

Neutrosophic Tri-Topological Space

Suman Das¹, Surapati Pramanik^{2,*}

¹Department of Mathematics, Tripura University, Agartala, 799022, Tripura, India. Email: suman.mathematics@tripurauniv.in ^{2*}Department of Mathematics, Nandalal Ghosh B.T. College, Narayanpur, 743126, West Bengal, India. Email: sura_pati@yahoo.co.in

*Correspondence: sura_pati@yahoo.co.in Tel.: (+91-9477035544)

Abstract: In this article, we present the notion of neutrosophic tri-topological space as a generalization of neutrosophic bi-topological space. Besides, we study the different types of open sets and closed sets namely neutrosophic tri-open sets, neutrosophic tri-closed sets, neutrosophic tri-semi-open sets, neutrosophic tri-pre-closed sets, etc. via neutrosophic tri-topological spaces. Further, we investigate several properties, and prove some propositions, theorems on neutrosophic tri-topological spaces.

Keywords: Tri-open set; Tri-closed set; Tri-semi-open set; Tri-pre-open set; Neutrosophic crisp tri-topology; Neutrosophic tri-topology.

1. Introduction

The concept of Neutrosophic Set (NS) was grounded by Smarandache [1] by extending the concept of Fuzzy Set 2[] and intuitionistic FS [3]. The notion of Neutrosophic Topological Space (NTS) was developed by Salama and Alblowi [4] in 2012. Afterwards, Arokiarani et al. [5] studied the neutrosophic semi-open functions and established a relation between them. Iswaraya and Bageerathi [6] introduced the notion of neutrosophic semi-closed set and neutrosophic semi-open set via NTSs. Later on, Dhavaseelan, and Jafari [7] introduced the generalized neutrosophic closed sets. Thereafter, Pushpalatha and Nandhini [8] studied the neutrosophic generalized closed sets in NTS. Shanthi et al. [9] introduced the concept of neutrosophic generalized semi closed sets in NTS. Ebenanjar et al. [10] presented the neutrosophic *b*-open sets in NTS. Maheswari et al. [11] introduced the concept of neutrosophic generalized *b*-closed sets in NTS. Afterwards, the concept of generalized neutrosophic *b*-open set via NTS was introduced by Das and Pramanik [12] in 2020. Thereafter, the concept of neutrosophic Φ -open sets and neutrosophic Φ -continuous functions was presented by Das and Pramanik [13]. The notion of neutrosophic crisp topology on neutrosophic crisp set was introduced by Salama and Alblowi [14]. Later on, the notion of neutrosophic crisp tri-topological space was introduced by Al-Hamido and Gharibah [15] in 2018.

In 1963, Kelly [16] introduced the notion of bi-topological space. Thereafter, the concept of neutrosophic bi-topological space was presented by Ozturk and Ozkan [17] in 2019. Later on, Das and Tripathy [18] introduced the pairwise neutrosophic *b*-open sets via neutrosophic bi-topological spaces. Recently, Tripathy and Das [19] studied the concept of pairwise neutrosophic *b*-continuous functions via neutrosophic bi-topological spaces.

So, we received enough motivation to do research on neutrosophic tri-topological space to extend the concept of neutrosophic bi-topological space.

In this study, we procure the notion of neutrosophic tri-topological space as a generalization of the neutrosophic bi-topological space. Besides, we introduce the different types of open sets and closed sets namely, neutrosophic tri-open sets, neutrosophic tri-closed sets, neutrosophic tri-semiopen sets, neutrosophic tri-pre-closed sets, etc. via neutrosophic tri-topological spaces. Further, we investigate several properties of these kinds of neutrosophic tri-open sets.

Research Gap: No investigation on neutrosophic tri-topological space has been reported in the recent literature.

Motivation: To reduce the research gap, we present the notion and different properties of neutrosophic tri-topological space.

The remaining part of this article is divided into the following sections:

Section-2 is on preliminaries and definitions. In this section, we give some definitions and theorems, which are relevant to this article. In section-3, we present the notion of neutrosophic tri-topology and neutrosophic tri-topological space and also we give proofs of some theorems on neutrosophic tri-topological space. In section-4, we give the concluding remarks of the work done in the present article.

Short Terms	
Neutrosophic Set	NS
Neutrosophic Topology	NT
Neutrosophic Topological Space	NTS
Neutrosophic Open Set	N-O-S
Neutrosophic Closed Set	N-O-S
Neutrosophic Semi-Open	NSO
Neutrosophic Pre-Open	NPO
Neutrosophic Bi-Topological Space	NBTS
Neutrosophic Tri-Topological Space	N-Tri-TS

Throughout this article, we use the following short terms for the clarity of the presentation.

Neutrosophic Tri-Open Set	N-tri-OS
Neutrosophic Tri-Closed Set	N-tri-CS

2. Some Relevant Definitions:

Definition 2.1.[1] A neutrosophic set *L* over a universe of discourse Ψ is defined as follows:

 $L=\{(n, T_{L}(n), I_{L}(n), F_{L}(n)): n \in \Psi\},\$

where $T_L(n)$, $I_L(n)$, $F_L(n)$ (\in]-0,1⁺[) are respectively denotes the truth, indeterminacy and falsity membership values of $n \in \Psi$, and so $0 \le T_L(n) + I_L(n) + F_L(n) \le 3^+$ for all $n \in \Psi$.

Definition 2.2.[1] The neutrosophic null set (0_N) and neutrosophic whole set (1_N) over a universe of discourse Ψ are defined as follows:

(*i*) $0_N = \{(n, 0, 0, 1): n \in \Psi\};$

(*ii*) $1_N = \{(n, 1, 0, 0): n \in \Psi\}.$

Obviously, $0_N \subseteq 1_N$.

Definition 2.3.[20] Assume that Ψ be a universe of discourse. Then, a neutrosophic crisp set Q is defined by $Q=\{Q_1, Q_2, Q_3\}$, where Q_i (*i*=1,2,3) is a subset of Ψ such that $Q_i \cap Q_j = \phi$ (*i*, *j*=1,2,3 and *i≠j*) **Definition 2.4.**[4] Assume that Ψ be a universe of discourse, and τ be a set of some NSs over Ψ .

Then, τ is called a Neutrosophic Topology (NT) on Ψ if the following axioms hold:

(*i*) 0_N , $1_N \in \tau$;

(*ii*) $X_1, X_2 \in \tau \Longrightarrow X_1 \cap X_2 \in \tau$;

 $(iii) \{X_i : i \in \Delta\} \subseteq \tau \Longrightarrow \bigcup X_i \in \tau.$

The pair (Ψ , τ) is said to be an NTS. If $X \in \tau$, then X is called a neutrosophic-open-set (N-O-S) and its complement X^c is called a neutrosophic-closed-set (N-C-S).

Definition 2.5.[17] Assume that (Ψ, τ_1) and (Ψ, τ_2) be any two different NTSs. Then, we can call the triplet (Ψ, τ_1, τ_2) as a Neutrosophic Bi-Topological Space (NBTS).

Definition 2.6.[17] Assume that (Ψ, τ_1, τ_2) be an NBTS. Then, a neutrosophic subset *X* of Ψ is said to be a pairwise neutrosophic open set in (Ψ, τ_1, τ_2) if there exists an N-O-S T_1 in (Ψ, τ_1) and an N-O-S T_2 in (Ψ, τ_2) such that $X = T_1 \cup T_2$.

Theorem 3.1.[18] Let (Ψ, τ_1, τ_2) be an NBTS. Then, a neutrosophic subset X of Ψ is called as

(*i*) τ_{ij} –neutrosophic-semi-open if and only if $X \subseteq N_{cl}^i N_{int}^j(X)$;

(*ii*) τ_{ij} –neutrosophic-pre-open if and only if $X \subseteq N_{int}^j N_{cl}^i(X)$;

(*iii*) τ_{ij} –neutrosophic-*b*-open if and only if $X \subseteq N_{cl}^i N_{int}^j (X) \cup N_{int}^j N_{cl}^i (X)$.

Theorem 3.2.[18] Assume that (Ψ, τ_1, τ_2) be an NBTS. Then, every τ_{ij} -neutrosophic-pre-open $(\tau_{ij}$ -neutrosophic-semi-open) set is a τ_{ij} -neutrosophic-*b*-open.

Definition 2.7.[18] Assume that (Ψ, τ_1, τ_2) be an NBTS. Then *X*, an NS over Ψ is said to be a

(*i*) pairwise τ_{ij}-neutrosophic-semi-open set (pairwise τ_{ij}-neutrosophic-pre-open set) in an NBTS (Ψ, τ₁,

 τ_2) if and only if $X=T\cup K$, where *T* is a τ_{ij} -neutrosophic-semi-open set (τ_{ij} -neutrosophic-pre-open set) and *K* is a τ_{ji} -neutrosophic-semi-open set (τ_{ji} -neutrosophic-pre-open set) in (Ψ , τ_1 , τ_2).

(*ii*) pairwise τ_{ij} -neutrosophic-*b*-open set in an NBTS (Ψ , τ_1 , τ_2) if $X=T\cup K$, where *T* is a τ_{ij} -neutrosophic-*b*-open set in (Ψ , τ_1 , τ_2).

Theorem 3.3.[18] Assume that (Ψ , τ_1 , τ_2) be an NBTS. If *X* is a pairwise τ_{ij} -neutrosophic-semi open (pairwise τ_{ij} -neutrosophic-pre-open) set, then it is also a pairwise τ_{ij} -neutrosophic-*b*-open set.

Theorem 3.4.[18] In an NBTS (Ψ , τ_1 , τ_2), the union of any two pairwise τ_{ij} -neutrosophic-*b*-open sets is a pairwise τ_{ij} -neutrosophic-*b*-open set.

Definition 2.8.[15] Assume that τ_1 , τ_2 and τ_3 be any three neutrosophic crisp topology on a universe of discourse *W*. Then, (*W*, τ_1 , τ_2 , τ_3) is called a neutrosophic crisp tri-topological space.

3. Neutrosophic Tri-Topological Space:

In this section, we introduce the notion of neutrosophic tri-topological space, and formulate several results on it.

Definition 3.1. Suppose that (Ψ, τ_1) , (Ψ, τ_2) and (Ψ, τ_3) be any three different NTSs. Then, the structure $(\Psi, \tau_1, \tau_2, \tau_3)$ is called a neutrosophic tri-topological space (N-Tri-TS).

Example 3.1. Let $\Psi = \{u, v, w\}$ be a universe of discourse. Let $X_1, X_2, Y_1, Y_2, Y_3, Z_1$ and Z_2 be seven NSs over Ψ such that:

 $X_1 = \{(u, 0.9, 0.3, 0.7), (v, 0.5, 0.6, 0.8), (w, 0.3, 0.5, 0.2)\};$

 $X_2=\{(u,0.7,0.4,0.7), (v,0.5,0.9,0.9), (w,0.1,0.8,0.4)\};$

 $Y_1 = \{(u, 0.9, 0.3, 0.7), (v, 0.5, 0.6, 0.8), (w, 0.3, 0.5, 0.2)\};$

 $Y_{2}=\{(u,1.0,0.2,0.5), (v,0.9,0.5,0.8), (w,0.5,0.2,0.1)\};$

 $Y_{3} = \{(u, 1.0, 0.2, 0.3), (v, 1.0, 0.1, 0.8), (w, 0.9, 0.1, 0.1)\};$

 $Z_1 = \{(u, 0.5, 0.2, 0.5), (v, 0.9, 0.4, 0.3), (w, 0.7, 0.2, 0.5)\};$

 $Z_2 = \{(u, 0.4, 0.5, 0.6), (v, 0.5, 0.6, 0.4), (w, 0.7, 0.6, 0.6)\};$

Then, clearly $\tau_1 = \{0_N, 1_N, X_1, X_2\}$, $\tau_2 = \{0_N, 1_N, Y_1, Y_2, Y_3\}$ and $\tau_3 = \{0_N, 1_N, Z_1, Z_2\}$ are three different NTs on Ψ . So, (Ψ , τ_1 , τ_2 , τ_3) is a neutrosophic tri-topological space.

Definition 3.2. Assume that $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS. Then *R*, an NS over Ψ is called a neutrosophic tri-open set (N-tri-OS) if $R \in \tau_1 \cup \tau_2 \cup \tau_3$. A neutrosophic set *R* is called a neutrosophic triclosed set (N-Tri-CS) if and only if R^c is an N-Tri-OS in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Remark 3.1. The collection of all neutrosophic tri-open sets and neutrosophic tri-closed sets in (Ψ , τ_1 , τ_2 , τ_3) are denoted by N-Tri-O(Ψ) and N-Tri-C(Ψ) respectively.

Theorem 3.1. Every N-O-S in (Ψ, τ_i) , *i*=1,2,3 is a neutrosophic tri-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Proof. Assume that *W* be an N-O-S in (Ψ, τ_i) , *i*=1,2,3. Therefore, $W \in \tau_i$, *i*=1,2,3. This implies, $W \in \bigcup_{i \in \{1,2,3\}} \tau_i$. Hence, *W* is a neutrosophic tri-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$. Therefore, every N-O-S in (Ψ, τ_i) , *i* =1,2,3 is a neutrosophic tri-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Example 3.2. Let us consider an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3) as shown in Example 3.1. Then, the neutrosophic open sets X_1 , X_2 (in (Ψ , τ_1)), Y_1 , Y_2 , Y_3 (in (Ψ , τ_2)), Z_1 , Z_2 (in (Ψ , τ_3)) are neutrosophic triopen sets in (Ψ , τ_1 , τ_2 , τ_3).

Remark 3.2. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), the union of two neutrosophic tri-open sets may not be a neutrosophic tri-open set. This follows from the following example.

Example 3.3. Consider the N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3) which has been shown in Example 3.1. Then, clearly Y_3 and Z_1 are two neutrosophic tri-open sets in (Ψ , τ_1 , τ_2 , τ_3). But their union $Y_3 \cup Z_1 = \{(u, 1.0, 0.2, 0.3), u, v\}$

(v,1.0,0.1,0.3), (w,0.9,0.1,0.1)} is not a neutrosophic tri-open set, because $Y_3 \cup Z_1 \notin \bigcup_{i \in \{1,2,3\}} \tau_i$. Hence, the union of two neutrosophic tri-open sets may not be a neutrosophic tri-open set.

Remark 3.3. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), the intersection of two neutrosophic tri-open sets may not be a neutrosophic tri-open set. This follows from the following example.

Example 3.4. Consider the N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3) which is shown in Example 3.1. Then, clearly X_1 and Z_2 are two neutrosophic tri-open sets in (Ψ , τ_1 , τ_2 , τ_3). But their union $X_1 \cap Z_2 = \{(u, 0.4, 0.5, 0.7), (v, 0.5, 0.6, 0.8), (w, 0.3, 0.6, 0.6)\}$ is not a neutrosophic tri-open set, because $X_1 \cap Z_2 \notin \bigcup_{i \in \{1,2,3\}} \tau_i$. Hence, the intersection of two neutrosophic tri-open sets may not be a neutrosophic tri-open set.

Theorem 3.2. Every N-C-S in (Ψ, τ_i) (*i*=1,2,3) is a neutrosophic tri-closed set in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Proof. Assume that *W* be an N-C-S in (Ψ, τ_i) . So W^c is an N-O-S in (Ψ, τ_i) (*i*=1,2,3). Therefore, $W^c \in \tau_i$, *i*=1,2,3. This implies, $W^c \in \bigcup_{i \in \{1,2,3\}} \tau_i$. This implies, W^c is a neutrosophic tri-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$. Therefore, *W* is a neutrosophic tri-closed set in $(\Psi, \tau_1, \tau_2, \tau_3)$. Hence, every N-C-S in (Ψ, τ_i) , *i*=1,2,3 is a neutrosophic tri-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Example 3.5. Suppose that $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS as shown in Example 3.1. Clearly, $X_{1^c} = \{(u,0.1,0.7,0.3), (v,0.5,0.4,0.2), (w,0.7,0.5,0.8)\}$, $X_{2^c} = \{(u,0.3,0.6,0.3), (v,0.5,0.1,0.1), (w,0.9,0.2,0.6)\}$ are NCSs in (Ψ, τ_1) , $Y_{1^c} = \{(u,0.1,0.7,0.3), (v,0.1,0.5,0.2), (w,0.5,0.8,0.9)\}$, $Y_{2^c} = \{(u,0.0,0.8,0.5), (v,0.1,0.5,0.2), (w,0.5,0.8,0.9)\}$, $Y_{3^c} = \{(u,0.0,0.8,0.7), (v,0.0,0.9,0.2), (w,0.1,0.9,0.9)\}$ are NCSs in (Ψ, τ_2) , and $Z_{1^c} = \{(u,0.5,0.8,0.5), (v,0.1,0.6,0.7), (w,0.3,0.8,0.5)\}$, $Z_{2^c} = \{(u,0.6,0.5,0.4), (v,0.5,0.4,0.6), (w,0.3,0.4,0.4)\}$ are NCSs in (Ψ, τ_3) . Therefore, X_1, X_2 are NOSs in $(\Psi, \tau_1), Y_1, Y_2, Y_3$ are NOSs in (Ψ, τ_2) , and Z_1, Z_2 are NOSs in (Ψ, τ_3) . By Example 3.2, $X_1, X_2, Y_1, Y_2, Y_3, Z_1$ and Z_2 are neutrosophic tri-open sets in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Definition 3.3. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), an NS *G* over Ψ is called a neutrosophic tri-semi-open set if *G* is a neutrosophic semi open set in at least one of three NTSs (Ψ , τ_1), (Ψ , τ_2), and (Ψ , τ_3).

Example 3.6. Consider the N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3) which is shown in Example 3.1. Then, W={(u,1.0,0.2,0.5), (v,0.7,0.5,0.7), (w,0.9,0.8,0.3)} is a neutrosophic tri-semi-open set in (Ψ , τ_1 , τ_2 , τ_3), because W is a neutrosophic semi open set in (Ψ , τ_1).

Definition 3.4. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), a neutrosophic set *G* over Ψ is called a neutrosophic tripre-open set if *G* is a neutrosophic pre-open set in at least one of three NTSs (Ψ , τ_1), (Ψ , τ_2) and (Ψ , τ_3). **Example 3.7.** Consider the N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3) which is shown in Example 3.1. Then, $W=\{(u,0.5,0.3,0.2), (v,0.6,0.3,0.2), (w,0.8,0.4,0.2)\}$ is a neutrosophic tripre-open set in (Ψ , τ_1 , τ_2 , τ_3), because *W* is a neutrosophic pre- open set in (Ψ , τ_1).

Definition 3.5. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), an NS *G* over Ψ is called a neutrosophic tri-*b*-open set if *G* is a neutrosophic *b*-open set in at least one of three NTSs (Ψ , τ_1), (Ψ , τ_2), and (Ψ , τ_3).

Example 3.8. Consider the N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3) which is shown in Example 3.1. Then, W={(u,0.9,0.3,0.6), (v,0.8,0.6,0.4), (w,0.9,0.9,0.9)} is a neutrosophic tri-*b*-open set in (Ψ , τ_1 , τ_2 , τ_3), because W is a neutrosophic *b*-open set in (Ψ , τ_1).

Remark 3.4. Assume that $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS. Let $\tau_{1,2,3} = \tau_1 \cup \tau_2 \cup \tau_3$. Then, $\tau_{1,2,3}$ may not be a neutrosophic topology on Ψ in general. This follows from the following example.

Example 3.9. Suppose that $(\Psi, \tau_1, \tau_2, \tau_3)$ is a neutrosophic tri-topological space, where $\tau_1=\{0_N, 1_N, \{(u,0.6,0.3,0.6), (v,0.5,0.4,0.5), (w,0.8,0.5,0.8)\}, \{(u,0.7,0.1,0.4), (v,0.9,0.3,0.3), (w,0.9,0.1,0.5)\}\}, \tau_2=\{0_N, 1_N, \{(u,1.0,0.3,0.8), (v,0.8,0.4,0.7), (w,0.8,0.6,0.8)\}, \{(u,0.8,0.4,0.9), (v,0.5,0.5,1.0), (w,0.5,0.8,1.0)\}\}, \tau_3=\{0_N, 1_N, \{(u,0.5,0.2,0.5), (v,0.9,0.4,0.3), (w,0.7,0.2,0.5)\}, \{(u,0.4,0.5,0.6), (v,0.5,0.6,0.4), (w,0.7,0.6,0.6)\}\}$ are three different NTs on Ψ . Clearly, $\{(u,0.7,0.1,0.4), (v,0.9,0.3,0.3), (w,0.9,0.1,0.5)\}$ and $\{(u,0.8,0.4,0.9), (v,0.5, 0.5,1.0), (w,0.5,0.8,1.0)\}$ I $\tau_{1,2,3}$, but their intersection $\{(u,0.7,0.4,0.9), (v,0.5,0.5,1.0), (w,0.5,0.8,1.0)\}$ I

 $\tau_{1,2,3}$. Hence, $\tau_{1,2,3}$ does not form a topology on Ψ .

Definition 3.6. Assume that $(\Psi, \tau_1, \tau_2, \tau_3)$ is an N-Tri-TS. Then *R*, an NS over Ψ is said to be a neutrosophic tri-*t*-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$ if and only if there exist neutrosophic open sets R_1 in τ_1 , R_2 in τ_2 , and R_3 in τ_3 such that $R = R_1 \cup R_2 \cup R_3$.

Example 3.10. Consider the N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3) as shown in Example 3.7. Then, $W=\{(u, 1.0, 0.2, 0.5), (v, 0.9, 0.4, 0.3), (w, 0.8, 0.2, 0.5)\}$ is a neutrosophic tri-*t*-open set, since there exist NOSs $R_1=\{(u, 0.6, 0.3, 0.6), (v, 0.5, 0.4, 0.5), (w, 0.8, 0.5, 0.8)\}$ in τ_1 , $R_2=\{(u, 1.0, 0.3, 0.8), (v, 0.8, 0.4, 0.7), (w, 0.8, 0.6, 0.8)\}$ in τ_2 , and $R_3=\{(u, 0.5, 0.2, 0.5), (v, 0.9, 0.4, 0.3), (w, 0.7, 0.2, 0.5)\}$ in τ_3 such that $W=R_1 \cup R_2 \cup R_3$.

Remark 3.5. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), an NS *G* is called a neutrosophic tri-*t*-closed set if and only if *G*^{*c*} is a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3).

Theorem 3.3. Assume that $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS.

(*i*) The neutrosophic null set (0*N*) and the neutrosophic whole set (1*N*) are always a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3);

(*ii*) Every NOS in (Ψ, τ_1) , (Ψ, τ_2) and (Ψ, τ_3) are neutrosophic tri-*t*-open sets in $(\Psi, \tau_1, \tau_2, \tau_3)$;

(*iii*) Every NCS in (Ψ, τ_1) , (Ψ, τ_2) and (Ψ, τ_3) are neutrosophic tri-*t*-closed sets in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Proof. (*i*) We can write the neutrosophic null set (0_N) as $0_N = W \cup M \cup N$, where $W = 0_N$, $M = 0_N$, $N = 0_N$ are NOSs in (Ψ, τ_1) , (Ψ, τ_2) and (Ψ, τ_3) respectively. Hence, 0_N is a neutrosophic tri-*t*-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Similarly, we can write the neutrosophic whole set (1*N*) as $1_N = W \cup M \cup N$, where $W=1_N$, $M=1_N$, $N=1_N$ are NOSs in (Ψ , τ_1), (Ψ , τ_2) and (Ψ , τ_3) respectively. Hence, 1_N is a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3).

(*ii*) Suppose that *W* be an NOS in (Ψ , τ_1). Now, we can write $W = W \cup 0_N \cup 0_N$. Therefore, there exist NOSs *W*, 0_N , 0_N in (Ψ , τ_1), (Ψ , τ_2) and (Ψ , τ_3) respectively such that $W = W \cup 0_N \cup 0_N$. Hence, *W* is a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3).

Suppose that *W* be an NOS in (Ψ, τ_2) . Now, we can write $W = 0_N \cup W \cup 0_N$. Therefore, there exist NOSs 0_N , *W*, 0_N in (Ψ, τ_1) , (Ψ, τ_2) and (Ψ, τ_3) respectively such that $W = 0_N \cup W \cup 0_N$. Hence, *W* is a neutrosophic tri-*t*-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Suppose that *W* be an NOS in (Ψ , τ_3). Now, we can write $W = 0_N \cup 0_N \cup W$. Therefore, there exist NOSs 0_N , 0_N , W in (Ψ , τ_1), (Ψ , τ_2), and (Ψ , τ_3) respectively such that $W = 0_N \cup 0_N \cup W$. Hence, *W* is a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3).

(*iii*) Suppose that *W* be an NCS in (Ψ , τ_1). So *W*^c is an NOS in (Ψ , τ_1). By the second part of this theorem, *W*^c is a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3). Hence, *W* is a neutrosophic tri-*t*-closed set in (Ψ , τ_1 , τ_2 , τ_3).

Suppose that *W* be an NCS in (Ψ , τ_2). So W^c is an NOS in (Ψ , τ_2). By the second part of this theorem, W^c is a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3). Hence, *W* is a neutrosophic tri-*t*-closed set in (Ψ , τ_1 , τ_2 , τ_3).

Suppose that *W* be an NCS in (Ψ , τ_3). So *W*^c is an NOS in (Ψ , τ_3). By the second part of this theorem, *W*^c is a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3). Hence, *W* is a neutrosophic tri-*t*-closed set in (Ψ , τ_1 , τ_2 , τ_3).

Theorem 3.4. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), the union of two neutrosophic tri-*t*-open sets is a neutrosophic tri-*t*-open set.

Proof. Assume that *X* and *Y* are any two neutrosophic tri-*t*-open sets in an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3). So there exist NOSs *X*₁, *Y*₁ in (Ψ , τ_1), *X*₂, *Y*₂ in (Ψ , τ_2), and *X*₃, *Y*₃ in (Ψ , τ_3), such that $X = X_1 \cup X_2 \cup X_3$ and *Y* = *Y*₁ \cup *Y*₂ \cup *Y*₃. Now $X \cup Y = (X_1 \cup X_2 \cup X_3) \cup (Y_1 \cup Y_2 \cup Y_3) = (X_1 \cup Y_1) \cup (X_2 \cup Y_2) \cup (X_3 \cup Y_3)$. Since *X*₁, *Y*₁ are NOSs in (Ψ , τ_1), so $X_1 \cup Y_1$ is an NOS in (Ψ , τ_1). Since X_2 , *Y*₂ are NOSs in (Ψ , τ_2), so $X_2 \cup Y_2$ is an NOS in (Ψ , τ_2). Since *X*₃, *Y*₃ are NOSs in (Ψ , τ_3), so $X_3 \cup Y_3$ is an NOS in (Ψ , τ_3). Therefore, $X \cup Y$ is a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3).

Remark 3.6. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), the intersection of any two neutrosophic tri-*t*-open sets may not be a neutrosophic tri-*t*-open set.

Definition 3.7. Assume that $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS. Then Q, an NS over Ψ is said to be a neutrosophic tri-*t*-semi-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$ if and only if there exists a neutrosophic semi open sets Q_1 in (W, τ_1) , Q_2 in (W, τ_2) , and Q_3 in (W, τ_3) such that $Q=Q_1\cup Q_2\cup Q_3$.

Theorem 3.5. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), every neutrosophic tri-semi-open set is a neutrosophic tri*t*-semi-open set.

Proof. Assume that *X* be a neutrosophic tri-semi-open set in an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3). So, *X* must be an NSO set in at least one of the NTS (Ψ , τ_1), (Ψ , τ_2), (Ψ , τ_3). So, there will be seven cases.

Case-1: *X* is an NSO set in (Ψ, τ_1) ;

Case-2: *X* is an NSO set in (Ψ, τ_2) ;

Case-3: *X* is an NSO set in (Ψ, τ_3) ;

Case-4: *X* is an NSO set in (Ψ, τ_1) , and (Ψ, τ_2) ;

Case-5: *X* is an NSO set in (Ψ, τ_1) , and (Ψ, τ_3) ;

Case-6: *X* is an NSO set in (Ψ , τ_2), and (Ψ , τ_3);

Case-7: X is an NSO set in (Ψ, τ_1) , (Ψ, τ_2) , and (Ψ, τ_3) .

In case-1, we can express, $X = X \cup 0_N \cup 0_N$, that is X is the union of NSO sets X (in (W, τ_1)), 0_N (in (W, τ_2)), and 0_N (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-semi-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-2, we can express, $X = 0_N \cup X \cup 0_N$, that is X is the union of NSO sets 0_N (in (W, τ_1)), X (in (W, τ_2)),

and 0_N (in (W, τ_3)). Therefore, X is a neutrosophic tri-t-semi-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-3, we can express, $X = 0_N \cup 0_N \cup X$, that is X is the union of NSO sets 0_N (in (W, τ_1)), 0_N (in (W, τ_2)), and X (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-semi-open set in ((Ψ , τ_1 , τ_2 , τ_3).

In case-4, we can express, $X = X \cup X \cup 0_N$, that is X is the union of NSO sets X (in (W, τ_1)), X (in (W, τ_2)), and 0_N (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-semi-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-5, we can express, $X = X \cup 0_N \cup X$, that is X is the union of NSO sets X (in (W, τ_1)), 0_N (in (W, τ_2)), and X (in (W, τ_3)). Therefore, X is a neutrosophic tri-t-semi-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-6, we can express, $X = 0_N \cup X \cup X$, that is X is the union of NSO sets 0_N (in (W, τ_1)), X (in (W, τ_2)), and X (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-semi-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-7, we can express, $X = X \cup X \cup X$, that is X is the union of NSO sets X (in (W, τ_1)), X (in (W, τ_2)), and X (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-semi-open set in (Ψ , τ_1 , τ_2 , τ_3).

Hence, every neutrosophic tri-semi-open set is a neutrosophic tri-t-semi-open set.

Definition 3.8. Assume that $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS. Then Q, an NS over Ψ is said to be a neutrosophic tri-*t*-pre-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$ iff there exist a neutrosophic-pre-open sets Q_1 in τ_1 , Q_2 in τ_2 , and Q_3 in τ_3 such that $Q = Q_1 \cup Q_2 \cup Q_3$.

Theorem 3.6. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), every neutrosophic tri-pre-open set is a neutrosophic tri-*t*-pre-open set.

Proof. Assume that *X* is a neutrosophic tri-pre-open set in an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3). So, *X* must be an NPO set in at least one of the NTS (Ψ , τ_1), (Ψ , τ_2), (Ψ , τ_3). So, there will be seven cases.

Case-1: *X* is an NPO set in (Ψ, τ_1) ;

Case-2: X is an NPO set in (Ψ, τ_2) ;

Case-3: *X* is an NPO set in (Ψ, τ_3) ;

Case-4: X is an NPO set in (Ψ, τ_1) , and (Ψ, τ_2) ;

Case-5: X is an NPO set in (Ψ, τ_1) , and (Ψ, τ_3) ;

Case-6: X is an NPO set in (Ψ, τ_2) , and (Ψ, τ_3) ;

Case-7: X is an NPO set in (Ψ, τ_1) , (Ψ, τ_2) , and (Ψ, τ_3) .

In case-1, we can express, $X = X \cup 0_N \cup 0_N$, that is X is the union of NPO sets X (in (W, τ_1)), 0_N (in (W, τ_2)), and 0_N (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-pre-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-2, we can express, $X = 0_N \cup X \cup 0_N$, that is X is the union of NPO sets 0_N (in (W, τ_1)), X (in (W, τ_2)), and 0_N (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-pre-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-3, we can express, $X = 0_N \cup 0_N \cup X$, that is X is the union of NPO sets 0_N (in (W, τ_1)), 0_N (in (W, τ_2)), and X (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-pre-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-4, we can express, $X = X \cup X \cup 0_N$, that is X is the union of NPO sets X (in (W, τ_1)), X (in (W, τ_2)), and 0_N (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-pre-open set in ($\Psi, \tau_1, \tau_2, \tau_3$).

In case-5, we can express, $X = X \cup 0_N \cup X$, that is X is the union of NPO sets X (in (W, τ_1)), 0_N (in (W, τ_2)), and X (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-pre-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-6, we can express, $X = 0_N \cup X \cup X$, that is X is the union of NPO sets 0_N (in (W, τ_1)), X (in (W, τ_2)), and X (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-pre-open set in (Ψ , τ_1 , τ_2 , τ_3).

In case-7, we can express, $X = X \cup X \cup X$, that is X is the union of NPO sets X (in (W, τ_1)), X (in (W, τ_2)), and X (in (W, τ_3)). Therefore, X is a neutrosophic tri-*t*-pre-open set in (Ψ , τ_1 , τ_2 , τ_3).

Hence, every neutrosophic tri-pre-open set is a neutrosophic tri-*t*-pre-open set.

Definition 3.9. Assume that $(\Psi, \tau_1, \tau_2, \tau_3)$ is an N-Tri-TS. Then Q, an NS over Ψ is said to be a neutrosophic tri-*t*-*b*-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$ if and only if there exist three neutrosophic-*b*-open sets, namely Q_1 in τ_1 , Q_2 in τ_2 , and Q_3 in τ_3 such that $Q = Q_1 \cup Q_2 \cup Q_3$.

Theorem 3.7. In an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), every neutrosophic tri-*b*-open set is a neutrosophic tri-*t*-*b*-open set.

Proof. Assume that *X* be a neutrosophic tri-*b*-open set in an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3). So, *X* must be a neutrosophic *b*-open set in at least one of the NTS (Ψ , τ_1), (Ψ , τ_2), (Ψ , τ_3). So there will be seven cases. Case-1: *X* is a neutrosophic *b*-open set in (Ψ , τ_1);

Case-2: *X* is a neutrosophic *b*-open set in (Ψ, τ_2) ;

Case-3: *X* is a neutrosophic *b*-open set in (Ψ, τ_3) ;

Case-4: *X* is a neutrosophic *b*-open set in (Ψ, τ_1) , and (Ψ, τ_2) ;

Case-5: *X* is a neutrosophic *b*-open set in (Ψ, τ_1) , and (Ψ, τ_3) ;

Case-6: *X* is a neutrosophic *b*-open set in (Ψ, τ_2) , and (Ψ, τ_3) ;

Case-7: X is a neutrosophic *b*-open set in (Ψ, τ_1) , (Ψ, τ_2) , and (Ψ, τ_3) .

In case-1, we can express, $X = X \cup 0_N \cup 0_N$, that is X is the union of neutrosophic *b*-open sets X (in (*W*, τ_1)), 0_N (in (*W*, τ_2)), and 0_N (in (*W*, τ_3)). Therefore, X is a neutrosophic tri-*t*-*b*-open set in (Ψ , τ_1 , τ_2 , τ_3). In case-2, we can express, $X = 0_N \cup X \cup 0_N$, that is X is the union of neutrosophic *b*-open sets 0_N (in (*W*, τ_1)), X (in (*W*, τ_2)), and 0_N (in (*W*, τ_3)). Therefore, X is a neutrosophic tri-*t*-*b*-open set in (Ψ , τ_1 , τ_2 , τ_3). In case-3, we can express, $X = 0_N \cup 0_N \cup X$, that is X is the union of neutrosophic *b*-open sets 0_N (in (*W*, τ_1)), 0_N (in (*W*, τ_2)), and X (in (*W*, τ_3)). Therefore, X is a neutrosophic tri-*t*-*b*-open set in (Ψ , τ_1 , τ_2 , τ_3). In case-4, we can express, $X = X \cup X \cup 0_N$, that is X is the union of neutrosophic *b*-open sets X (in (*W*, τ_1)), X (in (*W*, τ_2)), and 0_N (in (*W*, τ_3)). Therefore, X is a neutrosophic tri-*t*-*b*-open set in (Ψ , τ_1 , τ_2 , τ_3). In case-4, we can express, $X = X \cup X \cup 0_N$, that is X is the union of neutrosophic *b*-open sets X (in (*W*, τ_1)), X (in (*W*, τ_2)), and 0_N (in (*W*, τ_3)). Therefore, X is a neutrosophic tri-*t*-*b*-open set in (Ψ , τ_1 , τ_2 , τ_3). In case-5, we can express, $X = X \cup 0_N \cup X$, that is X is the union of neutrosophic *b*-open sets X (in (*W*, τ_1)), 0_N (in (*W*, τ_2)), and X (in (*W*, τ_3)). Therefore, X is a neutrosophic tri-*t*-*b*-open set in (Ψ , τ_1 , τ_2 , τ_3). In case-6, we can express, $X = 0_N \cup X \cup X$, that is X is the union of neutrosophic *b*-open sets 0_N (in (*W*, τ_1)), X (in (*W*, τ_2)), and X (in (*W*, τ_3)). Therefore, X is a neutrosophic tri-*t*-*b*-open set in (Ψ , τ_1 , τ_2 , τ_3). In case-6, we can express, $X = 0_N \cup X \cup X$, that is X is the union of neutrosophic *b*-open sets 0_N (in (*W*, τ_1)), X (in (*W*, τ_2)), and X (in (*W*, τ_3)). Therefore, X is a neutrosophic tri-*t*-*b*-open set in (Ψ , τ_1 , τ_2 , τ_3). In

Definition 3.10. Assume that $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS. Let *X* be an NS over Ψ . The neutrosophic tri-*t*-interior (*N*-*tri*-*t*_{int}) and neutrosophic tri-*t*-closure (*N*-*tri*-*t*_{cl}) of *X* is defined as follows: *N*-*tri*-*t*_{int}(*X*)= \cup {*Y*: *Y* is a neutrosophic tri-*t*-open set and *Y* \subseteq *X*};

N-*tri*-*t*_{*d*}(*X*)= \cap {*Y*: *Y* is a neutrosophic tri-*t*-closed set and *X* \subseteq *Y*}.

It is clearly observed that N-tri- $t_{int}(X)$ is the largest neutrosophic tri-t-open set which is contained in X and N-tri- $t_d(X)$ is the smallest neutrosophic tri-t-closed set which contains X.

Theorem 3.8. Let $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS. Let *X* and *Y* be two neutrosophic sets over Ψ . Then, (*i*) *N*-tri-t_{int}(*X*) \subseteq *X*;

(*ii*) $X \subseteq Y \Rightarrow N$ -tri-t_{int} $(X) \subseteq N$ -tri-t_{int}(Y);

(*iii*) If *X* is a neutrosophic tri-*t*-open set, then *N*-*tri*-*t*_{int}(*X*)=*X*;

(iv) N-tri-t_{int}(0_N)=0_N, and N-tri-t_{int}(1_N)=1_N.

Proof.

(i) From the definition 3.10, we see that *N*-*tri*-*t*_{int}(*X*) = ∪{*B*: *B* is a neutrosophic tri-*t*-open set and *B*⊆*X*}. Since *B*⊆*X*, so ∪{*B*: *B* is a neutrosophic tri-*t*-open set and *B*⊆*X*} ⊆ *X*. Therefore, *N*-*tri*-*t*_{int}(*X*) ⊆ *X*.
(ii) Suppose that *X* and *Y* are two neutrosophic sets over Ψ such that *X* ⊆ *Y*. Then, *N*-*tri*-*t*_{int}(*X*)

= \cup {*B*: *B* is a neutrosophic tri-*t*-open set and *B* \subseteq X};

 $\subseteq \cup \{B: B \text{ is a neutrosophic tri-}t\text{-open set and } B \subseteq Y\}$ [since $X \subseteq Y$]

= N-tri-t_{int}(Y)

 \Rightarrow *N*-*tri*-*t*_{int}(*X*) \subseteq *N*-*tri*-*t*_{int}(*Y*).

Therefore, $X \subseteq Y \Rightarrow N$ -tri-tint $(X) \subseteq N$ -tri-tint(Y).

(iii) Assume that X be a neutrosophic tri-*t*-open set in an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3). Now, N-

 $tri-t_{int}(X) = \bigcup \{B: B \text{ is a neutrosophic tri-}t\text{-open set and } B \subseteq X\}$. Since X is a neutrosophic tri-t-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$, so X is the largest neutrosophic tri-t-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$, which is contained in X. Hence $\bigcup \{B: B \text{ is a neutrosophic tri-}t\text{-open set and } B \subseteq X\} = X$. Therefore, N-tri- $t_{int}(X) = X$.

(iv) We know that 0_N , and 1_N are neutrosophic tri-*t*-open sets in (Ψ , τ_1 , τ_2 , τ_3), so by the third part of this theorem, we have N-tri-t_{int}(0_N) = 0_N , N-tri-t_{int}(1_N) = 1_N .

Theorem 3.9. Let $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS. Let X and Y be two neutrosophic sets over Ψ . Then,

(i) $X \subseteq N$ -tri-t_{cl}(X);

(*ii*) $X \subseteq Y \Rightarrow N$ -tri-t_{cl} $(X) \subseteq N$ -tri-t_{cl}(Y);

(*iii*) X is a neutrosophic tri-*t*-closed set iff *N*-*tri*-*t*_{cl}(X) =X;

(iv) N-tri-t_{cl}(0_N)=0_N, and N-tri-t_{cl}(1_N)=1_N;

Proof. (i) From the definition 3.10, we see that N-tri- $t_{cl}(X) = \cap \{B: B \text{ is a neutrosophic tri-<math>t$ -closed set and $X \subseteq B\}$. Since each $X \subseteq B$, so $X \subseteq \cap \{B: B \text{ is a neutrosophic tri-<math>t$ -closed set and $X \subseteq B\}$. Therefore, $X \subseteq N$ -tri- $t_{cl}(X)$.

(ii) Suppose that *X* and *Y* are two neutrosophic sets over Ψ such that *X* \subseteq *Y*. Then,

N-tri-t_{cl}(X)

= \cap {*B*: *B* is a neutrosophic tri-*t*-closed set and *X* \subseteq *B*}.

 $\subseteq \cap \{B: B \text{ is a neutrosophic tri-}t\text{-closed set and } Y \subseteq B\}$ [since $X \subseteq Y$]

 $= N-tri-t_{cl}(Y).$

Therefore, $X \subseteq Y \Rightarrow N$ -tri-t_{cl} $(X) \subseteq N$ -tri-t_{cl}(Y).

(iii) Assume that *X* be a neutrosophic tri-*t*-closed set in (Ψ , τ_1 , τ_2 , τ_3). Now, *N*-*tri*-*t*_{cl}(*X*) = \cap {*B*: *B* is a neutrosophic tri-*t*-closed set and *X* \subseteq *B*}. Since *X* is a neutrosophic tri-*t*-closed set in (Ψ , τ_1 , τ_2 , τ_3), so *X* is the smallest neutrosophic tri-*t*-closed set in (Ψ , τ_1 , τ_2 , τ_3), which contains *X*. Therefore, \cap {*B*: *B* is a neutrosophic tri-*t*-closed set and *X* \subseteq *B*} = *X*. Therefore, *N*-*tri*-*t*_{cl}(*X*) = *X*.

(iv) It is known that, 0_N and 1_N are neutrosophic tri-*t*-closed sets in (Ψ , τ_1 , τ_2 , τ_3). So, by the third part of this theorem, we have N-tri-t_{cl}(0_N) = 0_N , N-tri-t_{cl}(1_N) = 1_N .

Theorem 3.11. Let $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS. Let X be an NS over Ψ . Then, τ_i - $N_{int}(X) = N$ -tri- $t_{int}(X)$. **Proof.** Assume that X be a neutrosophic subset of an N-Tri-TS $(\Psi, \tau_1, \tau_2, \tau_3)$. Now, τ_i - $N_{int}(X) = \bigcup \{Y: Y \text{ is an NOS in } (\Psi, \tau_i) \text{ and } Y \subseteq X \}$. Since Y is an NOS in (Ψ, τ_i) , so by second part of Theorem 3.3., Y is a neutrosophic tri-t-open set in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Therefore, τ_i - $N_{int}(X)$

= \cup {*Y*: *Y* is an NOS in (Ψ , τ *i*) and *Y* \subseteq *X*}

= \cup {*Y*: *Y* is a neutrosophic tri-*t*-open set in (Ψ , τ_1 , τ_2 , τ_3), and *Y* \subseteq *X*}

= N-tri-tint(X).

Hence, in an N-Tri-TS (Ψ , τ_1 , τ_2 , τ_3), τ_i - $N_{int}(X) = N$ -tri- $t_{int}(X)$ for any neutrosophic set X.

Theorem 3.12. Let $(\Psi, \tau_1, \tau_2, \tau_3)$ be an N-Tri-TS. Let X be an NS over Ψ . Then, τ_i - $N_{cl}(X) \subseteq N$ -tri- $t_{cl}(X)$. **Proof.** Assume that X be a neutrosophic subset of an N-Tri-TS $(\Psi, \tau_1, \tau_2, \tau_3)$. Now, τ_i - $N_{cl}(X) = \bigcap \{Y: Y \text{ is an NCS in } (\Psi, \tau_i) \text{ and } X \subseteq Y \}$. Since Y is an NCS in (Ψ, τ_i) , so by third part of Theorem 3.3., Y is a neutrosophic tri-*t*-closed set in $(\Psi, \tau_1, \tau_2, \tau_3)$.

Therefore, τ_i - $N_{cl}(X)$

= \cap {*Y*: *Y* is an NCS in (Ψ , τ *i*) and *X* \subseteq *Y*}

= \cap {*Y*: *Y* is a neutrosophic tri-*t*-closed set in (Ψ , τ_1 , τ_2 , τ_3) and *X* \subseteq *Y*}

$$= N - tri - t_{cl}(X).$$

Hence, $\tau_i - N_{cl}(X) = N - tri - t_{cl}(X)$, for any neutrosophic subset X of $(\Psi, \tau_1, \tau_2, \tau_3)$.

4. Conclusions

In this study, we introduce the notion neutrosophic tri-topological spaces. Also, we establish some of their basic properties. By defining neutrosophic tri-topology and neutrosophic tri-topological space, we present well described examples and proofs of some theorems on neutrosophic tri-topological spaces.

References

- [1]. Smarandache, F. (1998). A unifying field in logics, neutrosophy: neutrosophic probability, set and logic. Rehoboth, *American Research Press*.
- [2]. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
- [3]. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1), 87-96.
- [4]. Salama, A.A., & Alblowi, S.A. (2012). Neutrosophic set and neutrosophic topological space. *ISOR Journal of Mathematics*, 3 (4), 31-35.
- [5]. Arokiarani, I., Dhavaseelan, R., Jafari, S., & Parimala, M. (2017). On some new notations and functions in neutrosophic topological spaces. *Neutrosophic Sets and Systems*, 16, 16-19.
- [6]. Iswarya, P., & Bageerathi, K. (2016). On neutrosophic semi-open sets in neutrosophic topological spaces. *International Journal of Mathematical Trends and Technology*, 37 (3), 214-223.
- [7]. Dhavaseelan, R., & Jafari, S. (2018). Generalized neutrosophic closed sets. In F. Smarandache,
 & S. Pramanik (Eds., vol.2), *New trends in neutrosophic theory and applications* (pp. 261-273).
 Brussels: Pons Editions.
- [8]. Pushpalatha, A., & Nandhini, T. (2019). Generalized closed sets via neutrosophic topological spaces. *Malaya Journal of Matematik*, 7 (1), 50-54.
- [9]. Shanthi, V.K., Chandrasekar, S., Safina, & Begam, K. (2018). Neutrosophic generalized semi closed sets in neutrosophic topological spaces. *International Journal of Research in Advent Technology*, 67, 1739-1743.
- [10]. Ebenanjar, E., Immaculate, J., & Wilfred, C.B. (2018). On neutrosophic *b*-open sets in neutrosophic topological space. *Journal of Physics Conference Series*, 1139 (1), 012062.
- [11]. Maheswari, C., Sathyabama, M., & Chandrasekar, S. (2018). Neutrosophic generalized *b*closed sets in neutrosophic topological spaces. *Journal of Physics Conference Series*, 1139 (1), 012065.

- [12]. Das, S., & Pramanik, S. (2020). Generalized neutrosophic *b*-open sets in neutrosophic topological space. *Neutrosophic Sets and Systems*, 35, 522-530.
- [13]. Das, S., & Pramanik, S. (2020). Neutrosophic Φ-open sets and neutrosophic Φ-continuous functions. *Neutrosophic Sets and Systems*, 38, 355-367.
- [14]. Salama, A.A., Smarandache, F., & Alblowi, S.A. (2014). New neutrosophic crisp topological concepts. *Neutrosophic Sets and Systems*, *4*, 50-54.
- [15]. Al-Hamido, R.k., & Gharibah, T. (2018). Neutrosophic crisp tri-topological spaces. *Journal of New Theory*, 23, 13-21.
- [16]. Kelly, J.C. (1963). Bitopological spaces. *Proceedings of the London Mathematical Society*, 3 (1), 71-89.
- [17]. Ozturk, T.Y., & Ozkan, A. (2019). Neutrosophic bitopological spaces. *Neutrosophic Sets and Systems*, 30, 88-97.
- [18]. Das, S., & Tripathy, B.C. (2020). Pairwise neutrosophic-*b*-open set in neutrosophic bitopological spaces. *Neutrosophic Sets and Systems*, 38, 135-144.
- [19]. Tripathy, B.C., & Das, S. (2021). Pairwise Neutrosophic *b*-Continuous Function in Neutrosophic Bitopological Spaces. *Neutrosophic Sets and Systems*, 43, 82-92.
- [20]. Salama, A.A., Smarandache, F., & Kroumov, V. (2014). Neutrosophic crisp Sets and Neutrosophic crisp Topological Spaces. *Neutrosophic Sets and Systems*, 2, 25-30.

Received: May 15, 2021. Accepted: August 12, 2021