vκ(µp̃) = µVκ(p̃)) for µ being any real number.
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(iii) Vκ(p̃) is monotone increasing or decreasing or constant according as VT (p̃) > VI(p̃) + VF (p̃)
or VT (p̃) < VI(p̃) + VF (p̃) or VT (p̃) = VI(p̃) + VF (p̃) respectively.

Proof. We shall here prove (vi) only. Others can be easily verified by taking any two GSV N -numbers. Here,

Vκ(p̃) = κnVT (p̃) + (1− κn)(VI(p̃) + VF (p̃))

dVκ(p̃)

dκ
= nκn−1[VT (p̃)− (VI(p̃) + VF (p̃))]

As κ ∈ [0, 1], so dVκ(p̃)
dκ

>,<,= 0 for [VT (p̃)− (VI(p̃) + VF (p̃))] >,<,= 0 respectively. This clears the fact.

3.6 Definition

Let GSV N(R) be the set of all GSV N -numbers defined over R. For κ ∈ [0, 1], a mapping <κ : GSV N(R) −→ R
is called a ranking function and it is defined as : <κ(ã) = Vκ(ã) for ã ∈ GSV N(R).

For ã, b̃ ∈ GSV N(R), their ranking is defined as :

ã ><κ b̃ iff <κ(ã) > <κ(b̃), ã <<κ b̃ iff <κ(ã) < <κ(b̃), ã =<κ b̃ iff <κ(ã) = <κ(b̃).

3.7 Definition

AnGSV N -number p̃ is called aGSV TN -number if three modal intervals in p̃ are equal. Thus p̃ = 〈([a0, b0, σ1, η1];wp̃),
([a0, b0, σ2, η2];up̃), ([a0, b0, σ3, η3]; yp̃)〉 is an GSV TN -number whose truth, indeterminacy and falsity functions
are as follows :

Tp̃(x) =


1
σ1
wp̃(x− a0 + σ1), a0 − σ1 ≤ x ≤ a0,

wp̃, x ∈ [a0, b0],
1
η1
wp̃(b0 − x+ η1), b0 ≤ x ≤ b0 + η1,

0, otherwise.

Ip̃(x) =


1
σ2
(a0 − x+ up̃(x− a0 + σ2)), a0 − σ2 ≤ x ≤ a0,

up̃, x ∈ [a0, b0],
1
η2
(x− b0 + up̃(b0 − x+ η2)), b0 ≤ x ≤ b0 + η2,

1, otherwise.

Fp̃(x) =


1
σ3
(a0 − x+ yp̃(x− a0 + σ3)), a0 − σ3 ≤ x ≤ a0,

yp̃, x ∈ [a0, b0],
1
η3
(x− b0 + yp̃(b0 − x+ η3)), b0 ≤ x ≤ b0 + η3,

1, otherwise.

In parametric form for r ∈ [0, 1] :

T lp̃(r) = a0 − σ1 +
σ1r

wp̃
, T up̃ (r) = b0 + η1 −

η1r

wp̃
;

I lp̃(r) =
(1− up̃)a0 + (up̃ − r)σ2

1− up̃
, Iup̃ (r) =

(1− up̃)b0 + (r − up̃)η2
1− up̃

;

F l
p̃(r) =

(1− yp̃)a0 + (yp̃ − r)σ3
1− yp̃

, F u
p̃ (r) =

(1− yp̃)b0 + (r − yp̃)η3
1− yp̃

.
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3.8 Definition
A GSV TN -number p̃ is called a GSV TrN -number if the modal interval in p̃ is reduced to a modal point. Thus
p̃ = 〈([a0, σ1, η1];wp̃), ([a0, σ2, η2];up̃), ([a0, σ3, η3]; yp̃)〉 is a GSV TrN -number whose truth, indeterminacy and
falsity functions are as follows :

Tp̃(x) =


1
σ1
wp̃(x− a0 + σ1), a0 − σ1 ≤ x ≤ a0,

wp̃, x = a0,
1
η1
wp̃(a0 − x+ η1), a0 ≤ x ≤ a0 + η1,

0, otherwise.

Ip̃(x) =


1
σ2
(a0 − x+ up̃(x− a0 + σ2)), a0 − σ2 ≤ x ≤ a0,

up̃, x = a0,
1
η2
(x− a0 + up̃(a0 − x+ η2)), a0 ≤ x ≤ a0 + η2,

1, otherwise.

Fp̃(x) =


1
σ3
(a0 − x+ yp̃(x− a0 + σ3)), a0 − σ3 ≤ x ≤ a0,

yp̃, x = a0,
1
η3
(x− a0 + yp̃(a0 − x+ η3)), a0 ≤ x ≤ a0 + η3,

1, otherwise.

3.8.1 Definition

Let ã and b̃ be two GSV TrN -numbers as follows :
ã = 〈([a, σ1, η1];wã), ([a, σ2, η2];uã), ([a, σ3, η3]; yã)〉,
b̃ = 〈([b, ξ1, δ1];wb̃), ([b, ξ2, δ2];ub̃), ([b, ξ3, δ3]; yb̃)〉.

Then for any real number x,
(i) Image of ã :
−ã = 〈([−a, η1, σ1];wã), ([−a, η2, σ2];uã), ([−a, η3, σ3]; yã)〉.

(ii) Addition :
ã+ b̃ = 〈([a+ b, σ1 + ξ1, η1 + δ1];wã ∗ wb̃), ([a+ b, σ2 + ξ2, η2 + δ2];uã � ub̃),

([a+ b, σ3 + ξ3, η3 + δ3]; yã � yb̃)〉.
(iii) Scalar multiplication :
xã = 〈([xa, xσ1, xη1];wã), ([xa, xσ2, xη2];uã), ([xa, xσ3, xη3]; yã)〉 for x > 0.
xã = 〈([xa,−xη1,−xσ1];wã), ([xa,−xη2,−xσ2];uã), ([xa,−xη3,−xσ3]; yã)〉

for x < 0.
(iv) The κ - weighted value Vκ(ã) of ã is given as :

Vκ(ã) =
1

6
[(6a− σ1 + η1)κ

nw2
ã + {(6a− σ2 + η2)(1− uã)2 + (6a− σ3 + η3)(1− yã)2}(1− κn)].

3.8.2 Remark

Definition 2.4.1 shows that the supports ( i.e. the bases of trapeziums (triangles)) for truth, indeterminacy
and falsity function are all same. Then the value of truth, indeterminacy and falsity function (i.e., the area of
individual trapezium (triangle)) differs in respect to their corresponding height only. But by Definition 3.7, we
consider different supports (i.e. bases of trapeziums (triangles) formed ) for truth, indeterminacy and falsity
functions. Thus we can allow the supports and heights together to differ the value of truth, indeterminacy and
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falsity functions in the present study. Briefly, Definition 2.4.1 is a particular case of Definition 3.7. Hence
decision maker has a scope of flexibility to choose and compare different GSV N -numbers in their study. The
facts are shown by the graphical Figure 1 and 2. Figure 1 and Figure 2 represent Definition 2.4.1 and Definition
3.7 respectively.

3.9 Definition

1. The zero GSV TN -number is denoted by 0̃ and is defined as :
0̃ = 〈([0, 0, 0, 0]; 1), ([0, 0, 0, 0]; 0), ([0, 0, 0, 0]; 0)〉.

2. The zero GSV TrN -number is denoted by 0̃ and is defined as :
0̃ = 〈([0, 0, 0]; 1), ([0, 0, 0]; 0), ([0, 0, 0]; 0)〉.

4 Neutrosophic Linear Programming Problem

Before to discuss the main result, we shall remember the crisp concept of an LP -problem. The standard form
of an LP -problem is :

Max z = cx such that Ax = b, x ≥ 0

where c = (c1, c2, · · · , cn), b = (b1, b2, · · · , bn)t and A = [aij]m×n.
In this problem, all the parameters are crisp. we shall now define NLP -problem.

4.1 Definition

An LP -problem having some parameters as GSV N -number is called an NLP -problem. Considering the coeffi-
cient of the variables in the objective function in an LP -problem in term of GSV N -numbers, an NLP -problem
is designed as follows :

Max z̃ =<κ c̃x

such that Mx = b; x ≥ 0 (4.1)

T. Bera and N. K. Mahapatra, Generalised single valued neutrosophic number and its application to
neutrosophic linear programming.

Neutrosophic Sets and Systems, Vol. 25, 2019



94

where b ∈ Rm, x ∈ Rn,M ∈ Rm×n, c̃t ∈ (GSV N(R))n and <κ is a ranking function.

4.2 Definition
1. x ∈ Rn is a feasible solution to equation (4.1) if x satisfies the constraints of that.
2. A feasible solution x∗ is an optimal solution if for all solutions x to (4.1), c̃x∗ ≥<κ c̃x.
3. For the NLP -problem (4.1), suppose rank(M, b) = rank(M) = m. M is partitioned as [B,N ] where B is a
non-singular m ×m matrix i.e., rank(B) = m. A feasible solution x = (xB, xN)

t to (4.1) obtained by setting
xB = B−1b, xN = 0 is called a neutrosophic basic feasible solution (NBFS). Here B and N are respectively
called basis and non basis matrix. xB is called a basic variable and xN is called a non-basic variable.
4. In an NBFS if all components of xB > 0, then x is non-degenerate NBFS and if at least one component of
xB = 0, then x is degenerate NBFS .

5 Simplex Method for NLP -problem
The NLP-problem (4.1) can be put as follows :

Max z̃ =<κ c̃BxB + c̃NxN

such that BxB +NxN = b; xB, xN ≥ 0

where the characters B,N, xB and xN are already stated. Then we have,

xB +B−1NxN = B−1b (5.1)
⇒ c̃BxB + c̃BB

−1NxN =<κ c̃BB
−1b

⇒ z̃ − c̃NxN + c̃BB
−1NxN =<κ c̃BB

−1b

⇒ z̃ + (c̃BB
−1N − c̃N)xN =<κ c̃BB

−1b. (5.2)

For an NBFS , treating xN = 0, we have xB = B−1b and z̃ =<κ c̃BB
−1b from (5.1) and (5.2), respectively. We

can rewrite the NLP -problem as given in Table 1.

Table 1 : Tabular form of an NLP -problem.
c̃j c̃B c̃N
z̃ xB xN R.H.S

xB 0 1 B−1N B−1b

z̃ 1 0 c̃BB
−1N − c̃N c̃BB

−1b

We can get all required initial information to proceed with the simplex method from Table 1. The neutrosophic
cost row in the Table 1 is λ̃j =<κ (c̃BB

−1aj − cj)aj /∈B giving λ̃j =<κ (z̃j − c̃j) for non-basic variables. The
optimality arises if λ̃j ≥<κ 0̃, ∀aj /∈ B. If λ̃l <<κ 0̃ for any al /∈ B, we need to replace xBi by xl. We then
compute yl = B−1al. If yl ≤ 0, then xl can be increased indefinitely and so the problem admits unbounded
optimal solution. But if yl has at least one positive component, then one of the current basic variables blocks
that increase, which drops to zero.

5.1 Theorem
In every column aj ofM , if z̃j− c̃j ≥<κ 0̃ holds for anNBFS xB of theNLP -problem (4.1) then it is an optimal
solution to that.
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Proof. Let M = [aij]m×n = [a1, a2, · · · , an] where each al = (a1l, a2l, · · · , aml)t is m component column
vector. Suppose B = [η1, η2, · · · , ηm] is the basis matrix and z̃B =<κ c̃BxB =<κ

∑m
i=1 c̃BixBi , where c̃Bi is the

price corresponding to the basic variable xBi . Then any column al of M may be put as a linear combination of
the vectors η1, η2, · · · , ηm of B. Let

al = y1lη1 + y2lη2 + · · ·+ ymlηm =
m∑
i=1

yilηi = Byl ⇒ yl = B−1al.

where yl = (y1l, y2l, · · · , yml)t being m component scalars represents al, the l-th vector of M . Assume that
z̃l =<κ c̃Byl =<κ

∑m
i=1 c̃Biyil.

Let x = [x1, x2, · · · , xn]t be any other feasible solution of the NLP -problem (4.1) and z̃ be the correspond-
ing objective function. Then,

BxB = b =Mx ⇒ xB = B−1(Mx) = (B−1M)x = yx

where B−1M = y = [yij]m×n = [y1, y2, · · · , yn] with yl defined as above. Thus,
xB1

xB2

...
xBm

 =


y11 y12 · · · y1n
y21 y22 · · · y2n
...

... . . . ...
ym1 ym2 · · · ymn




x1
x2
...
xn


Equating i-th component from both sides, we have xBi =

∑n
j=1 yijxj . Now,

z̃j − c̃j ≥<κ 0̃⇒ (z̃j − c̃j)xj ≥<κ 0̃ [ as xj > 0 ]⇒
n∑
j=1

(z̃j − c̃j)xj ≥<κ 0̃

⇒
n∑
j=1

z̃jxj −
n∑
j=1

c̃jxj ≥<κ 0̃⇒
n∑
j=1

xj(c̃Byj)− z̃ ≥<κ 0̃

⇒
n∑
j=1

xj(
m∑
i=1

c̃Biyij)− z̃ ≥<κ 0̃⇒
m∑
i=1

c̃Bi(
n∑
j=1

yijxj)− z̃ ≥<κ 0̃

⇒
m∑
i=1

c̃Bix̃Bi − z̃ ≥<κ 0̃⇒ z̃B − z̃ ≥<κ 0̃.

Thus z̃B is the maximum value of the objective function. This optimality criterion holds for all non-basic vectors
of M . If al be in the basis matrix B, say al = ηl, then

al = ηl = 0.η1 + 0.η2 + · · ·+ 0.ηl−1 + 1.ηl + 0.ηl+1 + · · ·+ 0.ηm
i.e., yl is a unit vector el with l-th component unity.
Since al = ηl, we have c̃l = c̃Bl and so

z̃l − c̃l =<κ (c̃Byl − c̃l) =<κ (c̃Bel − c̃l) =<κ (c̃Bl − c̃Bl) =<κ 0̃.
Thus as a whole z̃j − c̃j ≥<κ 0̃ is the necessary condition for optimality.

5.2 Theorem
A non-degenerate NBFS xB = B−1b, xN = 0 is optimal to NLP -problem (4.1) iff z̃j − c̃j ≥<κ 0̃,∀1 ≤ j ≤ n.
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Proof. Suppose x∗ = (xtB, x
t
N)

t be an NBFS to (4.1) where xB = B−1b, xN = 0. If z̃∗ be the objective function
corresponding to x∗, then z̃∗ =<κ c̃BxB =<κ c̃BB

−1b. Let x = [x1, x2, · · · , xn]t be another feasible solution of
NLP -problem (4.1) and z̃ be the corresponding objective function. Then,

z̃ =<κ c̃BxB + c̃NxN =<κ c̃BB
−1b−

∑
aj /∈B

(c̃BB
−1aj − c̃j)xj =<κ z̃∗ −

∑
aj /∈B

(z̃j − c̃j)xj

This shows that the solution is optimal iff z̃j − c̃j ≥<κ 0̃ for all 1 ≤ j ≤ n.

5.3 Theorem
For any NBFS to NLP -problem (4.1), if there is some column not in basis such that z̃l − c̃l <<κ 0̃ and
yil ≤ 0, i = 1, 2, · · · ,m, then (4.1) admits an unbounded solution.

Proof. Let xB be a basic solution to the NLP -problem (4.1). Re-writing the constraints,

BxB +NxN = b

⇒ xB +B−1NxN = B−1b

⇒ xB +B−1
∑
j

(ajxj) = B−1b, ajs are the columns of N

⇒ xB +
∑
j

(B−1ajxj) = B−1b

⇒ xB +
∑
j

(yjxj) = y0, where aj = Byj, aj /∈ B

⇒ xBi +
∑
j

(yijxj) = yi0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

⇒ xBi = yi0 −
∑
j

(yijxj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

If xl enters into the basis, then xl > 0 and xj = 0 for j 6= Bi∪l. Since yil ≤ 0, 1 ≤ i ≤ m hence yi0−yilxl ≥ 0.
So, the basic solution remains feasible and for that, the objective function is :

z̃∗ =<κ c̃BxB + c̃NxN =<κ

m∑
i=1

c̃Bi(yi0 − yilxl) + c̃lxl =<κ

m∑
i=1

c̃Biyi0 − (
m∑
i=1

c̃Biyil − c̃l)xl

=<κ c̃By0 − (c̃Byl − c̃l)xl =<κ z̃ − (z̃l − c̃l)xl.

It shows that z̃∗ ><κ z̃, as z̃l − c̃l <<κ 0̃ and this completes the fact.

5.4 Simplex algorithm for solving NLP -problem
To solve any NLP -problem by simplex method, the existence of an initial basic feasible solution is always
assumed. This solution will be optimised through some iterations. The required steps are as follows :
Step 1. Check whether the objective function of the givenNLP -problem is to be maximized or minimized. If it
is to be minimized, then it is converted into a maximization problem by using the resultMin(z̃) = −Max(−z̃).
Step 2. Convert all the inequations of the constraints (≤ type) into equations by introducing slack variables.
Put the costs of the respective variables equal to 0̃.
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Step 3. Obtain an NBFS to the problem in the form xB = B−1b = y0 and xN = 0. The corresponding objective
function is z̃ =<κ c̃BB−1b =<κ c̃By0.
Step 4. For each basic variable, put λ̃B =<κ z̃B − c̃B =<κ 0̃. For each non-basic variable, calculate λ̃j =<κ
z̃j − c̃j =<κ c̃BB−1aj − c̃j in the current iteration. If all z̃j − c̃j ≥<κ 0̃, then the present solution is optimal.
Step 5. If for some non-basic variables, λ̃j =<κ z̃j − c̃j <<κ 0̃ then find out λ̃l = min{λ̃j}. If yil < 0 for
all i = 1, · · · ,m, then the given problem will have unbounded solution and stop the iteration. Otherwise to
determine the index of the variable xBr that is to be removed from the current basis, compute

yr0
yrl

= min{yi0
yil

: yil > 0, 1 ≤ i ≤ m}.

Step 6. Update yi0 by replacing yi0 − yr0
yrl
yil for i 6= r and yr0 by yr0

yrl
.

Step 7. Construct new basis and repeat the Step 4, Step 5 until the optimality is reached.
Step 8. Find the optimal solution and hence the optimal value of objective function.

6 Numerical Example

The NLP -problems with both GSV TN -number and GSV TrN -number are solved by the use of proposed algo-
rithm. For simplicity, we define the κ-weighted value function for n = 1 in rest of the paper.

6.1 Example

Two friends F1 and F2 wish to invest in a raising share market. They choose two particular shares S1 and
S2 of two multinational companies. They also decide to purchase equal unit of two shares individually. The
maximum investment of F1 is Rs. 4000 and that of F2 is Rs. 7000. The price per unit of S1 and S2 are Re. 1
and Rs. 3, respectively when F1 purchases. These are Rs. 2 and Rs. 5 at the time of purchasing of share by F2.
The current value of share S1 and S2 per unit is Rs. c̃1 and Rs. c̃2 (given in GSV N -numbers), respectively. Now
if they sell their shares, formulate an NLP -problem to maximize their returns.

The problem can be summarised as follows :

Table 2
Friends ⇓ Shares : S1 S2 Purchasing capacity ⇓

F1 Re. 1 Rs. 3 Rs. 4000
F2 Rs. 2 Rs. 5 Rs. 7000

Price per unit ⇒ c̃1 c̃2

Let they individually purchase x1 units of share S1 and x2 units of share S2. The problem is formulated as :

Max z̃ =<κ c̃1x1 + c̃2x2

such that x1 + 3x2 ≤ 4000

2x1 + 5x2 ≤ 7000; x1, x2 ≥ 0

It is anNLP -problem where c̃1 = 〈([5, 8, 1, 3]; 0.2), ([5, 8, 3, 4]; 0.3), ([5, 8, 2, 1]; 0.4)〉 and c̃2 = 〈([3, 7, 2, 4]; 0.3),
([3, 7, 1, 3]; 0.5), ([3, 7, 2, 5]; 0.6)〉 are two GSV TN -numbers with a pre-assigned κ = 0.45.
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Rewriting the given constraints by introducing slack variables :

x1 + 3x2 + x3 = 4000

2x1 + 5x2 + x4 = 7000

x1, x2, x3, x4 ≥ 0

We take the t-norm and s-norm as p ∗ q = min{p, q} and p � q = max{p, q}, respectively. The first feasible
simplex table is as follows :

Table 3 : First iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 1 3 1 0 4000
x4 2 5 0 1 7000→

z̃ ⇒ c̃
(1)
1 ↑ c̃

(1)
2 c̃

(1)
3 c̃

(1)
4

Here c̃(1)1 = −c̃1 = 〈([−8,−5, 3, 1]; 0.2), ([−8,−5, 4, 3]; 0.3), ([−8,−5, 1, 2]; 0.4)〉,
c̃
(1)
2 = −c̃2 = 〈([−7,−3, 4, 2]; 0.3), ([−7,−3, 3, 1]; 0.5), ([−7,−3, 5, 2]; 0.6)〉

and Vκ(c̃
(1)
3 ) = Vκ(c̃

(1)
4 ) = Vκ(0̃).

Then Vκ(c̃
(1)
1 ) = 1

6
(31.64κ− 33.28) and Vκ(c̃

(1)
2 ) = 1

6
(10.4κ− 13.28) by Definition 3.5.

Clearly Vκ(c̃
(1)
1 ) < 0, Vκ(c̃

(1)
2 ) < 0 and Vκ(c̃

(1)
1 )− Vκ(c̃(1)2 ) < 0 for κ = 0.45.

Then c̃(1)1 <<κ c̃
(1)
2 . So x1 enters in the basis and as min{4000/1, 7000/2} = 3500, the leaving variable is x4.

The revised table is :

Table 4 : Second iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 0 1/2 1 -1/2 500
x1 1 5/2 0 1/2 3500

z̃ ⇒ c̃
(2)
1 c̃

(2)
2 c̃

(2)
3 c̃

(2)
4 3500c̃1

where Vκ(c̃
(2)
1 ) = Vκ(c̃

(2)
3 ) = Vκ(0̃) and

c̃
(2)
2 =

5

2
c̃1 − c̃2

= 2.5〈([5, 8, 1, 3]; 0.2), ([5, 8, 3, 4]; 0.3), ([5, 8, 2, 1]; 0.4)〉
−〈([3, 7, 2, 4]; 0.3), ([3, 7, 1, 3]; 0.5), ([3, 7, 2, 5]; 0.6)〉

= 〈([5.5, 17, 6.5, 9.5]; 0.2), ([5.5, 17, 10.5, 11]; 0.5), ([5.5, 17, 10, 4.5]; 0.6)〉.

c̃
(2)
4 =

1

2
c̃1 = 〈([2.5, 4, 0.5, 1.5]; 0.2), ([2.5, 4, 1.5, 2]; 0.3), ([2.5, 4, 1, 0.5]; 0.4)〉.

Then Vκ(c̃
(2)
2 ) = 1

6
(26.92− 24.1κ) and Vκ(c̃

(2)
4 ) = 1

6
(16.64− 15.82κ) by Definition 3.5.

Clearly Vκ(c̃
(2)
2 ) > 0 and Vκ(c̃

(2)
4 ) > 0 for κ = 0.45.

T. Bera and N. K. Mahapatra, Generalised single valued neutrosophic number and its application to
neutrosophic linear programming.

Neutrosophic Sets and Systems, Vol. 25, 2019



99

Hence the optimality arises and Max z̃ =<κ 3500c̃1 , which, using κ - weighted function, becomes Rs.
11107 approximately. Then corresponding return of F1 and F2 becomes Rs. 7607 and of Rs. 4107 respectively.

6.1.1 Example

Consider the NLP -problem defined in Example 6.1 with a pre-assigned κ = 0.96.
The initial simplex table (Table 5) is same as Table 3.

Table 5 : First iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 1 3 1 0 4000→
x4 2 5 0 1 7000

z̃ ⇒ c̃
(1)
1 c̃

(1)
2 ↑ c̃

(1)
3 c̃

(1)
4

Here Vκ(c̃
(1)
3 ) = Vκ(c̃

(1)
4 ) = Vκ(0̃) and Vκ(c̃

(1)
1 ) < 0, Vκ(c̃

(1)
2 ) < 0 with Vκ(c̃

(1)
1 ) − Vκ(c̃(1)2 ) > 0 for κ = 0.96.

Then c̃(1)1 ><κ c̃
(1)
2 . So x2 enters in the basis and as min{4000

3
, 7000

5
} = 4000

3
, the leaving variable is x3. The

revised table is :

Table 6 : Second iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x2 1/3 1 1/3 0 4000/3
x4 1/3 0 -5/3 1 1000/3→

z̃ ⇒ c̃
(2)
1 ↑ c̃

(2)
2 c̃

(2)
3 c̃

(2)
4

4000
3
c̃2

where Vκ(c̃
(2)
2 ) = Vκ(c̃

(2)
4 ) = Vκ(0̃) and

c̃
(2)
1 =

1

3
c̃2 − c̃1 = 〈([−7,−8/3, 11/3, 7/3]; 0.2), ([−7,−8/3, 13/3, 4]; 0.5), ([−7,−8/3, 5/3, 11/3]; 0.6)〉,

c̃
(2)
3 =

1

3
c̃2 = 〈([1, 7/3, 2/3, 4/3]; 0.3), ([1, 7/3, 1/3, 1]; 0.5), ([1, 7/3, 2/3, 5/3]; 0.6)〉.

Then Vκ(c̃
(2)
1 ) = 1

18
(31.32κ− 34.96) and Vκ(c̃

(2)
3 ) = 1

18
(13.28− 10.4κ).

Clearly Vκ(c̃
(2)
1 ) < 0 and Vκ(c̃

(2)
3 ) > 0 for κ = 0.96. So x1 enters in the basis and as min{4000/3

1/3
, 1000/3

1/3
} = 1000,

the leaving variable is x4. The revised table is :

Table 7 : Third iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x2 0 1 2 -1 1000→
x1 1 0 -5 3 1000

z̃ ⇒ c̃
(3)
1 c̃

(3)
2 c̃

(3)
3 ↑ c̃

(3)
4 1000(c̃1 + c̃2)
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where Vκ(c̃
(3)
1 ) = Vκ(c̃

(3)
2 ) = Vκ(0̃) and

c̃
(3)
3 = −5c̃1 + 2c̃2 = 〈([−34,−11, 19, 13]; 0.2), ([−34,−11, 22, 21]; 0.5), ([−34,−11, 9, 20]; 0.6)〉,

c̃
(3)
4 = 3c̃1 − c̃2 = 〈([8, 21, 7, 11]; 0.2), ([8, 21, 12, 13]; 0.5), ([8, 21, 11, 5]; 0.6)〉.

Then Vκ(c̃
(3)
3 ) = 1

6
(48.2κ− 53.84) < 0 and Vκ(c̃

(3)
4 ) = 1

6
(34.96− 31.32κ) > 0 for κ = 0.96. So x3 enters in the

basis and the leaving variable is x2. The revised table is :

Table 8 : Fourth iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 0 1/2 1 -1/2 500
x1 1 5/2 0 1/2 3500

z̃ ⇒ c̃
(4)
1 c̃

(4)
2 c̃

(4)
3 c̃

(4)
4 3500c̃1

where Vκ(c̃
(4)
1 ) = Vκ(c̃

(4)
3 ) = Vκ(0̃) and c̃(4)2 = 5

2
c̃1 − c̃2 and c̃(4)4 = 1

2
c̃1. Then Vκ(c̃

(4)
2 ) = 1

6
(26.92− 24.1κ) > 0

and Vκ(c̃
(4)
4 ) = 1

6
(16.64− 15.82κ) > 0 for κ = 0.96.

Hence the optimality arises and the optimal solution is x1 = 3500, x2 = 0.

6.1.2 Remark

From Example 6.1 and Example 6.1.1, it is seen that the final simplex tables in both cases are same. So, if
the optimality exists for an NLP -problem, the optimal solutions are always unique whatever the value of κ
assigned. Depending upon the chosen κ, the number of iteration to reach at optimality stage may vary but it
does not affect the optimal solutions. However, the character κ plays an important role to assign the optimal
value of the objective function in a problem. The fact is shown in Table 9. So, the value of κ is an important
factor in any such NLP -problem. Since the share market depends on so many factors, we claim κ as the degree
of political turmoil of the country in the present problem.

6.1.3 Sensitivity analysis in post optimality stage

We shall analyse the results of the problem in Example 6.1 for different values of κ in post optimality stage,
shown by the Table 9.

Table 9 : Sensitivity analysis
κ 0 0.1 0.2 0.3 0.4
x1 3500 3500 3500 3500 3500
x2 0 0 0 0 0

Vκ(z̃) 19413.33 17567.67 15722 13876.33 12030.67
κ 0.5 0.6 0.7 0.8 0.9 1
x1 3500 3500 3500 3500 3500 3500
x2 0 0 0 0 0 0

Vκ(z̃) 10185 8339.33 6493.67 4648 2802.33 956.67
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6.2 Example

Max z̃ =<κ c̃1x1 + c̃2x2

s.t. 2x1 + 3x2 ≤ 4

5x1 + 4x2 ≤ 15

x1, x2 ≥ 0

is an NLP -problem where c̃1 = 〈([8, 1, 3]; 0.6), ([8, 3, 4]; 0.2), ([8, 2, 1]; 0.5)〉 and
c̃2 = 〈([6, 2, 6]; 0.7), ([6, 4, 3]; 0.4), ([6, 3, 5]; 0.3)〉 are two GSV TrN -numbers with a pre-assigned κ = 0.9.

Rewriting the given constraints by introducing slack variables :

2x1 + 3x2 + x3 = 4

5x1 + 4x2 + x4 = 15

x1, x2, x3, x4 ≥ 0

The t-norm and s-norm are p∗ q = max{p+ q−1, 0} and p� q = min{p+ q, 1}, respectively. The first feasible
simplex table is as follows :

Table 10 : First iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x3 2 3 1 0 4→
x4 5 4 0 1 15

z̃ ⇒ c̃
(1)
1 c̃

(1)
2 ↑ c̃

(1)
3 c̃

(1)
4

Here c̃(1)1 = −c̃1 = 〈([−8, 3, 1]; 0.6), ([−8, 4, 3]; 0.2), ([−8, 1, 2]; 0.5)〉,
c̃
(1)
2 = −c̃2 = 〈([−6, 6, 2]; 0.7), ([−6, 3, 4]; 0.4), ([−6, 5, 3]; 0.3)〉

and Vκ(c̃
(1)
3 ) = Vκ(c̃

(1)
4 ) = Vκ(0̃).

Then Vκ(c̃
(1)
1 ) = 1

6
(25.11κ− 43.11) and Vκ(c̃

(1)
2 ) = 1

6
(11.62κ− 31.22) by Definition 3.8.1.

Clearly Vκ(−c̃1) < 0, Vκ(−c̃2) < 0 and Vκ(−c̃1)− Vκ(−c̃2) > 0 for κ = 0.9.
So x2 enters in the basis and as min{4/3, 15/4} = 4/3, the leaving variable is x3. The revised table is as :

Table 11 : Second iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x2 2/3 1 1/3 0 4/3→
x4 7/3 0 -4/3 1 29/3

z̃ ⇒ c̃
(2)
1 ↑ c̃

(2)
2 c̃

(2)
3 c̃

(2)
4

4
3
c̃2
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where Vκ(c̃
(2)
2 ) = Vκ(c̃

(2)
4 ) = Vκ(0̃) and

c̃
(2)
1 =

2

3
c̃2 − c̃1 = 〈([−4, 13/3, 5]; 0.3), ([−4, 20/3, 5]; 0.6), ([−4, 3, 16/3]; 0.8)〉,

c̃
(2)
3 =

1

3
c̃2 = 〈([2, 2/3, 2]; 0.7), ([2, 4/3, 1]; 0.4), ([2, 1, 5/3]; 0.3)〉.

Then Vκ(c̃
(2)
1 ) = 1

18
(8.62κ− 14.92) and Vκ(c̃

(2)
3 ) = 1

18
(31.22− 11.62κ) by Definition 3.8.1.

Clearly, Vκ(c̃
(2)
1 ) < 0 but Vκ(c̃

(2)
3 ) > 0 for κ = 0.9. So x1 enters in the basis and as min{4/3

2/3
, 29/3

7/3
} = 2, the

leaving variable is x2. The revised table is :

Table 12 : Third iteration

c̃j ⇒ c̃1 c̃2 0̃ 0̃
xB ⇓ x1 x2 x3 x4 R.H.S
x1 1 3/2 1/2 0 2
x4 0 -7/2 -5/2 1 5

z̃ ⇒ c̃
(3)
1 c̃

(3)
2 c̃

(3)
3 c̃

(3)
4 2c̃1

where Vκ(c̃
(3)
1 ) = Vκ(c̃

(3)
4 ) = Vκ(0̃) and

c̃
(3)
2 =

3

2
c̃1 − c̃2 = 〈([6, 7.5, 6.5]; 0.3), ([6, 7.5, 10]; 0.6), ([6, 8, 4.5]; 0.8)〉,

c̃
(3)
3 =

1

2
c̃1 = 〈([4, 0.5, 1.5]; 0.6), ([4, 1.5, 2]; 0.2), ([4, 1, 0.5]; 0.5)〉.

Then Vκ(c̃
(3)
2 ) = 1

6
(7.46− 4.31κ) and Vκ(c̃

(3)
3 ) = 1

6
(21.555− 12.555κ) by Definition 3.8.1.

Obviously, Vκ(c̃
(3)
2 ) > 0 and Vκ(c̃

(3)
3 ) > 0 for κ = 0.9. Hence the optimality arises. The optimal solution is

x1 = 2, x2 = 0 and so Max z̃ =<κ 2c̃1.

7 Conclusion
In this paper, the crispLP -problem has been generalised by considering the coefficients of the objective function
as GSV N -numbers. This generalised form of crisp LP -problem is called NLP -problem. Then a simplex
algorithm has been proposed to solve suchNLP -problems. Finally, the newly developed simplex algorithm has
been applied to a real life problem. The concept has been illustrated by suitable examples using both GSV TN -
numbers and GSV TrN -numbers. In future, the concept of a linear programming problem may be extended in
more generalised way by considering some or all of the parameters as GSV N -numbers.
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