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Abstract: In this manuscript, three contributions are proposed. First contribution is proposing a good 

evaluation between the fuzzy and neutrosophic approaches using a novel fuzzy-neutrosophic transfer. 

Second contribution is introducing a general framework for solving the neutrosphic linear programming 

problems using the advantages of the method of Abdel-Basset et al. and the advantages of Singh et al.'s 

method. Third contribution is proposing a new neutrosophic exterior point simplex algorithm NEPSA 

and its fuzzy version FEPSA. NEPSA has two paths to get optimal solutions. One path consists of basic 

not feasible solutions but the other path is feasible. Finally, the numerical examples and results analysis 

show that NEPSA more than accurate FEPSA. 
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1. Introduction 

               Fuzzy sets were introduced by Zadeh [20] to handle vague and imprecise information. But also 

fuzzy set does not represent vague and imprecise information efficiently, because it considers only the 

truthiness function. After then, Atanassov [3] introduced the concept of intuitionistic fuzzy set to handle 

vague and imprecise information, by considering both the truth and falsity function. But also 

intuitionistic fuzzy set does not simulate human decision making process. Because the proper decision is 

fundamentally a problem of arranging and explicate facts the concept of neutrosophic set theory was 

presented by Smarandache, to handle vague, imprecise and inconsistent information [9,10,11,12]. 

Neutrosophic set theory simulates decision-making process of humans, by considering all aspects of 

decision-making process. Neutrosophic set is a popularization of fuzzy and intuitionistic fuzzy sets; each 

element of set had a truth, indeterminacy and falsity membership function. So, neutrosophic set can 

assimilate inaccurate, vague and maladjusted information efficiently and effectively [18, 19]. 

            The first EPSA was developed by Paparrizos  for the assignment problem [27]. Later, Paparrizos  

generalized EPSA to the general LP [28]. Primal-dual versions of the algorithm are discussed in [29,30]. 

From the geometry of EPSA, In particular, EPSA proved to be up to ten times faster than simplex 

algorithm on randomly generated optimal LPs of medium size.  

            EPSA constructs two paths to the optimal solution. One path consists of basic but not feasible 

solutions; so this is an “exterior path”. The second path is feasible. It consists of line segments, the 

endpoints of which lie on the boundary of the feasible region. EPSA relies on the idea that making steps 
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in directions that are linear combinations of attractive descent directions which can lead to faster 

practical convergence than that achievable by simplex algorithm. Although EPSA outperforms clearly 

the original simplex algorithm (on randomly generated dense and sparse LPs) it has two computational 

disadvantages. Firstly, it is difficult to construct “good moving directions”. We use the term “good 

moving direction” loosely. A good moving direction is a direction that makes the algorithm efficient in 

practice. Geometrically a good moving direction is a direction that comes close to the optimal solution. In 

fact the two paths depend on the initial feasible segment (direction) and the initial feasible vertex. 

Secondly, there is no known way of moving into the interior of the feasible region. This movement will 

provide more flexibility in the search for computationally good directions. 

             Badr et al [8] proposed a new method to solve the fuzzy linear programming problem. It is called 

fuzzy exterior point simplex algorithm (FEPSA). It constructs two ways to get the optimal solution. One 

path consists of basic not feasible solutions. The second way is feasible. 

            For more details about the linear programming, the reader can refer to [13,5,4,6]. On the other 

hand, for more details about the fuzzy linear programming, the reader is referred to [7]. Finally, for more 

details about the neutrosophic linear programming, the reader may refer to [2,14,15,16,17,24,25,26,31]. 

            The remaining parts of this research are organized as follows: In sect. 2, we introduce the basic 

concepts of fuzzy and neutrosophic sets and a new technique which converts the fuzzy representation to 

the neutrosophic representation. The fuzzy rank functions and it corresponding neutrosophic rank 

functions are proposed in Sec. 3. In Sec. 4, we propose Singh et al.'s modifications [32] and the proposed 

modification for primal neutrosophic simplex method and a new neutrosophic exterior point simplex 

algorithm NEPSA. In Sec. 5, we propose two numerical examples that show the importance of the 

proposed modification for primal neutrosophic simplex method and they show the superiority of the 

proposed algorithm NEPSA. Finally, we introduce the future work and conclusions in Sec. 6. 

 

2. Preliminaries 

In this section, we introduce three subsections. First one is representation of the fuzzy numbers. 

Second is the representation of the neutrosophic numbers. Finally, we show that how to move from fuzzy 

representation to neutrosophic representation. In other words, how do to convert the fuzzy numbers to 

neutrosophic numbers. 

2.1 Fuzzy Representation 

We review the fundamental notions of fuzzy set theory, initiated by Bellman and Zadeh [20]. 

2.1.1 Definition: A convex fuzzy set Ã on ℝ is a fuzzy number if the following conditions hold: 

 Its membership function is piecewise continuous. 

 There exist three intervals [a, b], [b, c], [c, d] such that 
a

 is increasing on [a, b], equal to 1 

on [b, c], decreasing on [c, d] and equal to 0 elsewhere. 

2.1.2 Definition: Let 𝑎̃ = (𝑎𝐿 , 𝑎𝑈 , 𝛼, 𝛽)  denote the trapezoidal fuzzy number, where (𝑎𝐿 − 𝛼, 𝑎𝑈 + 𝛽) is the  

                              support of ã and [𝑎𝐿 , 𝑎𝑈] its core. 

Remark 1: We denote the set of all trapezoidal fuzzy numbers by F(ℝ). 
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Figure 1. Truth membership function of trapezoidal fuzzy numbers 

We next define arithmetic on trapezoidal fuzzy numbers. Let 𝑎̃ = (𝑎𝐿 , 𝑎𝑈 , 𝛼, 𝛽) and 𝑏̃ = (𝑏𝐿 , 𝑏𝑈, 𝛾, 𝜃)be two 

trapezoidal fuzzy numbers. Define: 

𝑥𝑎̃ = (𝑥𝑎𝐿 , 𝑥𝑎𝑈, 𝑥𝛼, 𝑥𝛽) ∶   𝑥 > 0,  𝑥 ∈ ℝ; 

 𝑥𝑎̃ = (𝑥𝑎𝑈, 𝑥𝑎𝐿 , −𝑥𝛽,−𝑥𝛼): 𝑥 < 0, 𝑥 ∈ ℝ;   

𝑎̃+𝑏̃=(𝑎𝐿 , 𝑎𝑈, 𝛼, 𝛽)+ (𝑏𝐿 , 𝑏𝑈, 𝛾, 𝜃) = [𝑎𝐿 + 𝑏𝐿 , 𝑎𝑈 + 𝑏𝑈, 𝛼 + 𝛾, 𝛽 + 𝜃] 

We point out that the arithmetic on trapezoidal fuzzy numbers follows the Extension Principle which is 

discussed in [22]. 

2.2 Neutrosophic Representation 

In this subsection, some of basic definitions in the neutrosophic set theory are introduced: 

2.2.1 Definition [1]: A single-valued neutrosophic set N which is a subset of X is defined as  follows:  

𝑁 = {< 𝑥, 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥) >: 𝑥 ∈ 𝑋}where X is a universe of discourse, 𝑇𝑁(𝑥): 𝑋 → [0,1] 

,  𝐼𝑁(𝑥): 𝑋 → [0,1] and  𝐹𝑁(𝑥): 𝑋 → [0,1] with 0 ≤ 𝑇𝑁(𝑥) + 𝐼𝑁(𝑥) + 𝐹𝑁(𝑥) ≤ 3 for all𝑥 ∈ 𝑋, 

𝑇𝑁(𝑥), 𝐼𝑁(𝑥) and 𝐹𝑁(𝑥)represent truth membership, indeterminacy membership and 

falsity membership degrees of x to N. 

2.2.2 Definition [1]: The trapezoidal neutrosophic number 𝐴̃ is a neutrosophic set in R with the following  

truth, indeterminacy and falsity membership functions: 

                           𝑇𝐴(𝑥) =

{
 
 

 
 

𝛼𝐴̃(𝑥−𝑎 )

𝑎2−𝑎1
: 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝛼𝐴    : 𝑎2 ≤ 𝑥 ≤ 𝑎3

𝛼𝐴(
𝑥−𝑎3

𝑎4−𝑎3
) : 𝑎3 ≤ 𝑥 ≤ 𝑎4

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    𝐼𝐴(𝑥) =

{
 
 

 
 

(𝑎2−𝑥+𝜃𝐴̃(𝑥−𝑎1
′ )

𝑎2−𝑎1
′ : 𝑎1

′ ≤ 𝑥 ≤ 𝑎2 

𝜃𝐴          : 𝑎2 ≤ 𝑥 ≤ 𝑎3
(𝑥−𝑎3+𝜃𝐴̃(𝑎4

′−𝑥)

𝑎4
′−𝑎3

: 𝑎3 ≤ 𝑥 ≤ 𝑎4
′

1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝐹𝐴(𝑥) =

{
  
 

  
 
(𝑎2 − 𝑥 + 𝛽𝐴(𝑥 − 𝑎1

"))

𝑎2 − 𝑎1
"

: 𝑎1
" ≤ 𝑥 ≤ 𝑎2 

𝛽𝐴         : 𝑎2 ≤ 𝑥 ≤ 𝑎3
(𝑥 − 𝑎3 + 𝛽𝐴(𝑎4

" − 𝑥))

𝑎4
" − 𝑎3

 : 𝑎3 ≤ 𝑥 ≤ 𝑎4
"

1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝛼𝐴, 𝜃𝐴 and 𝛽𝐴 represent the maximum degree of truthiness, minimum degree of indeterminacy and 

minimum degree of falsity, respectively, 𝛼𝐴, 𝜃𝐴 and 𝛽𝐴 ∈ [0,1]. The membership functions of trapezoidal 

neutrosophic number are shown in Fig. 2. It is clear that𝑎1
" < 𝑎1 < 𝑎1

′ < 𝑎2 < 𝑎3 < 𝑎4
′ < 𝑎4 < 𝑎4

" . 

Remark 2: Here 𝑇𝐴(𝑥) increases with a constant rate for [a1, a2] and decreases with a constant rate for [a3, 

a4]. 𝐹𝐴(𝑥)decreases with a constant rate for [𝑎1
′′, a2] and increases with a constant rate for [a3, 𝑎4

′′]. 

𝐼𝐴(𝑥)increases and decreases with a constant rate for [𝑎1
′ , a2] simultaneously,  and it decreases and 

increases with a constant rate for [a3, 𝑎4
′ ] simultaneously. 

Remark 3: If 𝑎2 − 𝑎1 = 𝑎4 − 𝑎3 the trapezoidal neutrosophic number is called the symmetric trapezoidal 

neutrosophic number. 

2.2.3 Definition [1]: Let  𝐴̃ =   < 𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝛼𝐴, 𝜃𝐴, 𝛽𝐴 > and  𝐵̃ =   < 𝑏1, 𝑏2, 𝑏3, 𝑏4; 𝛼𝐵̃, 𝜃𝐵̃, 𝛽𝐵̃ > are two  

     trapezoidal neutrosophic numbers, then the mathematical operations are presented as follows: 

                                  𝐴̃ + 𝐵̃ =   < (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3, 𝑎4 + 𝑏4); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃𝐴̃ ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 > 

                                 𝐴̃ − 𝐵̃ =   < (𝑎1 − 𝑏4, 𝑎2 − 𝑏3, 𝑎3 − 𝑏2, 𝑎4 − 𝑏1); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃𝐴 ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 > 

                                 𝐴̃−1 =   < (
1

𝑎4
,
1

𝑎3
,
1

𝑎2
,
1

𝑎1
); 𝛼𝐴, 𝜃𝐴, 𝛽𝐴 > where(𝐴̃ ≠ 0) 

                                λÃ = {
< 𝜆𝑎1, 𝜆𝑎2, 𝜆𝑎3, 𝜆𝑎4; 𝛼𝐴, 𝜃𝐴, 𝛽𝐴 > :  𝜆 > 0
< 𝜆𝑎4, 𝜆𝑎3, 𝜆𝑎2, 𝜆𝑎1; 𝛼𝐴, 𝜃𝐴, 𝛽𝐴 > :  𝜆 < 0

 

                                𝐴̃𝐵̃ = {

< (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃𝐴 ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 >   if (𝑎4 > 0, 𝑏4 > 0) 

< (𝑎1𝑏4, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎4𝑏1); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃𝐴 ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 >   if (𝑎4 < 0, 𝑏4 > 0) 

< (𝑎4𝑏4, 𝑎3𝑏3, 𝑎2𝑏2, 𝑎1𝑏1); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃𝐴 ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 >   if (𝑎4 < 0, 𝑏4 < 0)

 

                              
𝐴̃

𝐵̃
=

{
 
 

 
 < (

𝑎1

𝑏4
,
𝑎2

𝑏3
,
𝑎3

𝑏2
,
𝑎4

𝑏1
); 𝛼𝐴̃ ∧ 𝛼𝐴̃, 𝜃𝐴̃ ∨ 𝜃𝐴̃, 𝛽𝐴̃ ∨ 𝛽𝐴̃ >   if (𝑎4 > 0, 𝑏4 > 0) 

< (
𝑎4

𝑏4
,
𝑎3

𝑏3
,
𝑎2

𝑏2
,
𝑎1

𝑏1
); 𝛼𝐴̃ ∧ 𝛼𝐴̃, 𝜃𝐴̃ ∨ 𝜃𝐴̃, 𝛽𝐴̃ ∨ 𝛽𝐴̃ >   if (𝑎4 < 0, 𝑏4 > 0) 

< (
𝑎4

𝑏1
,
𝑎3

𝑏2
,
𝑎2

𝑏3
,
𝑎1

𝑏4
); 𝛼𝐴̃ ∧ 𝛼𝐴̃, 𝜃𝐴̃ ∨ 𝜃𝐴̃, 𝛽𝐴̃ ∨ 𝛽𝐴̃ >   if (𝑎4 < 0, 𝑏4 < 0)
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Figure 2. Truth, indeterminacy and falsity membership functions of trapezoidal neutrosophic numbers 

2.3 Fuzzy-Neutrosophic Transformation 

              The main goal of this subsection is to explain how to convert fuzzy numbers representation into 

neutrosophic numbers representation. This transformation is used for simplicity and fair comparison 

between them. It is known that there are many rank functions for ordering the fuzzy and neutrosophic 

numbers. We emphasize using the same function for both fuzzy numbers and neutrosophic numbers to 

obtain a fair comparison between them. Here we also explain how to apply this technique. 

             From Figure 1 and Figure 2 we can illustrate the following relations between the two 

representations: 

𝑎1 = 𝑎2 − 𝛼, 𝑎2 = 𝑎
𝐿, 𝑎3 = 𝑎𝑈 and 𝑎4 = 𝑎3 + 𝛽                                                   (1) 

Assuming that the rank function is used for ordering the fuzzy numbers as follows: 

𝑅(𝑎̃) = 𝑎𝑙 + 𝑎𝑢 +
𝛽−𝛼

2
                                                                                                 (2) 

From relations (1) we express the rank function to be used for ordering the neutrosophic numbers as 

follows: 

𝑅(𝑎̃) =
1

2
∑ 𝑎̃𝑖
4
𝑖=1 + (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃)                                                                              (3) 

From (1), we can convert fuzzy numbers representation into neutrosophic numbers representation. On 

the other hand from (2) and (3), we can use the same function for both fuzzy numbers and neutrosophic 

numbers to obtain a fair comparison between them. 

3. Rank Functions 

              Assuming that 𝑇𝐴 = 1 , 𝐼𝐴 = 0 , 𝐹̃𝐴 = 0 ,then the TrNN  𝑎̃ =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝑇𝐴, 𝐼𝐴, 𝐹𝐴 > will be 

transformed into a trapezoidal fuzzy number 𝑎̃ =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 1,0,0 > and hence, in this case: 

 The expression 𝑅(𝑎̃) =
1

2
∑ 𝑎𝑖
4
𝑗=1 + (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃)  is equivalent to the expression  

       𝑅(𝑎̃) =
1

2
∑ 𝑎𝑖
4
𝑗=1 + 1 

Furthermore, it well be known that if 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 then the trapezoidal fuzzy number 𝐴̃ =<

𝑎1, 𝑎2, 𝑎3, 𝑎4; 1,0,0 > will be transformed into a real number A = (a, a, a, a; 1, 0, 0) and hence, in this case: 

 The expression 𝑅(𝑎̃) =
1

2
∑ 𝑎𝑖
4
𝑗=1 + (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃)  is equivalent to the expression       

 𝑅(𝐴) = 2𝑎 + 1 ≠ 𝑎 
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Table 1.The rank function and it corresponding neutrosophic rank function 

No Fuzzy Rank Function 
Corresponding Neutrosophic Rank 

Function 

Rank function of 

constraints 

1 
𝑅(𝑎̃)

= (𝑎𝑙 + 𝑎𝑢 +
𝛽 − 𝛼

2
) 

𝑅(𝑎̃) =
1

2
∑𝑎𝑖

4

𝑗=1

+ (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃) 
 

𝑅(𝑎) = 2𝑎 + 1 

2 𝑅(𝑎̃) = (
𝑎𝑙 + 𝑎𝑢

2
) 𝑅(𝑎̃) = (

𝑎2 + 𝑎3
2

) + (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃) 
 

𝑅(𝑎) = 𝑎 + 1 

3 
𝑅(𝑎̃)

= (
𝑎𝑙 + 𝑎𝑢

2
+
𝛽 − 𝛼

4
) 

𝑅(𝑎̃) =
1

4
∑𝑎𝑖

4

𝑗=1

+ (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃) 
 

𝑅(𝑎) = 𝑎 + 1 

 

4. Algorithms 

           In this section; we first present Singh et al.'s modifications [32] and the proposed modification 

about the mathematical incorrect  assumptions, considered by Abdel-Basset et al. [1] in their proposed 

method to convert from neutrosophic numbers into real numbers. Second, we propose a new Exterior 

point simplex algorithm. Finally, we develop this algorithm in order to solve linear programming 

with neutrosophic numbers. 

4.1. General Framework for Solving Neutrosphic Linear Programming Problems 

 

           The main objective of this section is to remove the confusion among readers regarding the 

contributions of Abdel-Basset et al. and the contributions of Singh et al. In this paper, we present a 

general framework for solving neotrosophic linear programming problems using the advantages of the 

method of Abdel-Basset et al. and the advantages of Singh et al.'s method.  

           In 2019, Abdel-Basset et al. [1] presented a simple and effective model for solving neutrosophic 

linear programming problems supported by a set of numerous examples and a comparison between their 

approaches presented and solving these examples using the fuzzy method. Consequently, Abdel-Basset 

et al were able to prove the effectiveness of his approach in solving neutrosophic linear programming 

problems. On the other hand, Singh et al, 2019 [32] introduced modifications to Abdel-Basset model. 

These modifications summarized in how neutrosophic numbers are converted into real numbers. 

           In order to illustrate the method of each of them in solving neutrosophic linear programming 

problems, we assume the general form of neutrosophic linear programming problems as follows: 

𝑚𝑎𝑥 \  𝑚𝑖𝑛  [𝑧̃ = ∑ 𝑐𝑗̃𝑥𝑗
𝑛
𝑗=1 ] 

          s. t. 

 ∑ ãijxj  ≤ , ≥ , = b̃j  ,   i = 1,2, …… ,m;
n
j=1   𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

Model (1) illustrates the method of Abdel-Basset et al in converting neutrosophic numbers into deterministic 

numbers (in the objective function) 

𝑚𝑎𝑥 \  𝑚𝑖𝑛  [𝑅(𝑧̃) = ∑ 𝑅(𝑐̃𝑗)𝑥𝑗
𝑛
𝑗=1 ] 

While model (2) illustrates the method of Singh et al. in converting neutrosophic numbers into deterministic 

numbers (in the objective function) 

𝑚𝑎𝑥 \  𝑚𝑖𝑛  [𝑅(𝑧̃) = 𝑅(∑ 𝑐̃𝑗𝑥𝑗
𝑛
𝑗=1 ] 
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   In fact, there is a complete match between the method presented by Abdel-Basset et al and the 

method presented by Singh et al. In the case of converting fuzzy numbers to real numbers because 

𝑅(𝐴̃1⊕ 𝐴̃2) = 𝑅(𝐴̃1) + 𝑅(𝐴̃2) where 𝐴̃1 𝑎𝑛𝑑 𝐴̃2 are fuzzy numbers.  

             On the other hand, when converting neutrosophic numbers to real numbers, the proposed 

method presented by Singh et al. is more accurate than the method suggested by Abdel-Basset et al. 

mathematically, because 𝑅(𝐴̃1⊕ 𝐴̃2) ≠ 𝑅(𝐴̃1) + 𝑅(𝐴̃2) where 𝐴̃1𝑎𝑛𝑑𝐴̃2  are neutrosophic numbers.  

 

Lemma 1: Let 𝐴̃1 𝑎𝑛𝑑 𝐴̃2 are fuzzy numbers then 𝑹(𝑨̃𝟏⊕ 𝑨̃𝟐) = 𝑹(𝑨̃𝟏) + 𝑹(𝑨̃𝟐)   

 

Proof: 

Suppose that 𝐴̃1 = (𝑎1
𝑙 , 𝑎1

𝑢 , ∝1, 𝛽1) and  𝐴̃2 = (𝑎2
𝑙 , 𝑎2

𝑢 , ∝2, 𝛽2) are two Trapezoidal fuzzy numbers as shown 

in Figure 1, and the used rank function is defined as follows:  𝑅(𝐴̃) =
𝑎𝐿+𝑎𝑈

2
 + 

𝛽−𝛼

4
 

𝑅(𝐴̃1⊕ 𝐴̃2)= R ((𝑎1
𝑙 + 𝑎2

𝑙 ), ( 𝑎1
𝑢 + 𝑎2

𝑢), ( ∝1 +∝2), (𝛽1 + 𝛽2)) =  
 𝑎1
𝑙+𝑎2

𝑙+ 𝑎1
𝑢+𝑎2

𝑢

2
 +   

 𝛽1+𝛽2− ∝1−∝2

4
      (4) 

While, 

𝑅(𝐴̃1) + 𝑅(𝐴̃2) = 
𝑎1
𝑙 +𝑎1

𝑢

2
 + 

𝛽1 +∝1

4
 + 

𝑎2
𝑙 +𝑎2

𝑢

2
 + 

𝛽2 +∝2

4
   =   

 𝑎1
𝑙+𝑎2

𝑙+ 𝑎1
𝑢+𝑎2

𝑢

2
 +   

 𝛽1+𝛽2− ∝1−∝2

4
                         (5) 

It is obvious from (4) and (5) that𝑅(𝐴̃1⊕ 𝐴̃2) = 𝑅(𝐴̃1) + 𝑅(𝐴̃2)                                   

 

Lemma 2: Let Ã 𝑎𝑛𝑑 B̃ are neutrosophic numbers then 𝑹(𝐀̃ ⊕ 𝐁̃) ≠ 𝑹(𝐀̃) + 𝑹(𝐁̃)   

 

Proof: 

Suppose that Ã = (a1, a2, a3, a4, TÃ, IÃ, FÃ) and B̃ = (b1, b2, b3, b4, TB̃, IB̃, FB̃) are two Trapezoidal 

neutrosophic numbers as shown in Fig. 2 and the used rank function is defined as follows:      

R(Ã) =
a1 + a4 + 2 (a2 + a3)

2
 

R(Ã ⊕ B̃) = 𝑅 ((a1 + b1), ( a2 + b2), ( a3 + b3), (a4 + b4); min {TÃ, TB̃}, max {IÃ, IB̃}, max {FÃ, FB̃} 

=  
 a1+b1+ a4+b4+2(a2+b2+a3+b3)

2
 + min {TÃ, TB̃} - max {IÃ, IB̃} - max {FÃ, FB̃})             (6) 

On the other hand, 

R(Ã) + R(B̃)  = 
a1+a4+2 (a2+a3)

2
   +(TÃ − IÃ − FÃ) + 

b1+b4+2 (b2+b3)

2
  + (TB̃ − IB̃ − FB̃)   

=  
 a1+b1+ a4+b4+2(a2+b2+a3+b3)

2
 + min {TÃ, TB̃} - max {IÃ, IB̃} - max {FÃ, FB̃})            (7) 

It is obvious from (6) and (7) that     R(Ã ⊕ B̃) ≠ R(Ã) + R(B̃)                        

Remark 4: 

Other considerations were not discussed by Singh et al. such as:  

1. Abdel-Basset et al. [1] used the rank function for the maximization problems of NLP, and 

used another rank function for the minimization problems, which means that he used the 

two rank functions in his proposed model. 
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2. Abdel-Basset et al [1], compared his proposed model with other models, using different rank 

functions, thus the comparison is unfair. 

Section 2.3 addressed these considerations by finding a relationship between the representation of fuzzy 

numbers and the representation of neutrosophic numbers. 

Now, we can introduce a general framework for solving the linear programming problems using 

neutrosophic numbers as follows: 

Step 1: neutrosophic or uncertain information is generally processed by transforming into an accurate or 

crisp number by using the same ranking function for maximization and minimization problem for both 

fuzzy numbers and neutrosophic numbers to obtain a fair comparison between them using the method 

suggested by Singh et al. [32]. 

All parameters are represented by trapezoidal neutrosophic numbers, except variables are exemplified 

only by real values. 

𝑚𝑎𝑥  \  𝑚𝑖𝑛[∑ = 𝑐𝑗̃𝑥𝑗
𝑛
𝑗=1 ] 

s. t. 

∑ãijxj  ≤ , ≥ , = b̃j    

n

j=1

 

i = 1,2, …… ,m;  𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛        (8) 

     

The Equation (8) can be transformed into Exact crisp linear programming problem                           

          

𝑀𝑎𝑥 /𝑀𝑖𝑛 [∑𝑅(𝑐̃𝑗𝑥𝑗)

𝑛

𝑗=1

−∑𝑇𝑐𝑗̃𝑥𝑗

𝑛

𝑗=1

+∑𝐼𝑐𝑗̃𝑥𝑗

𝑛

𝑗=1

+∑𝐹𝑐𝑗̃𝑥𝑗 +

𝑛

𝑗=1

min
1≤𝑗≤𝑛

{𝑇𝑐𝑗̃𝑥𝑗} −  max1≤𝑗≤𝑛
{𝐼𝑐̃𝑗𝑥𝑗} − max

1≤𝑗≤𝑛
{𝐹𝑐𝑗̃𝑥𝑗}] 

s. t. 

(∑𝑅(ãij)xj) + 1 ≤ , ≥ , = R(b̃j)  ,   i = 1,2, …… ,m;

n

j=1

 

  xj ≥ 0 , j = 1,2, …… , n.  (2)  

This transformation can happen at the beginning of the decision process, or in the middle or final stage. 

Step 2: Let 𝐴̃ = (a1, a2, a3, a4, TÃ, IÃ, FÃ) be a trapezoidal neutrosophic number, where  a1, a2, a3, a4; are 

lower bound, first, second median value and upper bound for trapezoidal neutrosophic number, 

respectively. Also TÃ, IÃ, FÃ are the truth, indeterminacy and falsity degree of trapezoidal neutrosophic 

number. Ranking function for this trapezoidal neutrosophic number is as follows: 

𝑅(𝐴̃) =
a1+a4+2 (a2+a3)

2
+ Confirmation degree 

Mathematically, this function can be written as follows: 

𝑅(𝐴̃) =
a1+a4+2 (a2+a3)

2
 + (TÃ − IÃ − FÃ) 
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Step 3: Solve the crisp model using the standard method and obtain the optimal solution of problem 

 

  Table 2.Singh et al.'s modifications. 

no NLPP- (Type) NLPP- (Form) Exact Crisp LPP 

1 

The coefficients of the 

objective function are 

represented by 

trapezoidal 

neutrosophic 

numbers 

𝑚𝑎𝑥\min   z =  [∑ 𝑐̃𝑗𝑥𝑗
𝑛
𝑗=1 ]    

s. t       
  ∑ 𝑎𝑖𝑗𝑥𝑗  ≤ , ≥ , =

𝑛
𝑗=1

𝑏𝑗   ,       𝑖 = 1,2, …… ,𝑚;  𝑥𝑗 ≥

0 , 𝑗 = 1,2, …… , 𝑛. 

𝑀𝑎𝑥 /𝑀𝑖𝑛 𝑧 = [∑𝑅(𝑐̃𝑗𝑥𝑗)

𝑛

𝑗=1

−∑𝑇𝑐𝑗̃𝑥𝑗

𝑛

𝑗=1

+∑𝐼𝑐̃𝑗𝑥𝑗

𝑛

𝑗=1

+∑𝐹𝑐𝑗̃𝑥𝑗 +

𝑛

𝑗=1

min
1≤𝑗≤𝑛

{𝑇𝑐𝑗̃𝑥𝑗} −  max1≤𝑗≤𝑛
{𝐼𝑐̃𝑗𝑥𝑗}

− max
1≤𝑗≤𝑛

{𝐹𝑐𝑗̃𝑥𝑗}] 

𝑠. 𝑡.   ∑ 𝑎𝑖𝑗𝑥𝑗  ≤ , ≥ , = 𝑏𝑗   ,   𝑖 = 1,2, …… ,𝑚;
𝑛
𝑗=1      𝑥𝑗 ≥ 0 ,

𝑗 = 1,2, …… , 𝑛. 

2 

The coefficients of 

constraints variables 

and right hand side 

are represented by 

trapezoidal 

neutrosophic 

numbers 

 

max\  min  z = [∑ cjxj
n
j=1 ] 

s. t. 
∑ 𝑎̃𝑖𝑗𝑥𝑗  ≤ , ≥ , = 𝑏̃𝑗   ,    𝑖 =
𝑛
𝑗=1

1,2, …… ,𝑚;       𝑥𝑗 ≥ 0 , 𝑗 =

1,2, …… , 𝑛. 

 

Max / min z = ∑ cjxj
n
j=1  

s. 𝑡.     [∑ R(ãijxj)
n
j=1 − ∑ Tãijxj

n
j=1 + ∑ Iãijxj

n
j=1 +

∑ Fãijxj +
n
j=1 min

1≤j≤n
{Tãijxj} − max

1≤j≤n
{Iãijxj} − max1≤j≤n

{Fãijxj}] ≤

,≥,= R(b̃i) 
𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

3 

All parameters are 

represented by 

trapezoidal 

neutrosophic 

numbers, except 

variables are 

exemplified only by 

real values 

𝑚𝑎𝑥  \  min 𝑧 = [∑ 𝑐̃𝑗𝑥𝑗
𝑛
𝑗=1 ] 

s. t. 
∑ ãijxj  ≤ , ≥ , = b̃j  ,   i =
n
j=1

1,2, …… ,m;  𝑥𝑗 ≥ 0 , 𝑗 =

1,2, …… , 𝑛. 

𝑀𝑎𝑥 /𝑀𝑖𝑛 𝑧 = [∑𝑅(𝑐̃𝑗𝑥𝑗)

𝑛

𝑗=1

−∑𝑇𝑐𝑗̃𝑥𝑗

𝑛

𝑗=1

+∑𝐼𝑐̃𝑗𝑥𝑗

𝑛

𝑗=1

+∑𝐹𝑐𝑗̃𝑥𝑗 +

𝑛

𝑗=1

min
1≤𝑗≤𝑛

{𝑇𝑐𝑗̃𝑥𝑗} −  max1≤𝑗≤𝑛
{𝐼𝑐̃𝑗𝑥𝑗}

− max
1≤𝑗≤𝑛

{𝐹𝑐𝑗̃𝑥𝑗}] 

s. t. 

(∑𝑅(ãij)xj) + 1 ≤ , ≥ , = R(b̃j)  ,   i = 1,2, …… ,m;

n

j=1

 

xj ≥ 0 , j = 1,2, …… , n. 

4 

The coefficients of 

objective function 

and constraints 

variables are 

represented by real 

numbers and right 

hand side are 

represented by 

trapezoidal 

neutrosophic 

numbers 

 

max\  min z =  [∑ cjxj
n
j=1 ] 

                          s. t.               
        ∑ a𝑖𝑗𝑥𝑗  ≤ , ≥ , =

𝑛
𝑗=1

𝑏̃𝑗   ,   𝑖 =          1,2, …… ,𝑚;       

         𝑥𝑗 ≥ 0 ,

𝑗 = 1,2, …… , 𝑛. 

 

Max / min ∑ cjxj
n
j=1  

s. 𝑡. 

R [∑(aijxj)

n

j=1

] ≤, ≥,= R(b̃i) 

𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

 

 
Remark 5: If 𝑅(𝑎) = 𝑎 + 1 and the coefficients of the objective function & constraints variables are real, 

then the fuzzy   linear programming problem is equivalent to the neutrosophic linear programming 

problem. 



Neutrosophic Sets and Systems, Vol. 45, 2021  329  

 

 
 

M Abdel-Basset, E. Badr, Sh. Nada, S. Ali, A. Elrokh. Solving Neutrosophic linear Programming Problems Using Exterior Point 

Simplex Algorithm 

 

 NLPP: neutrosophic linear programming problem. 

4.2 A novel neutrosophic Exterior Point Simplex Algorithm (NEPSA) 

      Badr et al [8] proposed a fuzzy exterior point simplex algorithm (FEPSA) for solving the linear 

programming problems with fuzzy numbers. In this section, we propose a new algorithm which solves 

linear programming with neutrosophic numbers (Neutrosophic exterior point simplex algorithm 

NEPSA). 

Neutrosophic Exterior Point Simplex Algorithm (NEPSA) 

Step0: (Initialization) 

 Transfer fuzzy numbers into neutrosophic numbers (see  section 3) 

 Apply the general framework (see section 4) 

 Start with a feasible basic point and construct the corresponding tableau exterior 

simplex. 

Step1: (Test of termination) 

             Find the set𝐽− = {𝑗: 𝑎̃0𝑗 <
𝑅
0̃}. If  𝐽− = 𝛷, STOP. The problem is optimal. 

            Otherwise, calculate 𝑎̃00 = ∑ 𝑎̃𝑖𝑗𝑗∈𝐽−
 and  𝑎𝑖0 =∑ 𝑎𝑖𝑗𝑗∈𝐽−

 where i = 1, 2, . . ., m 

Step2: (Choice of entering variable) 

            Find the set  𝐼+ = {𝑖: 𝑎𝑖0 > 0}. If𝐼+ = 𝛷, STOP. The problem is unbounded. 

            Otherwise, determine the index of  entering variable r from the relation : 

𝑏𝑟
𝑎𝑟0

= 𝑚𝑖𝑛 {
𝑏𝑗

𝑎𝑟0
: 𝑖 ∈ 𝐼+} 

Step3: (Choice of leaving variable) 

            Put 𝐽+ = {𝑗: 𝑎̃0𝑗 > 0̃} and calculate  

𝜃1 =
− 𝑎̃0𝑘
𝑎𝑟𝑘

= 𝑚𝑖𝑛 {
− 𝑎̃0𝑗
𝑎𝑟𝑗

: 𝑗 ∈ 𝐽−, 𝑎𝑟𝑗 > 0} 

𝜃2 =
− 𝑎̃0𝑙
𝑎𝑟𝑙

= 𝑚𝑖𝑛 {
− 𝑎̃0𝑗
𝑎𝑟𝑗

: 𝑗 ∈ 𝐽+, 𝑎𝑟𝑗 < 0} 

   Find the index of the leaving variable s, if 𝜃1 ≤ 𝜃2 put s = k otherwise s = l. 

Step4: (Pivoting) 

            Form the next tableau by the pivoting variable ars and go to Step1 

 

 
5. Numerical Examples and Results Analysis 

               In this section, two benchmark examples (P1 and P2) are proposed to compare between the 

proposed algorithm NEPSA and its fuzzy version FEPSA. 
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Table 3. Special fuzzy linear programming from different references 

Problem 

No. 
Problem object function and constrained Reference 

P1 

𝑀𝑎𝑥 𝑧̃ = (2,4,2,6)𝑥1 + (2,6,1,3)𝑥2 + (1,3,1,3)𝑥3 
s. t 
𝑥1 + 𝑥2 + 2𝑥3 ≤ 2 
2𝑥1 + 3𝑥2 + 4𝑥3 ≤ 3 
6𝑥1 + 6𝑥2 + 2𝑥3 ≤ 8 

                         𝑥1, 𝑥2, 𝑥3 ≥ 0 

[8] 

P2 

𝑀𝑎𝑥 𝑧̃ = (13,15,2,2)𝑥1 + (12,14,3,3)𝑥2 + (15,17,2,2)𝑥3 
s. t. 

12𝑥1 + 13𝑥2 + 12𝑥3 ≤ (475,505,6,6) 
14𝑥1 +                13𝑥3 ≤ (460,480,8,8) 
 12𝑥1 + 15𝑥2 ≤ (465,495,5,5) 

𝑥1, 𝑥2, 𝑥3 ≥ 0 

 

[21] 

 

5.1 Example 1 (P1) [8] : 

 

Consider the following linear programming problem 
𝑀𝑎𝑥 𝑧̃ = (2,4,2,6)𝑥1 + (2,6,1,3)𝑥2 + (1,3,1,3)𝑥3 
s. t 
          𝑥1 + 𝑥2 + 2𝑥3 ≤ 2 
          2𝑥1 + 3𝑥2 + 4𝑥3 ≤ 3 
         6𝑥1 + 6𝑥2 + 2𝑥3 ≤ 8 
                  𝑥1, 𝑥2, 𝑥3 ≥ 0 

First: We will convert the fuzzy numbers into neutrosophic numbers  

Then, using the following rank function: 

𝑅(𝑎̌) =
1

2
∑𝑎̃𝑖

4

𝑖=1

+ (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃) 

𝑅(𝑎) = 2𝑎 + 1 
𝑀𝑎𝑥 𝑧 = 𝑅[(0,2,4,10)]𝑥1 + 𝑅[(1,2,6,9)]𝑥2 + 𝑅[(0,1,3,6)]𝑥3 
s. t. 
        𝑥1 + 𝑥2 + 2𝑥3 ≤ 2 
        2𝑥1 + 3𝑥2 + 4𝑥3 ≤ 3 
        6𝑥1 + 6𝑥2 + 2𝑥3 ≤ 8 
              𝑥1, 𝑥2, 𝑥3 ≥ 0 

Putting the last formula into the standard form, we have: 

 
𝑀𝑎𝑥 𝑧 = 9𝑥1 + 10𝑥2 + 6𝑥3 
s. t. 
        𝑥1 + 𝑥2 + 2𝑥3 + 𝑥4 = 2 
        2𝑥1 + 3𝑥2 + 4𝑥3 + 𝑥5 = 3 
        6𝑥1 + 6𝑥2 + 2𝑥3 + 𝑥6 = 8 
          𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ≥ 0 
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Step (0): we construct the initial tableau of exterior simplex:  

 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −9 −10 −6 0 0 0 2 

𝒙𝟒 4 1 1 2 1 0 0 2 

𝒙𝟓 9 2 3 4 0 1 0 3 
𝒙𝟔 14 6 6 2 0 0 1 8 

 

Step (1): J- = {j: a0j  <   0} = {1, 2, 3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1, 2, 3}   the problem is not unbounded  
𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏1
𝑎10

, 
𝑏2
𝑎20

 ,  
𝑏3
𝑎30

}   = 𝑚𝑖𝑛  {
2

4
,
3

9
,
8

14
}   =

3

9
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥5 

Step (3): J+ = {j: a0j 
R
  0} =   

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎0𝑙

𝑎21
,
−𝑎02

𝑎22
,
−𝑎03

𝑎23
} = 𝑚𝑖𝑛  {

9

2
,
10

3
,
6

4
 } =

6

4
 ⇒ 𝑘 = 3  

Then, the entering variable is 𝑥3 

𝜃2 =
𝑅

−𝑎0𝑙

𝑎𝑟𝑙
=
𝑅
𝑚𝑖𝑛 {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗 ∈  𝐽+ , 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛{𝛷} = ∞ ⇒ 𝜃1 < 𝜃2 ⇒ s = k = 3 , the pivot element is a23  

Step (4): the next tableau by pivot element:  

 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −6 −11

2
 

0 0 3

2
 

0 13

2
 

𝒙𝟒 −1

2
 

0 −1

2
 

0 1 −1

2
 

0 1

2
 

𝒙𝟑 5

4
 

1

2
 

3

4
 

1 0 1

4
 

0 3

4
 

𝒙𝟔 19

2
 

5 9

2
 

0 0 −1

2
 

1 13

2
 

Step (1): J- = {j: a0j  <   0} = {1, 2}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {2, 3}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏2
𝑎20

 ,  
𝑏3
𝑎30

}   = 𝑚𝑖𝑛  {
3

5
,
13

19
}   =

3

5
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥3 

Step (3): J+ = {j: a0j 
R
  0} = {5} 

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎01

𝑎21
,
−𝑎02

𝑎22
}   =  𝑚𝑖𝑛  {12,

22

3
} =

22

3
 ⇒ 𝑘 = 2  

Then, the entering variable is 𝑥2 

𝜃2  =
𝑅

 
−𝑎0𝑙

𝑎𝑟𝑙
  =
𝑅
𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0}   ⇒  𝜃2  = 𝑚𝑖𝑛 {𝛷}  =  ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 2 , the pivot element 

is a22  
Step (4): the next tableau by pivot element:  
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  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −7

3
 

0 22

3
 

0 10

3
 

0 12 

𝒙𝟒 1

3
 

1

3
 

0 2

3
 

1 −1

3
 

0 1 

𝒙𝟐 2

3
 

2

3
 

1 4

3
 

0 1

3
 

0 1 

𝒙𝟔 2 2 0 −6 0 −2 1 2 

Step (1): J- = {j: a0j  <   0} = {1}  ∅ the algorithm does not stop. 

Step (2): I+ = {i: ai0 > 0} = {1,2, 3}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏1
𝑎10

,
𝑏2
𝑎20

 ,  
𝑏3
𝑎30

}   = 𝑚𝑖𝑛  {3,
3

2
, 1}   = 1  ⇒  𝑟 = 3 

 

Then, the leaving variable is 𝑥6 

Step (3): J+ = {j: a0j 
R
  0} = {3,5} 

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎01

𝑎31
} =   𝑚𝑖𝑛  {

7

6
}  ⇒ 𝑘 = 1  

Then, the entering variable is 𝑥1 

𝜃2  =
𝑅

 
−𝑎0𝑙

𝑎𝑟𝑙
  =
𝑅
𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0}   ⇒  𝜃2  = 𝑚𝑖𝑛 {𝛷}  =  ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 1 , the pivot element 

is a31  

Step (4): the next tableau by pivot element:  

 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  0 0 1

3
 

0 1 7

6
 

43

3
 

𝒙𝟒  0 0 5

3
 

1 0 −1

6
 

2

3
 

𝒙𝟐  0 1 10

3
 

0 1 −1

3
 

1

3
 

𝒙𝟏  1 0 −3 0 −1 1

2
 

1 

Step (1): J- : {𝑗: 𝑎0𝑗    <
𝑅
0 }    =   𝛷  ,  the algorithm stops . 

The solution is: 𝑧 =
43

3
 , 𝑥1 = 1, 𝑥2 =

1

3
, 𝑥3 = 0 

 
Table 4. A comparison between fuzzy EPSA &  Neutrosophic EPSA 

 FEPSA[7] NEPSA 

𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒏𝒐. 3 3 
𝒁 11 14.33 
𝒙𝟏 1 1 
𝒙𝟐 1

3
 

1

3
 

𝒙𝟑 0 0 

In Table 4, we make a comparison between FEPSA and NEPSA. It is clear that the neutrosophic approach 

NEPSA is more accurate than the fuzzy approach FEPSA according to the value of objective function. The 
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value of objective function of NEPSA is 14.33 while FEPSA has 11 where the type of this problem is 

maximization. From Table 4, we deduce that NEPSA is more accurate than FEPSA. 

5.1 Case study (𝑷𝟐) [21]: 
      A company produces three products P1, P2 and P3. These products are processed on three different machines 

M1, M2 and M3. The time required to manufacture one unit of each product and the daily capacity of the machines 

are given below: 

                    Time per unit(minutes)  

Machines 𝒑𝟏 𝒑𝟐 𝒑𝟑 Machine Capacity (min/day) 

M1 

M2 

M3 

12 

14 

12 

13 

- 

15 

12 

13 

- 

490 

470 

480 

           Note that the time availability can vary from day to day due to break down of machines, overtime 

work etc. Finally the profit for each product can also vary due to variations in price. At the same time the 

company wants to keep the profit somewhat close to 14 for P1, 13 for P2 and 16 for P3. The company 

wants to determine the range of each product to be produced per day to maximize its profit. It is assumed 

that all the amounts produced are consumed in the market. 

          Since the profit from each product and the time availability on each machine are uncertain, the 

number of units to be produced on each product will also be uncertain. So we will model the problem as 

a fuzzy linear programming problem. We use symmetric trapezoidal fuzzy numbers for each uncertain 

value. Profit for P1 which is close to 14 is modelled as [13, 15, 2, 2]. Similarly the other parameters are also 

modelled as symmetric trapezoidal fuzzy numbers taking into account the nature of the problem and 

other requirements. So we formulate the given fuzzy linear programming problem as: 

𝑀𝑎𝑥 𝑧̃ = (13,15,2,2)𝑥1 + (12,14,3,3)𝑥2 + (15,17,2,2)𝑥3 
𝑠. 𝑡. 

12𝑥1 + 13𝑥2 + 12𝑥3 ≤ (475,505,6,6) 
14𝑥1 +                13𝑥3 ≤ (460,480,8,8) 

                                                       12𝑥1 + 15𝑥2 ≤ (465,495,5,5) 
                                                                   𝑥1, 𝑥2, 𝑥3 ≥ 0 

5.1.1 Solving case study using fuzzy exterior point simplex method 

 
Putting the formula into the standard form, we have: 
𝑀𝑎𝑥 𝑧̃ = (13,15,2,2)𝑥1 + (12,14,3,3)𝑥2 + (15,17,2,2)𝑥3 
s. t. 

                              12𝑥1 + 13𝑥2 + 12𝑥3 + 𝑥4 = (475,505,6,6) 
                14𝑥1 + 13𝑥3 + 𝑥5 = (460,480,8,8) 

                              12𝑥1 + 15𝑥2 + 𝑥6 = (465,495,5,5) 
                          𝑥1, 𝑥2, 𝑥3 ≥ 0 

Step (0): we construct the initial tableau of fuzzy exterior simplex:  

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −(13,15,2,2) −(12,14,3,3) −(15,17,2,2) 0̃ 0̃ 0̃ 0̃ 

𝒙𝟒 37 12 13 12 1 0 0 (475,505,6,6) 

𝒙𝟓 27 14 0 13 0 1 0 (460,480,8,8) 
𝒙𝟔 27 12 15 0 0 0 1 (465,495,5,5) 

Step (1):  J- = {j: a0j  }0
R
  = {1, 2,3}  ∅ the algorithm does not stop.  
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Step (2):  I+ = {i: ai0 > 0} = {1, 2,3}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
= 𝑚𝑖𝑛 {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+} = 𝑚𝑖𝑛 {
𝑏1
𝑎10

, 
𝑏2
𝑎20

,
𝑏3
𝑎30

 } = 𝑚𝑖𝑛  {
𝑅(475,505,6,6)

37
,
𝑅(460,480,8,8)

27
,
𝑅(465,495,5,5)

27
}  

=
490

37
  ⇒  𝑟 = 1 

Then, the leaving variable is 𝑥4 

Step (3): J+ = {j: a0j 
R
  0} =   

𝜃1 =
−𝑎0𝑘

𝑎𝑟𝑘
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
= 𝑗 ∈ 𝐽−, 𝑎𝑟𝑗 > 0} = 𝑚𝑖𝑛 {

−𝑎0𝑙

𝑎11
,
−𝑎02

𝑎12
,
−𝑎03

𝑎13
} = 𝑚𝑖𝑛 {

𝑅(13,15,2,2)

12
,
𝑅(12,14,3,3)

13
,
𝑅(15,17,2,2)

12
} =

13

13
= 1 ⇒ 𝑘 = 2  

Then, the entering variable is 𝑥2 

𝜃2 =
−𝑎0𝑙

𝑎𝑟𝑙
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗 ∈ 𝐽+, 𝑎𝑟𝑗 < 0} ⇒  𝜃2 = 𝑚𝑖𝑛 {𝛷} =  ∞ ⇒ 𝜃1 < 𝜃2 ⇒ s = k = 2 , the pivot element is a12  

Step (4): the next tableau by pivot element: 

 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  
(
−25

13
,
−27

13
,
10

13
,
10

13
) 
0 

(
−51

13
,
−53

13
,
10

13
,
10

13
) (

12

13
,
14

13
,
3

13
,
3

13
) 

0̃ 0̃ (475,505,6,6) 

𝒙𝟐 24

13
 

12

13
 

1 12

13
 

1

13
 

0 0 
(
475

13
,
505

13
,
6

13
,
6

13
) 

𝒙𝟓 27 14 0 13 0 1 0 (460,480,8,8) 

𝒙𝟔 −204

13
 

−24

13
 

0 −180

13
 

15

13
 

0 1 
(
−1080

13
,
−1140

13
,
−25

13
,
−25

13
) 

Step (1): J- = {j: a0j  }0
R
  = {1,3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1,2}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
= 𝑚𝑖𝑛 {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+} = 𝑚𝑖𝑛 {
𝑏1
𝑎10

, 
𝑏2
𝑎20

} = 𝑚𝑖𝑛 {
𝑅(
475
13

,
505
13

,
6
13
,
6
13
)

24
13

,
𝑅(460,480,8,8)

27
}

= 𝑚𝑖𝑛 {
245

12
,
470

27
}=
470

27
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥5 

Step (3):  J+ = {j: a0j 
R
  0} = {4,5} 

𝜃1 =
−𝑎0𝑘

𝑎𝑟𝑘
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
= 𝑗 ∈ 𝐽−, 𝑎𝑟𝑗 > 0} = 𝑚𝑖𝑛 {

−𝑎03

𝑎23
} = 𝑚𝑖𝑛 {

𝑅(
389

182
,
391

182
,
−5

91
,
−5

91
)

13

14

} =
30

13
⇒ 𝑘 = 3  

Then, the entering variable is 𝑥3 

𝜃2 =
−𝑎0𝑙

𝑎𝑟𝑙
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛 {𝛷} = ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 3 , the pivot element is a23  
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Step (4): the next tableau by pivot element: 

 
 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛 
(
389

169
,
391

169
,
−10

169
,
−10

169
) 
0 0 

(
12

13
,
14

13
,
3

13
,
3

13
) (

51

169
,
53

169
,
−10

169
,
−10

169
) 
0̃ 

(
8015

13
,
8485

13
,
110

13
,
110

13
) 

𝒙𝟐 −12

169
 

1 0 1

14
 

−12

169
 

0 
(
655

169
,
805

169
,
−18

169
,
−18

169
) 

𝒙𝟑 14

13
 

0 1 0 1

13
 

0 
(
460

13
,
480

13
,
8

13
,
8

13
) 

𝒙𝟔 2208

169
 

0 0 −15

13
 

180

169
 

1 
(
481320

1183
,
501060

1183
,
1115

169
,
1115

169
) 

 

The solution is: 𝑧 = 634.6 , 𝑥1 = 0, 𝑥2 =
731

169
, 𝑥3 =

471

13
 

 

5.1.2 Solving case study using neutrosophic exterior point simplex method 

First: We will convert the fuzzy numbers into neutrosophic numbers  

Then, using the following rank function: 

𝑅(𝑎̌) =
𝑎2 + 𝑎3
2

+ (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃) 

𝑅(𝑎) = 𝑎 + 1 
𝑀𝑎𝑥 𝑧̃ = 𝑅[(13,15,2,2)]𝑥1 + 𝑅[(12,14,3,3)]𝑥2 + 𝑅[(15,17,2,2)]𝑥3 
s. t. 

12𝑥1 + 13𝑥2 + 12𝑥3 ≤ 𝑅[(475,505,6,6)] 
14𝑥1 +                13𝑥3 ≤ 𝑅[(460,480,8,8)] 

12𝑥1 + 15𝑥2 ≤ 𝑅[(465,495,5,5)] 
𝑥1, 𝑥2, 𝑥3 ≥ 0 

Putting the last formula into the standard form, we have: 
𝑀𝑎𝑥 𝑧 = 15𝑥1 + 14𝑥2 + 17𝑥3 − 2 
s. t. 

          12𝑥1 + 13𝑥2 + 12𝑥3 + 𝑥4 = 491 
         14𝑥1 + 13𝑥3 + 𝑥5 = 471 
         12𝑥1 + 15𝑥2 + 𝑥6 = 481 
            𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 

Step (0): we construct the initial tableau of exterior simplex:  

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −15 −14 −17 0 0 0 2 

𝒙𝟒 37 12 13 12 1 0 0 491 

𝒙𝟓 27 14 0 13 0 1 0 471 
𝒙𝟔 27 12 15 0 0 0 1 481 

Step (1): J- = {j: a0j  <   0} = {1, 2,3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1, 2,3}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  = 𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   = 𝑚𝑖𝑛  {
𝑏1
𝑎10

, 
𝑏2
𝑎20

,
𝑏3
𝑎30

 } = 𝑚𝑖𝑛  {
491

37
,
471

27
,
481

27
}   =

491

37
  ⇒  𝑟 = 1 

Then, the leaving variable is 𝑥4 

Step (3): J+ = {j: a0j 
R
  0} =   

𝜃1 =
−𝑎0𝑘

𝑎𝑟𝑘
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
= 𝑗 ∈ 𝐽−, 𝑎𝑟𝑗 > 0} = 𝑚𝑖𝑛 {

−𝑎0𝑙

𝑎11
,
−𝑎02

𝑎12
,
−𝑎03

𝑎13
} = 𝑚𝑖𝑛 {

15

12
,
14

13
,
17

12
} =

14

13
 ⇒ 𝑘 = 2  
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Then, the entering variable is 𝑥2 

𝜃2 =
−𝑎0𝑙

𝑎𝑟𝑙
= 𝑚𝑖  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛 {𝛷}  = ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 2 , the pivot element is a12  

Step (4): the next tableau by pivot element:  

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −27

13
 
0 −53

13
 

14

13
 

0 0 6900

13
 

𝒙𝟐 24

13
 

12

13
 

1 12

13
 

1

13
 

0 0 491

13
 

𝒙𝟓 27 14 0 13 0 1 0 471 
𝒙𝟔 −204

13
 
−24

13
 
0 −180

13
 
−15

13
 
0 1 −1112

13
 

Step (1): J- = {j: a0j  <   0} = {1,3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1,2}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏1
𝑎10

 ,  
𝑏2
𝑎20

}   = 𝑚𝑖𝑛  {
491

24
,
471

27
}   =

471

27
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥5 

Step (3): J+ = {j: a0j 
R
  0} = {4} 

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎01

𝑎21
,
−𝑎03

𝑎23
}   =  𝑚𝑖𝑛  {

27

182
,
53

169
} =

27

182
 ⇒ 𝑘 = 1  

Then, the entering variable is 𝑥2 

𝜃2 =
𝑅

 
−𝑎0𝑙

𝑎𝑟𝑙
  =
𝑅
𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛 {∅} = ∞ ⇒ 𝜃1 < 𝜃2 ⇒ s = k = 1 , the pivot element is a21  

Step (4): the next tableau by pivot element: 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  0 0 −391

182
 

14

13
 

27

182
 
0 8409

14
 

𝒙𝟐 6

91
 

0 1 6

91
 

1

13
 

−6

91
 

0 47

7
 

𝒙𝟏 13

14
 

1 0 13

14
 

0 1

14
 

0 471

14
 

𝒙𝟔 −1104

91
 
0 0 −1104

91
 
−15

13
 
12

91
 

1 −164

7
 

Step (1): J- = {j: a0j  <   0} = {3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1,2}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏1
𝑎10

 ,  
𝑏2
𝑎20

}   = 𝑚𝑖𝑛  {
611

6
,
471

13
}   =

471

13
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥1 

Step (3): J+ = {j: a0j 
R
  0} = {4,5} 

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎03

𝑎23
}   =  𝑚𝑖𝑛  {

391

169
} = 2.3 ⇒ 𝑘 = 3  

Then, the entering variable is 𝑥3 

𝜃2 =
𝑅

−𝑎0𝑙

𝑎𝑟𝑙
=
𝑅
𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛 {∅}  = ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 3 , the pivot element is a23  
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Step (4): the next tableau by pivot element: 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  391

169
 

0 0 14

13
 

53

169
 

0 114663

169
 

𝒙𝟐  −12

169
 

1 0 1

13
 

−12

169
 
0 731

169
 

𝒙𝟑  14

13
 

0 1 0 1

13
 

0 471

13
 

𝒙𝟔  2208

169
 
0 0 −15

13
 
180

169
 

1 70324

169
 

Step (1): J- : {𝑗: 𝑎0𝑗    <
𝑅
0 }    =   𝛷  ,  the algorithm stops . 

The solution is: 𝑧 = 678.4 , 𝑥1 = 0, 𝑥2 =
731

169
, 𝑥3 =

471

13
 

Table 5. A comparison between Fuzzy EPSA & Neutrosophic EPSA 

 FEPSA NEPSA 

𝑰𝒕𝒆𝒓. 𝒏𝒐. 3 3 

𝐙 634.6 678.4 

𝐱𝟏 0 0 

𝐱𝟐 730

169
 

731

169
 

𝐱𝟑 470

13
 

471

13
 

 

In Table 5, we make a comparison between FEPSA and NEPSA. It is clear that the neutrosophic approach 

NEPSA is more accurate than the fuzzy approach FEPSA according to the value of objective function. The 

value of objective function of NEPSA is 678.4 while FEPSA has 634.6 where the type of this problem is 

maximization. From Table 5, we deduce that NEPSA is more accurate than FEPSA. 

6. Conclusion 

Three contributions were proposed. First contribution was proposing a good evaluation between the 

fuzzy and neutrosophic approaches using a novel fuzzy-neutrosophic transfer. Second contribution was 

introducing a general framework for solving the neutrosphic linear programming problems using the 

advantages of the method of Abdel-Basset et al. and the advantages of Singh et al.'s method. Third 

contribution was proposing a new neutrosophic exterior point simplex algorithm NEPSA and its fuzzy 

version FEPSA. NEPSA has two paths to get optimal solutions. One path consists of basic not feasible 

solutions but the other path is feasible. Finally, the numerical examples and results analysis showed that 

NEPSA more than accurate FEPSA. 
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