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Abstract. Game theory is commonly used in competitive situations because of its significance in decision-

making. Different types of fuzzy sets can handle uncertainty in matrix games. Neutrosophic set theory plays a

vital role in analyzing complexity, ambiguity, incompleteness, and inconsistency in real-world problems. This

study develops a novel approach to solve neutrosophic matrix games using linear programming problems with

single-valued triangular neutrosophic numbers as pay-offs. This paper establishes some theoretical aspects of

game theory in a neutrosophic environment. A numerical example verifies the theoretical results using the

traditional simplex approach to achieve the strategy and value of the game. The proposed work is useful to

model and solve conflict situations in decision-making problems with partial knowledge as data in a simple

manner.

Keywords: Matrix game; Neutrosophic set; Single valued triangular neutrosophic number; Neutrosophic

matrix game

—————————————————————————————————————————-

1. Introduction

Real-world conflict scenarios are often investigated using game theory. It is difficult to col-

lect the right data from decision-makers in today’s situations. Fuzzy set theory is based on

unreliable information and vagueness due to a lack of some pieces of information and accurate

data. Previous research investigated complexity in game theory using fuzzy sets, intuitionistic

fuzzy sets, and rough fuzzy sets. The concept of neutrosophic set theory in games is new at the

moment, and it is a common research subject all over the world for dealing with competitive

situations.

Neumann and Morgenstern [1] established the notion of game theory. Although, the classical
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game theory has exact data and factual information about the players. In uncertain situ-

ations, the notion of the fuzzy set theory proposed by Zadeh [2] is applied to many fields.

Campus [5] introduced a model based on a linear programming approach to interpreting fuzzy

matrix games. Sakawa and Nishizaki [6,10] investigated max-min solution methods for multi-

objective conflict resolution problems. Bector et al. [11,12] determined the matrix games with

fuzzy goals and fuzzy payoffs. The concept of dual linear programming approach employed

by Vijay et al. [13]. Several researchers [14, 15, 25, 27, 37] developed fuzzy matrix games. To

determine the uncertainty about non-membership degrees Atanassov [4,8] inducted intuition-

istic fuzzy set theory. Further, intuitionistic fuzzy concept applied by [16–19, 21–24, 26, 38] to

study game-theoretic models using linear programming approach. After that, Intuitionistic

fuzzy sets were extended to interval-valued intuitionistic fuzzy sets and hesitant fuzzy sets.

Kumar and Garg [28] suggested the TOPSIS method under interval-valued intuitionistic fuzzy

environment. Xue et al. [45] applied the Ambika method to determine the matrix games with

hesitant fuzzy knowledge and investigated the counter-terrorism problem. A methodology

based on the linear programming approach was applied to solve the matrix games with trian-

gular dual hesitant fuzzy numbers as payoffs by Yang and Song [39].

The intuitionistic fuzzy sets can not successfully deal in the circumstances of good, unac-

ceptable, and uncertain decision-making problems. Therefore a novel theory was necessary.

Smarandache [7, 9] filled the gap and introduced the concept of neutrosophic set theory,

which deals with incomplete, inconsistent, and indeterminate situations. Single valued neu-

trosophic sets as an extension of neutrosophic sets were presented by Wang et al. [20]. A

de-neutrosophication idea for linear and non-linear generalized triangular neutrosophic num-

bers was performed by Chakraborty et al. [30]. The concept of neutrosophic set and number

has been successfully applied by Abdel-basset et al. [31–33], and developed methods for sus-

tainable supplier selection problems. [34–36] investigated decision making models based on

neutrosophic sets. A similar study of neutrosophic sets and numbers was provided by Broumi

et al. [29]. Khalil et al. [40] suggested a new idea for the single-valued neutrosophic fuzzy soft

set. Neutrosophic soft, rough topology and its applications to multicriteria decision-making

problems were proposed by Riaz et al. [41]. Based on the neutrosophic fuzzy approach, an

economical production quantity model was suggested by De et al. [42] for imperfect produc-

tion processes under game. Du et al. [44] in neutrosophic Z-numbers conditions investigated a

multicriteria decision-making approach. In contemporary situations to handle the conflicting

political circumstances, a neutrosophic model for non-cooperative games was inducted by Arias

et al. [43] using single-valued triangular neutrosophic numbers. Bhaumik et al. [46] introduced

a new ranking approach to solve bi-matrix games based on (α, β, γ) -cut set of a single-valued

triangular neutrosophic number.
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Game theory is widely used in competitive scenarios due to its importance in decision-making.

In real-world problems, the concept of neutrosophic set theory is useful for analyzing com-

plexity, uncertainty, incompleteness, and inconsistency. In matrix games with single-valued

triangular neutrosophic numbers as pay-offs, we developed a novel approach focused on linear

programming using de-neutrosophication as values and ambiguities. The standard simplex

approach is used to accomplish the strategy and value of the game for the individual player

by providing a numerical representation. The proposed work is capable of quickly resolving

conflict situations in decision-making problems using partial information as data.

The main novelties of this work are pointed as:

• A new class of matrix game, namely neutrosophic matrix game, is defined under partial

informative situations.

• A mathematical model of neutrosophic matrix game is developed.

• Values and ambiguities are derived for single-valued triangular neutrosophic numbers,

and some new theorems are provided.

• The theoretical results are verified by a numerical example arising in conflict situations

in decision-making problems with partial knowledge as data.

The research paper is designed as: Section 2 contains preliminaries and definitions. Values

and ambiguities are determined in Section 3. Section 4 deals with value index and ambiguity

index. Section 5 describes a mathematical model of a matrix game. A numerical example is

demonstrated in Section 6. Section 7 concludes the results of the paper.

2. Preliminaries and definitions

In this section we recall some basic definitions and notations which are useful throughout

the paper.

Definition 2.1. Let X = {X1, X2, X3, . . . , Xn} be the universal set. A neutrosophic set Ã

in the universal set X, is characterized by its truth membership function µÃ, indeterminacy

membership function πÃ and falsity membership function νÃ which associates with Xi ∈ X to

a real number in the interval [0, 1] and defined as

Ã = {
〈
Xi, µÃ(Xi), πÃ(Xi), νÃ(Xi)

〉
|Xi ∈ X}. (1)

Definition 2.2. A single valued triangular neutrosophic number defined on the set of real

numbers is a neutrosophic set, denoted by ÃTNN = 〈(ξ, η, ζ) ;σ, ρ, τ〉 whose truth membership,
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indeterminacy membership and falsity membership functions respectively are given as follows:

µÃTNN (x) =



(x−ξ)σ
(η−ξ) ; ξ ≤ x ≤ η
σ ;x = η

(ζ−x)σ
(ζ−η) ; η ≤ x ≤ ζ

0 ; otherwise

(2)

πÃTNN (x) =



(η−x)+ρ(x−ξ)
(η−ξ) ; ξ ≤ x ≤ η
ρ ;x = η

(x−η)+ρ(ζ−x)
(ζ−η) ; η ≤ x ≤ ζ

1 ; otherwise

(3)

νÃTNN (x) =



(η−x)+τ(x−ξ)
(η−ξ) ; ξ ≤ x ≤ η
τ ;x = η

(x−η)+τ(ζ−x)
(ζ−η) ; η ≤ x ≤ ζ

1 ; otherwise

(4)

where 0 ≤ σ ≤ 1, 0 ≤ ρ ≤ 1, 0 ≤ τ ≤ 1 and 0 ≤ σ + ρ + τ ≤ 3. σ represents the maximum

degree of truth membership, ρ represents the minimum degree of indeterminacy membership

and τ represents the minimum degree of falsity membership.

Definition 2.3. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be

two single valued triangular neutrosophic numbers and λ be a real number, then some arith-

metical operations are stipulated as follows:

• Addition

ÃTNN + B̃TNN = 〈(ξ1 + ξ2, η1 + η2, ζ1 + ζ2) ; min (σ1, σ2) ,max (ρ1, ρ2) ,max (τ1, τ2)〉 . (5)

• Symmetric Image

−ÃTNN = 〈(−ζ1,−η1,−ξ1) ;σ1, ρ1, τ1〉 . (6)

• Subtraction

ÃTNN − B̃TNN = 〈(ξ1 − ζ2, η1 − η2, ζ1 − ξ2) ; min (σ1, σ2) ,max (ρ1, ρ2) ,max (τ1, τ2)〉 . (7)

• Multiplication

ÃTNN × B̃TNN = 〈(ξ1ξ2, η1η2, ζ1ζ2) ; min (σ1, σ2) ,max (ρ1, ρ2) ,max (τ1, τ2)〉 . (8)

• Scalar Product

λÃTNN =

{
〈(λξ1, λη1, λζ1) ;σ1, ρ1, τ1〉 ;λ > 0

〈(λζ1, λη1, λξ1) ;σ1, ρ1, τ1〉 ;λ < 0
(9)
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Definition 2.4. The (α, β, γ)- cut of a single valued triangular neutrosophic number ÃTNN =

〈(ξ, η, ζ) ;σ, ρ, τ〉 is a closed crisp interval of real numbers denoted by ÃTNN(α,β,γ) and defined as

ÃTNN(α,β,γ) ={x|µÃTNN (x) ≥ α, πÃTNN (x) ≤ β, νÃTNN (x) ≤ γ}. (10)

where 0 ≤ α ≤ σ, ρ ≤ β ≤ 1, τ ≤ γ ≤ 1 and 0 ≤ α+ β + γ ≤ 3.

Definition 2.5. The α- cut of a single valued triangular neutrosophic number ÃTNN =

〈(ξ, η, ζ) ;σ, ρ, τ〉 is a closed crisp interval of real numbers denoted by ÃTNNα =[
LÃTNNα

, RÃTNNα

]
and defined as

ÃTNNα ={x|µÃTNN (x) ≥ α}

=
[
LÃTNNα

, RÃTNNα

]
=

[
ξ +

α (η − ξ)
σ

, ζ − α (ζ − η)

σ

]
.

(11)

Definition 2.6. The β- cut of a single valued triangular neutrosophic number ÃTNN =

〈(ξ, η, ζ) ;σ, ρ, τ〉 is a closed crisp interval of real numbers denoted by ÃTNNβ =[
LÃTNNβ

, RÃTNNβ

]
and defined as

ÃTNNβ ={x|πÃTNN (x) ≤ β}

=
[
LÃTNNβ

, RÃTNNβ

]
=

[
(1− β) η + (β − ρ) ξ

(1− ρ)
,
(1− β) η + (β − ρ) ζ

(1− ρ)

]
.

(12)

Definition 2.7. The γ- cut of a single valued triangular neutrosophic number ÃTNN =

〈(ξ, η, ζ) ;σ, ρ, τ〉 is a closed crisp interval of real numbers denoted by ÃTNNγ =[
LÃTNNγ

, RÃTNNγ

]
and defined as

ÃTNNγ ={x|νÃTNN (x) ≤ γ}

=
[
LÃTNNγ

, RÃTNNγ

]
=

[
(1− γ) η + (γ − τ) ξ

(1− τ)
,
(1− γ) η + (γ − τ) ζ

(1− τ)

]
.

(13)

Theorem 2.8. Let ÃTNN = 〈(ξ, η, ζ) ;σ, ρ, τ〉 be any single valued triangular neutrosophic

number then for any α ∈ [0, σ], β ∈ [ρ, 1] and γ ∈ [τ, 1] the following equality hold

ÃTNN(α,β,γ) = ÃTNNα ∩ ÃTNNβ ∩ ÃTNNγ .

3. Values and ambiguities for the membership functions of ÃTNN

Let ÃTNNα , ÃTNNβ and ÃTNNγ be the α-cut, β-cut and γ-cut of a single valued triangular

neutrosophic number ÃTNN respectively, then the values and ambiguities for different mem-

bership functions of ÃTNN are defined as follows:
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Value of the true membership function:

Vµ(ÃTNN ) =

∫ σ

0

(
LÃTNNα

+RÃTNNα

)
2

φ (α) dα. (14)

Value of the indeterminacy membership function:

Vπ(ÃTNN ) =

∫ 1

ρ

(
LÃTNNβ

+RÃTNNβ

)
2

ψ (β) dβ. (15)

Value of the falsity membership function:

Vν(ÃTNN ) =

∫ 1

τ

(
LÃTNNγ

+RÃTNNγ

)
2

χ (γ) dγ. (16)

Ambiguity of the true membership function:

Ambµ(ÃTNN ) =

∫ σ

0

(
RÃTNNα

− LÃTNNα

)
φ (α) dα. (17)

Ambiguity of the indeterminacy membership function:

Ambπ(ÃTNN ) =

∫ 1

ρ

(
RÃTNNβ

− LÃTNNβ

)
ψ (β) dβ. (18)

Ambiguity of the falsity membership function:

Ambν(ÃTNN ) =

∫ 1

τ

(
RÃTNNγ

− LÃTNNγ

)
χ (γ) dγ. (19)

Here φ (α) is a nonnegative increasing function defined on [0, σ] with φ (0) = 0 and∫ σ
0 φ (α) dα = σ. ψ (β) is a nonnegative decreasing function defined on [ρ, 1] with ψ (1) = 0

and
∫ 1
ρ ψ (β) dβ = 1 − ρ and χ (γ) is a nonnegative decreasing function defined on [τ, 1] with

χ (1) = 0 and
∫ 1
τ χ (γ) dγ = 1− τ .

According to the equations (11), (14) and suitable nonnegative functions φ (α), ψ (β) and χ (γ)

as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the value of true membership function

of ÃTNN is

Vµ(ÃTNN ) =

∫ σ

0

α
(
ξ + α(η−ξ)

σ + ζ − α(ζ−η)
σ

)
σ

dα

=
1

σ2

∫ σ

0
[σ (ξ + ζ) + α (2η − ξ − ζ)]αdα

=
1

σ2

[
σ3 (ξ + ζ)

2
+
σ3 (2η − ξ − ζ)

3

]
=

(ξ + 4η + ζ)σ

6
.

(20)

According to the equations (12), (15) and suitable nonnegative functions φ (α), ψ (β) and

χ (γ) as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the value of indeterminacy
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membership function of ÃTNN is

Vπ(ÃTNN ) =

∫ 1

ρ

(1− β)
(
(1−β)η+(β−ρ)ξ

(1−ρ) + (1−β)η+(β−ρ)ζ
(1−ρ)

)
(1− ρ)

dβ

=
1

(1− ρ)2

∫ 1

ρ
[2η (1− β) + (β − ρ) (ξ + ζ)] (1− β) dβ

=
1

(1− ρ)2

∫ 1

ρ

[
(1− β)2 (2η − ξ − ζ) + (1− ρ) (ξ + ζ) (1− β)

]
dβ

=
1

(1− ρ)2

[
(1− ρ)3 (2η − ξ − ζ)

3
+

(1− ρ)3 (ξ + ζ)

2

]

=
(ξ + 4η + ζ) (1− ρ)

6
.

(21)

According to the equations (13), (16) and suitable nonnegative functions φ (α), ψ (β) and

χ (γ) as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the value of falsity membership

function of ÃTNN is

Vν(ÃTNN ) =

∫ 1

τ

(1− γ)
(
(1−γ)η+(γ−τ)ξ

(1−τ) + (1−γ)η+(γ−τ)ζ
(1−τ)

)
(1− τ)

dγ

=
1

(1− τ)2

∫ 1

τ
[2η (1− γ) + (γ − τ) (ξ + ζ)] (1− γ) dγ

=
1

(1− τ)2

∫ 1

τ

[
(1− γ)2 (2η − ξ − ζ) + (1− τ) (ξ + ζ) (1− γ)

]
dγ

=
1

(1− τ)2

[
(1− τ)3 (2η − ξ − ζ)

3
+

(1− τ)3 (ξ + ζ)

2

]

=
(ξ + 4η + ζ) (1− τ)

6
.

(22)

According to the equations (11), (17) and suitable nonnegative functions φ (α), ψ (β) and χ (γ)

as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the ambiguity of true membership

function of ÃTNN is

Ambµ(ÃTNN ) =

∫ σ

0

2α
(
ζ − α(ζ−η)

σ − ξ − α(η−ξ)
σ +

)
σ

dα

=
1

σ2

∫ σ

0
2α (ζ − ξ) (σ − α) dα

=
2

σ2
(ζ − ξ)σ3

(
1

2
− 1

3

)
=

(ζ − ξ)σ
3

.

(23)

According to the equations (12), (18) and suitable nonnegative functions φ (α), ψ (β) and

χ (γ) as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the ambiguity of indeterminacy

V. Jangid and G. Kumar, Matrix Games with Single-Valued Triangular Neutrosophic
Numbers as Pay-offs

Neutrosophic Sets and Systems, Vol. 45, 2021                                                                               203 



membership function of ÃTNN is

Ambπ(ÃTNN ) =

∫ 1

ρ

2 (1− β)
[
(1−β)η+(β−ρ)ζ

(1−ρ) − (1−β)η+(β−ρ)ξ
(1−ρ)

]
(1− ρ)

dβ

=
2

(1− ρ)2

∫ 1

ρ
(β − ρ) (ζ − ξ) (1− β) dβ

=
2 (ζ − ξ)
(1− ρ)2

∫ 1

ρ

[
(1− ρ) (1− β)− (1− β)2

]
dβ

=
2 (ζ − ξ) (1− ρ)3

(1− ρ)2

(
1

2
− 1

3

)
=

(ζ − ξ) (1− ρ)

3
.

(24)

According to the equations (13), (19) and suitable nonnegative functions φ (α), ψ (β) and χ (γ)

as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the ambiguity of falsity membership

function of ÃTNN is

Ambν(ÃTNN ) =

∫ 1

τ

2 (1− γ)
[
(1−γ)η+(γ−τ)ζ

(1−τ) − (1−γ)η+(γ−τ)ξ
(1−τ)

]
(1− τ)

dγ

=
2

(1− τ)2

∫ 1

τ
(γ − τ) (ζ − ξ) (1− γ) dγ

=
2 (ζ − ξ)
(1− τ)2

∫ 1

τ

[
(1− τ) (1− γ)− (1− γ)2

]
dγ

=
2 (ζ − ξ) (1− τ)3

(1− τ)2

(
1

2
− 1

3

)
=

(ζ − ξ) (1− τ)

3
.

(25)

Theorem 3.1. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be
two single valued triangular neutrosophic numbers with σ1 = σ2, ρ1 = ρ2 and τ1 = τ2 then the

following equalities hold

(1) Vµ

(
ÃTNN + B̃TNN

)
= Vµ

(
ÃTNN

)
+ Vµ

(
B̃TNN

)
.

(2) Vπ

(
ÃTNN + B̃TNN

)
= Vπ

(
ÃTNN

)
+ Vπ

(
B̃TNN

)
.

(3) Vν

(
ÃTNN + B̃TNN

)
= Vν

(
ÃTNN

)
+ Vν

(
B̃TNN

)
.

Proof. Using Definition 2.3 and according to the given statement, we have

ÃTNN + B̃TNN = 〈(ξ1 + ξ2, η1 + η2, ζ1 + ζ2) ;σ1, ρ1, τ1〉 .

Thus by the definition of value of true membership function, we obtain

Vµ

(
ÃTNN + B̃TNN

)
=

[(ξ1 + ξ2) + 4 (η1 + η2) + (ζ1 + ζ2)]σ1
6

=
(ξ1 + 4η1 + ζ1)σ1

6
+

(ξ2 + 4η2 + ζ2)σ2
6
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Therefore,

Vµ

(
ÃTNN + B̃TNN

)
=Vµ

(
ÃTNN

)
+ Vµ

(
B̃TNN

)
.

In a similar manner the remaining results of the theorem can also be proved.

Theorem 3.2. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be
two single valued triangular neutrosophic numbers with σ1 = σ2, ρ1 = ρ2 and τ1 = τ2 then the

following equalities hold

(1) Ambµ

(
ÃTNN + B̃TNN

)
= Ambµ

(
ÃTNN

)
+Ambµ

(
B̃TNN

)
.

(2) Ambπ

(
ÃTNN + B̃TNN

)
= Ambπ

(
ÃTNN

)
+Ambπ

(
B̃TNN

)
.

(3) Ambν

(
ÃTNN + B̃TNN

)
= Ambν

(
ÃTNN

)
+Ambν

(
B̃TNN

)
.

Proof. Using Definition 2.3 and according to the given statement, we have

ÃTNN + B̃TNN = 〈(ξ1 + ξ2, η1 + η2, ζ1 + ζ2) ;σ1, ρ1, τ1〉 .

Thus by the definition of ambiguity of true membership function, we obtain

Ambµ

(
ÃTNN + B̃TNN

)
=

[(ζ1 + ζ2)− (ξ1 + ξ2)]σ1
3

=
(ζ1 − ξ1)σ1

3
+

(ζ2 − ξ2)σ2
3

Therefore,

Ambµ

(
ÃTNN + B̃TNN

)
=Ambµ

(
ÃTNN

)
+Ambµ

(
B̃TNN

)
.

In a similar manner the remaining results of the theorem can also be proved.

4. Value index and ambiguity index of ÃTNN

Let ÃTNN = 〈(ξ, η, ζ) ;σ, ρ, τ〉 be a single valued triangular neutrosophic number then the

value index and the ambiguity index for ÃTNN are defined as follows:

(1) Value Index:

V
(
ÃTNN , λ

)
=Vπ(ÃTNN ) + Vµ(ÃTNN ) + λ

[
Vν(ÃTNN )− Vµ(ÃTNN )

]
. (26)

(2) Ambiguity Index:

A
(
ÃTNN , λ

)
=Ambπ(ÃTNN ) +Ambν(ÃTNN )− λ

[
Ambν(ÃTNN )−Ambµ(ÃTNN )

]
. (27)

which are continuous non decreasing and non increasing functions of the parameter λ respec-

tively. Here λ ∈ [0, 1] represents the decision maker’s preference informations. λ ∈ [0, 12)

represents that the decision maker prefer uncertainty or negative feeling. λ ∈ (12 , 1] represents

that the decision maker prefer certainty or positive feeling. λ = 1
2 represents that the decision

maker is indifferent between positive and negative feeling.
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Theorem 4.1. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be
two single valued triangular neutrosophic numbers with σ1 = σ2, ρ1 = ρ2 and τ1 = τ2 then the

following equalities hold

(1) V
(
ÃTNFN + B̃TNN , λ

)
= V

(
ÃTNN , λ

)
+ V

(
B̃TNN , λ

)
.

(2) A
(
ÃTNN + B̃TNN , λ

)
= A

(
ÃTNN , λ

)
+A

(
B̃TNN , λ

)
.

Proof. According to equation (26), we can write

V
(
ÃTNN + B̃TNN , λ

)
=Vπ

(
ÃTNN + B̃TNN

)
+ Vµ

(
ÃTNN + B̃TNN

)
+ λ

[
Vν

(
ÃTNN + B̃TNN

)
− Vµ

(
ÃTNN + B̃TNN

)]
.

Using Theorem 3.2, we obtain

V
(
ÃTNN + B̃TNN , λ

)
=Vπ

(
ÃTNN

)
+ Vπ

(
B̃TNN

)
+ Vµ

(
ÃTNN

)
+ Vµ

(
B̃TNN

)
+ λ

[
Vν

(
ÃTNN

)
+ Vν

(
B̃TNN

)
− Vµ

(
ÃTNN

)
− Vµ

(
B̃TNN

)]
=
[
Vπ

(
ÃTNN

)
+ Vµ

(
ÃTNN

)
+ λ

(
Vν

(
ÃTNN

)
− Vµ

(
ÃTNN

))]
+
[
Vπ

(
B̃TNN

)
+ Vµ

(
B̃TNN

)
+ λ

(
Vν

(
B̃TNN

)
− Vµ

(
B̃TNN

))]
=V

(
ÃTNN , λ

)
+ V

(
B̃TNN , λ

)
.

This completes the first part of the theorem.

Now, according to equation (27), we can write

A
(
ÃTNN + B̃TNN , λ

)
=Ambπ

(
ÃTNN + B̃TNN

)
+Ambν

(
ÃTNN + B̃TNN

)
− λ

[
Ambν

(
ÃTNN + B̃TNN

)
−Ambµ

(
ÃTNN + B̃TNN

)]
.

Using Theorem 3.3, we have

A
(
ÃTNN + B̃TNN , λ

)
= Ambπ

(
ÃTNN

)
+Ambπ

(
B̃TNN

)
+Ambν

(
ÃTNN

)
+Ambν

(
B̃TNN

)
− λ

[
Ambν

(
ÃTNN

)
+Ambν

(
B̃TNN

)
−Ambµ

(
ÃTNN

)
−Ambµ

(
B̃TNN

)]
=
[
Ambπ

(
ÃTNN

)
+Ambν

(
ÃTNN

)
− λ

(
Ambν

(
ÃTNN

)
−Ambµ

(
ÃTNN

))]
+
[
Ambπ

(
B̃TNN

)
+Ambν

(
B̃TNN

)
− λ

(
Ambν

(
B̃TNN

)
−Ambµ

(
B̃TNN

))]
= A

(
ÃTNN , λ

)
+A

(
B̃TNN , λ

)
.

This completes the second part of the theorem.

Remark 4.2. It is easily seen that the value index and the ambiguity index are nonnega-

tive for a nonnegative single valued triangular neutrosophic number, i.e., V
(
ÃTNN , λ

)
≥ 0
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and A
(
ÃTNN , λ

)
≥ 0. Also the value index should be maximized and the ambiguity index

should be minimized, furthermore as a summarized result we can easily seen that the rela-

tions maxV
(
ÃTNN , λ

)
= Vπ(ÃTNN ) + Vν(ÃTNN ) and minA

(
ÃTNN , λ

)
= Ambπ(ÃTNN ) +

Ambµ(ÃTNN ) holds.

Remark 4.3. If we assume that the decision maker is indifferent between the certainty and

uncertainty, i.e., λ = 1
2 , then the value index and ambiguity index are given by

V

(
ÃTNN ,

1

2

)
≡ V

(
ÃTNN

)
=Vπ(ÃTNN ) +

1

2

[
Vµ(ÃTNN ) + Vν(ÃTNN )

]
. (28)

A

(
ÃTNN ,

1

2

)
≡ A

(
ÃTNN

)
=Ambπ(ÃTNN ) +

1

2

[
Ambµ(ÃTNN ) +Ambν(ÃTNN )

]
. (29)

Theorem 4.4. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be two
single valued triangular neutrosophic numbers and λ1, λ2 be any two nonnegative real numbers

then the following equalities hold

(1) Vµ

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (σ1, σ2)

[
λ1

Vµ(ÃTNN)
σ1

+ λ2
Vµ(B̃TNN)

σ2

]
.

(2) Vπ

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (1− ρ1, 1− ρ2)

[
λ1

Vπ(ÃTNN)
(1−ρ1) + λ2

Vπ(B̃TNN)
(1−ρ2)

]
.

(3) Vν

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (1− τ1, 1− τ2)

[
λ1

Vν(ÃTNN)
(1−τ1) + λ2

Vν(B̃TNN)
(1−τ2)

]
.

(4) Ambµ

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (σ1, σ2)

[
λ1

Ambµ(ÃTNN)
σ1

+ λ2
Ambµ(B̃TNN)

σ2

]
.

(5) Ambπ

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (1− ρ1, 1− ρ2)

[
λ1

Ambπ(ÃTNN)
(1−ρ1) + λ2

Ambπ(B̃TNN)
(1−ρ2)

]
.

(6) Ambν

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (1− τ1, 1− τ2)

[
λ1

Ambν(ÃTNN)
(1−τ1) + λ2

Ambν(B̃TNN)
(1−τ2)

]
.

Proof. The above results can be easily proven by using Definition 2.3 and the equations (20)

to (25).

4.1. De-neutrosophication

Let N (R) be the set of all single valued triangular neutrosophic numbers defined on the set

of real numbers, then a linear de-neutrosophication function F : N (R)→ R for single valued

triangular neutrosophic numbers in terms of value index and ambiguity index can be defined

as follows

F
(
ÃTNN

)
=V

(
ÃTNN

)
−A

(
ÃTNN

)
. (30)
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5. Mathematical model of a matrix game

A two person zero sum matrix game played by a maximizing player (as player I) and a

minimizing player (as player II) having the pure strategy i = {1, 2, . . . ,m} and j = {1, 2, . . . , n}
respectively is denoted by [aij ]m×n. Here aij is the pay-off value for the player I and its opposite

is the pay-off value for player II, when they choose the strategies i and j respectively such that

there exists the saddle point of the game. If the matrix game [aij ]m×n has no saddle point,

i.e., max
i
{min

j
{aij}} 6= min

j
{max

i
{aij}}, then to solve such matrix games we adopt the mixed

strategy sets S1 and S2 for the player I and II respectively, as S1 = {X = (x1, x2, . . . , xm) ∈
Rm : xi ≥ 0,∀i = 1, 2, . . .m, and

∑m
i=1 xi = 1} and S2 = {Y = (y1, y2, . . . , yn) ∈ Rn : yj ≥

0,∀j = 1, 2, . . . n, and
∑n

j=1 yj = 1}.

5.1. Mathematical model of a neutrosophic matrix game

The maximin and minimax principal for matrix games states that the player I choose such a

strategy which maximize his minimum expected gain and the player II choose such a strategy

which minimizes his maximum expected loss, thus for the neutrosophic matrix game, we have

as

For player I
max
xi
{min{

∑m
i=1 ã

TNN
i1 xi,

∑m
i=1 ã

TNN
i2 xi, . . . ,

∑m
i=1 ã

TNN
in xi}}

s.t.,
∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(31)

For player II
min
yj
{max{

∑n
j=1 ã

TNN
1j yj ,

∑n
j=1 ã

TNN
2j yj , . . . ,

∑n
j=1 ã

TNN
mj yj}}

s.t.,
∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(32)

Now, let min{
∑m

i=1 ã
TNN
i1 xi,

∑m
i=1 ã

TNN
i2 xi, . . . ,

∑m
i=1 ã

TNN
in xi} = ũTNN be the expected mini-

mum gain for player I and max{
∑n

j=1 ã
TNN
1j yj ,

∑n
j=1 ã

TNN
2j yj , . . . ,

∑n
j=1 ã

TNN
mj yj} = ṽTNN be

the expected maximum loss for player II. Then the problems (31) and (32) can be written as

For player I 

max ũTNN

s.t.,
∑m

i=1 ã
TNN
i1 xi � ũTNN∑m

i=1 ã
TNN
i2 xi � ũTNN

. . .∑m
i=1 ã

TNN
in xi � ũTNN∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(33)
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For player II 

min ṽTNN

s.t.,
∑n

j=1 ã
TNN
1j yj � ṽTNN∑n

j=1 ã
TNN
2j yj � ṽTNN

. . .∑n
j=1 ã

TNN
mj yj � ṽTNN∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(34)

Here ũTNN = 〈(u1, u2, u3) ;σ, ρ, τ〉 and ṽTNN = 〈(v1, v2, v3) ;σ′, ρ′, τ ′〉 are the single valued

triangular neutrosophic numbers as expected minimum gain and expected maximum loss re-

spectively. And � and � denotes the neutrosophic versions of the order relation ≥ and ≤ on

the set of real numbers and has linguistic interpretation as ‘essentially greater than or equal’

and ‘essentially less than or equal’ respectively. The problems (33) and (34) are known as

the neutrosophic linear programming problems for the player I and II respectively and can be

written in the standard form as

For player I 
max ũTNN

s.t.,
∑m

i=1 ã
TNN
ij xi � ũTNN , ∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(35)

For player II 
min ṽTNN

s.t.,
∑n

j=1 ã
TNN
ij yj � ṽTNN ,∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0, ∀j = 1, 2, . . . , n

(36)

Now, utilizing the de-neutrosophication function F : N (R)→ R defined by the equation (30),

the above neutrosophic linear programming problems (35) and (36) can be transformed into

the crisp linear programming problems for the player I and II respectively as follows

For player I


maxF

(
ũTNN

)
s.t., F

(∑m
i=1 ã

TNN
ij xi

)
≥ F

(
ũTNN

)
,∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0,∀i = 1, 2, . . . ,m

(37)
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For Player II 
minF

(
ṽTNN

)
s.t., F

(∑n
j=1 ã

TNN
ij yj

)
≤ F

(
ṽTNN

)
,∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(38)

Using equations (28) to (30) the above crisp linear programming problems (37) and (38) for

player I and II respectively, can be written as

For player I

maxVπ(ũTNN ) + 1
2

[
Vµ(ũTNN ) + Vν(ũTNN )

]
−Ambπ(ũTNN )

−1
2

[
Ambµ(ũTNN ) +Ambν(ũTNN )

]
s.t., Vπ(

∑m
i=1 ã

TNN
ij xi) + 1

2

[
Vµ(
∑m

i=1 ã
TNN
ij xi) + Vν(

∑m
i=1 ã

TNN
ij xi)

]
−Ambπ(

∑m
i=1 ã

TNN
ij xi)− 1

2

[
Ambµ(

∑m
i=1 ã

TNN
ij xi) +Ambν(

∑m
i=1 ã

TNN
ij xi)

]
≥ Vπ(ũTNN ) + 1

2

[
Vµ(ũTNN ) + Vν(ũTNN )

]
−Ambπ(ũTNN )

−1
2

[
Ambµ(ũTNN ) +Ambν(ũTNN )

]
,∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(39)

For player II

minVπ(ṽTNN ) + 1
2

[
Vµ(ṽTNN ) + Vν(ṽTNN )

]
−Ambπ(ṽTNN )

−1
2

[
Ambµ(ṽTNN ) +Ambν(ṽTNN )

]
s.t., Vπ(

∑n
j=1 ã

TNN
ij yj) + 1

2

[
Vµ(
∑n

j=1 ã
TNN
ij yj) + Vν(

∑n
j=1 ã

TNN
ij yj)

]
−Ambπ(

∑n
j=1 ã

TNN
ij yj)− 1

2

[
Ambµ(

∑n
j=1 ã

TNN
ij yj) +Ambν(

∑n
j=1 ã

TNN
ij yj)

]
≤ Vπ(ṽTNN ) + 1

2

[
Vµ(ṽTNN ) + Vν(ṽTNN )

]
−Ambπ(ṽTNN )

−1
2

[
Ambµ(ṽTNN ) +Ambν(ṽTNN )

]
, ∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(40)

The problems (39) and (40) can also be reformed as

For player I

maxVπ(ũTNN )−Ambπ(ũTNN )

+1
2

[
Vµ(ũTNN )−Ambµ(ũTNN ) + Vν(ũTNN )−Ambν(ũTNN )

]
s.t., Vπ(

∑m
i=1 ã

TNN
ij xi)−Ambπ(

∑m
i=1 ã

TNN
ij xi)

+1
2

[
Vµ(
∑m

i=1 ã
TNN
ij xi)−Ambµ(

∑m
i=1 ã

TNN
ij xi)

]
+1

2

[
Vν(
∑m

i=1 ã
TNN
ij xi)−Ambν(

∑m
i=1 ã

TNN
ij xi)

]
≥ Vπ(ũTNN )−Ambπ(ũTNN )

+1
2

[
Vµ(ũTNN )−Ambµ(ũTNN ) + Vν(ũTNN )−Ambν(ũTNN )

]
, ∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(41)
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For player II

minVπ(ṽTNN )−Ambπ(ṽTNN )

+1
2

[
Vµ(ṽTNN )−Ambµ(ṽTNN ) + Vν(ṽTNN )−Ambν(ṽTNN )

]
s.t., Vπ(

∑n
j=1 ã

TNN
ij yj)−Ambπ(

∑n
j=1 ã

TNN
ij yj)

+1
2

[
Vµ(
∑n

j=1 ã
TNN
ij yj)−Ambµ(

∑n
j=1 ã

TNN
ij yj)

]
+1

2

[
Vν(
∑n

j=1 ã
TNN
ij yj)−Ambν(

∑n
j=1 ã

TNN
ij yj)

]
≤ Vπ(ṽTNN )−Ambπ(ṽTNN )

+1
2

[
Vµ(ṽTNN )−Ambµ(ṽTNN ) + Vν(ṽTNN )−Ambν(ṽTNN )

]
,∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0, ∀j = 1, 2, . . . , n

(42)

The problems (41) and (42) further can be written in the following manner by using the

expected minimum gain and expected maximum loss ũTNN = 〈(u1, u2, u3) ;σ, ρ, τ〉 and

ṽTNN = 〈(v1, v2, v3) ;σ′, ρ′, τ ′〉 as

For player I

max (u1+4u2+u3)(1−ρ)
6 − (u3−u1)(1−ρ)

3

+1
2

[
(u1+4u2+u3)σ

6 − (u3−u1)σ
3 + (u1+4u2+u3)(1−τ)

6 − (u3−u1)(1−τ)
3

]
s.t.,min

i
(1− ρij)

(∑m
i=1

Vπ(ãTNNij )xi
(1−ρij) −

∑m
i=1

Ambπ(ãTNNij )xi
(1−ρij)

)
+

min
i

(σij)

2

(∑m
i=1

Vµ(ãTNNij )xi
(σij)

−
∑m

i=1

Ambµ(ãTNNij )xi
(σij)

)
+

min
i

(1−τij)
2

(∑m
i=1

Vν(ãTNNij )xi
(1−τij) −

∑m
i=1

Ambν(ãTNNij )xi
(1−τij)

)
≥ (u1+4u2+u3)(1−ρ)

6 − (u3−u1)(1−ρ)
3

+1
2

[
(u1+4u2+u3)σ

6 − (u3−u1)σ
3 + (u1+4u2+u3)(1−τ)

6 − (u3−u1)(1−τ)
3

]
,∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0,∀i = 1, 2, . . . ,m

(43)

For player II

min (v1+4v2+v3)(1−ρ′)
6 − (v3−v1)(1−ρ′)

3

+1
2

[
(v1+4v2+v3)σ′

6 − (v3−v1)σ′
3 + (v1+4v2+v3)(1−τ ′)

6 − (v3−v1)(1−τ ′)
3

]
s.t.,min

j
(1− ρij ′)

(∑n
j=1

Vπ(ãTNNij )yj
(1−ρij ′) −

∑n
j=1

Ambπ(ãTNNij )yj
(1−ρij ′)

)
+

min
j

(σij
′)

2

(∑n
j=1

Vµ(ãTNNij )yj
(σij ′)

−
∑n

j=1

Ambµ(ãTNNij )yj
(σij ′)

)
+

min
j

(1−τij ′)

2

(∑n
j=1

Vν(ãTNNij )yj
(1−τij ′) −

∑n
j=1

Ambν(ãTNNij )yj
(1−τij ′)

)
≤ (v1+4v2+v3)(1−ρ′)

6 − (v3−v1)(1−ρ′)
3

+1
2

[
(v1+4v2+v3)σ′

6 − (v3−v1)σ′
3 + (v1+4v2+v3)(1−τ ′)

6 − (v3−v1)(1−τ ′)
3

]
,∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(44)
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For convenience, let
(u1 + 4u2 + u3)σ

6
− (u3 − u1)σ

3
= L1 (45)

(u1 + 4u2 + u3) (1− ρ)

6
− (u3 − u1) (1− ρ)

3
= M1 (46)

(u1 + 4u2 + u3) (1− τ)

6
− (u3 − u1) (1− τ)

3
= N1 (47)

(v1 + 4v2 + v3)σ
′

6
− (v3 − v1)σ′

3
= L2 (48)

(v1 + 4v2 + v3) (1− ρij ′)
6

− (v3 − v1) (1− ρij ′)
3

= M2 (49)

(v1 + 4v2 + v3) (1− τij ′)
6

− (v3 − v1) (1− τij ′)
3

= N2 (50)

Then the problems (43) and (44) reduces as

For player I

max 1
2L1 +M1 + 1

2N1

s.t.,min
i

(1− ρij)
(∑m

i=1

Vπ(ãTNNij )xi
(1−ρij) −

∑m
i=1

Ambπ(ãTNNij )xi
(1−ρij)

)
+

min
i

(σij)

2

(∑m
i=1

Vµ(ãTNNij )xi
(σij)

−
∑m

i=1

Ambµ(ãTNNij )xi
(σij)

)
+

min
i

(1−τij)
2

(∑m
i=1

Vν(ãTNNij )xi
(1−τij) −

∑m
i=1

Ambν(ãTNNij )xi
(1−τij)

)
≥ 1

2L1 +M1 + 1
2N1, ∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(51)

For player II

min 1
2L2 +M2 + 1

2N2

s.t.,min
j

(1− ρij ′)
(∑n

j=1

Vπ(ãTNNij )yj
(1−ρij ′) −

∑n
j=1

Ambπ(ãTNNij )yj
(1−ρij ′)

)
+

min
j

(σij
′)

2

(∑n
j=1

Vµ(ãTNNij )yj
(σij ′)

−
∑n

j=1

Ambµ(ãTNNij )yj
(σij ′)

)
+

min
j

(1−τij ′)

2

(∑n
j=1

Vν(ãTNNij )yj
(1−τij ′) −

∑n
j=1

Ambν(ãTNNij )yj
(1−τij ′)

)
≤ 1

2L2 +M2 + 1
2N2, ∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0, ∀j = 1, 2, . . . , n

(52)

6. Numerical example

Consider a two person zero sum matrix game whose pay-offS are single valued triangular

neutrosophic numbers as follows

ÃTNN =

[
ãTNN11 ãTNN12

ãTNN21 ãTNN22

]
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Here ãTNN11 = 〈(175, 180, 190) ; 0.6, 0.4, 0.2〉, ãTNN12 = 〈(150, 156, 158) ; 0.6, 0.35, 0.1〉, ãTNN21 =

〈(80, 90, 100) ; 0.9, 0.5, 0.1〉, ãTNN22 = 〈(175, 180, 190) ; 0.6, 0.4, 0.2〉. According to the problems

(51) and (52) as explained in the mathematical procedure for a two person zero sum neutro-

sophic matrix game, we have

For player I

max 1
2L1 +M1 + 1

2N1

s.t.,min (1− ρ11, 1− ρ21)
(
Vπ(ãTNN11 )x1

(1−ρ11) +
Vπ(ãTNN21 )x2

(1−ρ21) − Ambπ(ãTNN11 )x1
(1−ρ11) − Ambπ(ãTNN21 )x2

(1−ρ21)

)
+min(σ11,σ21)

2

(
Vµ(ãTNN11 )x1

(σ11)
+

Vµ(ãTNN21 )x2
(σ21)

− Ambµ(ãTNN11 )x1
(σ11)

− Ambµ(ãTNN21 )x2
(σ21)

)
+min(1−τ11,1−τ21)

2

(
Vν(ãTNN11 )x1

(1−τ11) +
Vν(ãTNN21 )x2

(1−τ21) − Ambν(ãTNN11 )x1
(1−τ11) − Ambν(ãTNN21 )x2

(1−τ21)

)
≥ 1

2L1 +M1 + 1
2N1

min (1− ρ12, 1− ρ22)
(
Vπ(ãTNN12 )x1

(1−ρ12) +
Vπ(ãTNN22 )x2

(1−ρ22) − Ambπ(ãTNN12 )x1
(1−ρ12) − Ambπ(ãTNN22 )x2

(1−ρ22)

)
+min(σ12,σ22)

2

(
Vµ(ãTNN12 )x1

(σ12)
+

Vµ(ãTNN22 )x2
(σ22)

− Ambµ(ãTNN12 )x1
(σ12)

− Ambµ(ãTNN22 )x2
(σ22)

)
+min(1−τ12,1−τ22)

2

(
Vν(ãTNN12 )x1

(1−τ12) +
Vν(ãTNN22 )x2

(1−τ22) − Ambν(ãTNN12 )x1
(1−τ12) − Ambν(ãTNN22 )x2

(1−τ22)

)
≥ 1

2L1 +M1 + 1
2N1

x1 + x2 = 1

and;x1, x2, L1,M1, N1 ≥ 0

For player II

min 1
2L2 +M2 + 1

2N2

s.t.,min (1− ρ11′, 1− ρ12′)
(
Vπ(ãTNN11 )y1
(1−ρ11′) +

Vπ(ãTNN12 )y2
(1−ρ12′) − Ambπ(ãTNN11 )y1

(1−ρ11′) − Ambπ(ãTNN12 )y2
(1−ρ12′)

)
+min(σ11′,σ12′)

2

(
Vµ(ãTNN11 )y1

(σ11′)
+

Vµ(ãTNN12 )y2
(σ12′)

− Ambµ(ãTNN11 )y1
(σ11′)

− Ambµ(ãTNN12 )y2
(σ12′)

)
+min(1−τ11′,1−τ12′)

2

(
Vν(ãTNN11 )y1

(1−τ11′) +
Vν(ãTNN12 )y2

(1−τ12′) − Ambν(ãTNN11 )y1
(1−τ11′) − Ambν(ãTNN12 )y2

(1−τ12′)

)
≤ 1

2L2 +M2 + 1
2N2

min (1− ρ21′, 1− ρ22′)
(
Vπ(ãTNN21 )y1
(1−ρ21′) +

Vπ(ãTNN22 )y2
(1−ρ22′) − Ambπ(ãTNN21 )y1

(1−ρ21′) − Ambπ(ãTNN22 )y2
(1−ρ22′)

)
+min(σ21′,σ22′)

2

(
Vµ(ãTNN21 )y1

(σ21′)
+

Vµ(ãTNN22 )y2
(σ22′)

− Ambµ(ãTNN21 )y1
(σ21′)

− Ambµ(ãTNN22 )y2
(σ22′)

)
+min(1−τ21′,1−τ22′)

2

(
Vν(ãTNN21 )y1

(1−τ21′) +
Vν(ãTNN22 )y2

(1−τ22′) − Ambν(ãTNN21 )y1
(1−τ21′) − Ambν(ãTNN22 )y2

(1−τ22′)

)
≤ 1

2L2 +M2 + 1
2N2

y1 + y2 = 1

and; y1, y2, L2,M2, N2 ≥ 0

Hence, we obtain

For player I 

max 1
2L1 +M1 + 1

2N1

s.t., 211x1 + 100x2 ≥ 0.5L1 +M1 + 0.5N1

198.4667x1 + 228.5833x2 ≥ 0.5L1 +M1 + 0.5N1

x1 + x2 = 1

and;x1, x2, L1,M1, N1 ≥ 0
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For player II 

min 1
2L2 +M2 + 1

2N2

s.t., 228.5833y1 + 198.4667y2 ≤ 0.5L2 +M2 + 0.5N2

100y1 + 211y2 ≤ 0.5L2 +M2 + 0.5N2

y1 + y2 = 1

and; y1, y2, L2,M2, N2 ≥ 0

Using standard simplex method we obtain that the optimal strategies for the player

I and II are X = (0.9112, 0.0888)T and Y = (0.0888, 0.9112)T respectively. The min-

imum expected gain as single valued triangular neutrosophic number for player I is

〈(152.2200, 158.1312, 160.8416) ; 0.6, 0.4, 0.2〉, while the maximum expected loss as single valued

triangular neutrosophic number for player II is 〈(166.5640, 172.0080, 180.0080) ; 0.6, 0.5, 0.2〉,
when they choose the optimal strategies as X = (0.9112, 0.0888)T and Y = (0.0888, 0.9112)T

respectively.

7. Conclusion

We have investigated a two-person zero-sum matrix game in a neutrosophic environ-

ment with single-valued triangular neutrosophic numbers as pay-offs. A ranking or de-

neutrosophication, based on value and ambiguity index using α- cut, β- cut, and γ- cut is

developed. A pair of neutrosophic linear programming problems estimated by the max-min

approach of optimality of the two-person zero-sum matrix game is converted into another pair

of crisp linear programming problems. Strategies and values of the matrix game are obtained

by providing a numerical example.

The primary results of this study are pointed as:

• The relative properties and cut sets are developed for single-valued triangular neutro-

sophic numbers.

• Expressions for values and ambiguities are derived for single-valued triangular neutro-

sophic numbers.

• Related theorems for value and ambiguity indices are stated and proved.

• De-neutrosophication concept based on value and ambiguity index is derived.

• Established a mathematical model corresponding to neutrosophic matrix game.

• A numerical example is provided and verified to illustrate the theoretical establish-

ments.

In the future, we can extend the recommended method for different types of neutrosophic

numbers as an interval-valued neutrosophic number, bipolar neutrosophic number, and single-

valued trapezoidal neutrosophic numbers.
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