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1. Introduction

In 1995 neutrosophic set has been proposed by F. Smarandache [3, 4] as a new branch of
philosophy dealing with ancient roots, origin, nature and scope of neutralities as well as their
interactions with different ideational spectra. The term “neutron-sophy” means knowledge of
neutral thoughts with natural represents the main distinction between fuzzy set and intuitionistic
fuzzy set.

In 1965, L. A. Zadeh defined the concept of membership function and discovered the fuzzy set
[1]. With the help of fuzzy set [1] Zadeh explained the idea of uncertainty. In 1989, K. T. Atanassov
[2] generalized the concepts of fuzzy set and introduced the degree of non-membership as an
independent component and proposed the intuitionistic fuzzy set.

After the introduction of fuzzy sets, several researches were conducted on the
generalizations of the notions of fuzzy set. After the generalization of fuzzy sets, many researchers
have applied generalization of fuzzy set theory in many branches of science and technology. Chang
[5] introduced fuzzy topology. Coker (1997) defined the notion of intuitionistic fuzzy topological
spaces. In 1963, J.C. Kely [12] defined the study of Bitopological spaces. A. Kandil et al.[13]
discussed on fuzzy bitopological spaces. Lee et al. [14] discussed on some properties of
Intuitionistic Fuzzy Bitopological Spaces. Now a day many researchers have studied topology on
neutrosophic sets, such as Lupianez [7-10] and Salama [11]. Abdel-Baset et al. [17] discussed on
Hybride plitogenic decision-making approach with quality function deployment for selecting
supply chain sustainability metrics. Recently Abdel-Baset et al. [18] studied on Novel plithogenic
TOPSIS-CRITIC model for sustainable supply chain risk management.

In this paper, we introduce the concept of Netrosophic Bitopological Spaces. Next, we
introduce the concepts of neutrosophic interior set, neutrosophic closure set and neutrosophic
boundary set. Also, we have discussed some propositions related to neutrosophic interior set,
neutrosophic closure set and neutrosophic boundary set.

2. Basic operations
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Definition 2.1 [20] A neutrosophic set A on the universe of discourse X is defined as

A={<x,uy 04 Ya>:xeX}

Where p, 04 va:X —107,1%[and 07 <p, + 04+ ya < 3%, p, represents degrees of
membership function, g,is the degree of indeterminacy and y, is the degree of non-membership
function.

Let = {<x,uy 04 Vo> xeX }and B ={< x,up o0p, vz >: x€ X } be two neutrosophic sets on X.
Then
i. Neutrosophic subset: A<B if uy < up , 04 = 0p and y, = yp, That is A is neutrosophic
subset of B

ii. Neutrosophic equality: If A <B and A >B then A=B

iii. Neutrosophic intersection : AAB = {< x,uy Ay, 04 V 0y, Y4V ¥ >t x€ X}

iv. Neutrosophic union: AVB ={< x,u, V ty, 04 A0y Va N vp >t x€ X}

v. Neutrosophic complement: A= {< x, v, 1 =0y, s >:x€ X}

vi. Neutrosophic universal set: 1y = {< x, 1, 0, 0 >: xe X }

vii.Neutrosophic empty set: 0y = {<x, 0, 1, 1 >: xe X }

Theorem 2.1 [20] Let A and B be two neutrosophic sets on X then
i. AVA=A and ANA=A
ii. AvB=BVA and AAB=BAA
iii. AVOy=Aand AV 13=1y
iv. AA 0xy= 0y and AA 1=A
v. AV (BVC)=(AVB) vC and A A (BAC)= (AAB) AC
vi. (A9)=A
Theorem 2.2 [20] Let A and B be two neutrosophic sets on X then De Morgan’s law is valid.
L VierAierl® = Nt 4°
i, [AverAil°=Vier A

Definition 2.2 [7] Neutrosophic topological spaces
Let 7 be a collection of all neutrosophic subsets on X. Then 7 is called a neutrosophic topology
in X if the following conditions hold

i. 0y and 1y is belong to 7.

ii. Union of any number of neutrosophic sets in 7 is again belong to 7.

iii. Intersection of any two neutrosophic set in 7 is belong to 7.

Then the pair (X, 7) is called neutrosophic topology on X.

Definition 2.3 [7, 8, 9]
Let (X, t) be a neutrosophic topological space over X and A is neutrosophic subset on X. Then, the
neutrosophic interior of A is the union of all neutrosophic open subsets of A. Clearly neutrosophic

interior of A is the biggest neutrosophic open set over X which containing A.

Definition 2.4 [7, 8, 9]
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Let (X, T) be a neutrosophic topological space over X and A is neutrosophic subset on X. Then, the
neutrosophic closure of A is the intersection of all neutrosophic closed super sets of A. Clearly

neutrosophic closure of A is the smallest neutrosophic closed set over X which contains A.

3. Main Results

Definition 3.1

A system (X, 7;,7;) consisting of a set X with two neutrosophic topologies 7; and 7; on X is called
Neutrosophic Bitopological space. Throughout in this paper the indices i,j take the value € {1, 2}
and i # j.

Example 3.1

Let X={a,b} and A = {< @,0.5,0.5,0.5 >,< b,0.4,0.4,0.4 >},

B ={<a,06,06,06><b,03,03,03 >}, C={<a0.60606><Dhb020.202 >}

D ={<a0.7,0.7,07 > < b,04,04,04 >}. Then 7, = {0y, 15, A, B,ANB,AV B} and 1, = {0, 1y,
C, D,C AD,CV D} then (X, 4, 7,) is neutrosophic bitopological space

Definition 3.2
Let (X, 7;, 7;) be a neutroscopic bitopological space. Then for a set A = {< x,y; 0yj, vij >: xe X},
neutrosophic ( 7;, 7;)- N-interior of A is the union of all ( 7;, 7;)-N-open sets of X contained in A and

is defined as follows
(75 7j)-N-Int(A) = {< x,V Vrjul-j, /\TL./\TJ.O'U, /\Ti/\Tj Yij > xe X}

Note : Here y;; represents degrees of membership function, o;; is the degree of indeterminacy and
Yij is the degree of non-membership function of a neutrosophic set and i is interrelated with
neutrosophic topology 7; and j is interrelated with neutrosophic topologie 7; when we discussed
on (7, 7;)-N-Int(A).

Example 3.2
Let X={a, b} and A = {< q,0.5,0.5,0.5 >,< b,0.4,0.4,0.4 >}, B = {< a,0.6,0.6,0.6 >, <
b,0.3,0.3,03 >}, C ={<a,0.6,0.6,0.6 >,<b,0.2,0.2,0.2 >}, D ={<a,0.7,0.7,0.7 >,<

b,0.4,0.4,0.4 >}. Then 7, = {0y, 15, A, B,AAB,AVB} and 1, = {0y, 14, C, D,C AD,C V D} then
(X, 14, T2) is neutrosophic bitopological space

LetQ ={<a,06,04,04 ><b,0.3,0.3,04 >}

7,-N-Int (Q) = 0x and 7;-N-Int (0y) =0y

Hence ( 74, 72)-N-Int(Q)= 04

Theorem 3.1
Let (X, 7;, 7; ) be neutrosophic bitopological space then
i. (73 7)-N-Int(0x) =0y, (7, 7j)-N-Int(1y) = 1x
ii. (7 7;)-N-Int(4)< A.
iii. A is neutroscopic open set if and only if A=(7;, 7;)-N-Int(4)
iv. (73, 7j)-N-Int [( 7, 7j)-N-Int(4)] = A
v. A<Bimplies ( t;, 7;)-N-Int(A)<( 7;, 7;)-N-Int(B)
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vi. (73, 7;)-N-Int(A)Vv (74, 7;)-N-Int(B) < (74, 7;)-N-Int(AVB)
vii.( 7, 7;)-N-Int(A A B) = (73, 7;)-N-Int(A) A (75, 7;)-N-Int(B).

Proof of the theorems are straightforward.

Remark 3.1: (7;, 7j)-N-Int(A)#( 7}, 7;)-N-Int(A) when i# j. For this we cite an example.
Example 3.3

Let X={a, b} and A = {< a,0.5,0.6,0.7 >,< b,0.4,0.5,0.6 >},
B={<a,06,06,0.7><b,06,04,05 >}, C ={<a,0.6,06,0.7 ><b,03,02,03>},D ={<
,0.7,0.6,0.7 >,< b,0.7,0.2,0.3 >}. Then 7, = {0y, 1y, A, B,AAB,AVB}and 1, = {0y, 1y, C,
D,C AD,CV D} then (X, 14, 7,) is neutrosophic bitopological space.

LetP ={<q,0.8,04,0.5><b,0.7,0.1,0.2 >}

Then 7,-N-Int(P) = D and ( 74, 7,)-N-Int(P) = B.

Now 7,-N-Int(P) = B and ( 75, 71)-N-Int(P) = C.

Hence the result that is ( 74, 7,)-N-Int(A)#(( 75, T1)-N-Int(A).

Definition 3.3
Let (X, 7, 7;) be a neutrosophic bitopological space. Then for a set A = {< x, u;;, 05, vij >: xe X},
neutrosophic ( 7;, 7;)- N-closure of A is the intersection of all ( 7;, 7;)-N-closed sets of X contained in
A and is defined as follows
(74 77)-N-Cl(A) = {< x, /\riAerij , Vo ijal-j, Vi, Vrjyi]- >: xe X}
Example 3.4
Let X={a, b} and 4 ={<a,0.5,0.5,0.5 >,< b,0.4,0.4,0.4 >},
B ={<a,0.6,0.6,0.6 >,<b,0.3,03,03 >}, C={<a,0.6,06,0.6 ><b,02,0202>}D={<
a,0.7,0.7,0.7 >,< b,0.4,0.4,0.4 >}. Then 7, = {0y, 15, A, BLAAB,AV B}and 1, = {0y, 1, C,
D,C AD,CV D} then (X, 4, 7,) is neutroscopic bitopological space
LetP ={<a,0.6,0.504 ><b,04,0.3,0.2 >}
P¢={<a,0.4,0.50.6 >,< b,0.2,0.7,0.4 >}.
Now 7,-N-Cl(P)= 14 and 7,-N-Cl(1x) =1
Hence ( 74, 75)-N-Cl(P)= 1.

Theorem 3.2 Let (X, 7;, 7; ) be neutrosophic bitopological space then
i. (73 1)-N-Cl(0x) = 0y, (74, 7;)-N-Cl(1y) = 1
ii. A<(t;, 1)-N-Cl(4).
iii. A is neutrosophic closed set if and only if A=( t;, 7;)-N-Cl(4)
iv. (7, 7;)-N-Cl [( 7, 7;)-N-Cl(4)] = A
v. A<Bimplies ( t;, 7;)-N-CI(A) <( 7;, 7;)-N-CI(B).
vi. (14, 17)-N-CI(AVB) = (1}, 7;)-N-CI(A)V( 74, 7;)-N-CI(B)
vii.( 7, 7;)-N-CI(AAB)<( 15, 7;)-N-CI(A) A ( 74, 77)-N-CI(B).

Prove of the theorems are straightforward.

Remark 3.2 (1;, 7;)-N-CI(A)#( 7;, 7;)-N-CI(A) when i# j. For this we cite an example.
Example 3.5
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Let X={a, b} and A4 ={< a,0.5,0.5,0.5 >,< b,0.4,0.4,0.4 >},

B ={<a,04,06,0.6 ><b,0.2,08,04 >}, C={<a06,06,06 ><b0.20.202 >},

D ={<a0.7,0.7,0.7 >,< b,0.4,0.4,0.4 >}. Then 7, = {0y, 14, A, B,AAB,AV B} and 1, = {0y, 1y,
C, D,C AD,CV D} then (X, 14, T,) is neutroscopic bitopological space

LetP ={<a,0.6,0.5,0.7 >,< b,0.3,0.7,0.4 >}

7,-N-CI(P)= D€ and 7;-N-Cl(D%)=1y and ( 74, 75)-N-CI(P)= 14.

Now, t,-N-Cl(P)= B¢ and t,-N-Cl(B)=D¢ and ( 74, 7,)-N-CI(P)= D¢.

Hence ( 7;, 7;)-N-CI(A) # (7}, 7;)-N-CI(A).

Theorem 3.3
Let (X, 7;, 7; ) be neutrosophic bitopological space then
i. (73 77)-N-Int(A€) =[( 7}, 7j)-N-CI(A)]¢
iil. (7 77)-N-CI(A€) =[( 7}, 7;)-N-Int(A)]C.
ii. (75, 77)-N-Int(A) =[( 7;, 7;)-N-CI(A)]¢
iv. (7, 77)-N-CI(A) =[( T}, T;)-N-Int(AC)]¢
Proof of (i)
Let A = {< x,u;;, 0y, vij > xe X}.
Then A® = {< x, vij, 1= oy, W >t xeX}
Now (7;, 7j)-N-Int(A€) = {< x, V VTj.yl-j, /\Tl./\Tj( 1- oy, ATiATjuij >: xe X}
={<x, Vg Vijij, 1-Vy ijal-j, /\Ti/\rj.“ij >: xe X}
(74 77)-N-Cl(A)={< x, /\Ti/\rjul-j » Vo VTjaij, Vi ijyl-]- >: xe X}
[(7i, 7)-N-CUA) =< x, Vi, Veyiy 1= Vo Veoi, Ay >0 xe X3
Hence ( 74, 7j)-N-Int(A€) =[( 7}, 7;)-N-CI(A)]€.
Example 3.6
From the Example 3.4, we have
T,-N-Int(P€) = 05 , (74, T)-N-Int(PC)= 0y.
7,-N-CI(P) = 1y, (14, T,)-N-CI(P)= 1y and [( T4, T2)-N-CI(P)]%= 0.
Hence ( 7;, 7;)-N-Int(A°) =[( 7;, 7;)-N-CI(A)]<
Proof of (ii) is straight forward
Proof of (iii)
Let A= {<x,u oy, vij > xe X}.
Then A® = {< x, v, 1 — oy, u; >t xeX}and

(70 7)-N-Int(A) ={< x, Vi, Vo ttijy AgA\ej0ijy NogAgy vij >0 xe X}

Now
(Til T]) —N-— Cl(AC) = {< X, /\Ti/\rj]/ij: 1- /\‘L'i/\l’jo-ij' V‘I.'i V‘I.'j:ul] > X€ X}
So,

[(757;) = N = Cl(A9)]={< Vo Voijy NeAei0ij Ny v > xe X}

Hence ( 7;, 7;)-N-Int(A) =[( 7;, 7;)-N-CI(A)]¢
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Example 3.7 Let X={a, b} and A ={<a,0.5,0.5,0.5>,<b,0.4,0.4,0.4 >}, B ={<qa,0.6,0.6,0.6 >, <
b,0.3,0.3,0.3 >},C ={<a,0.6,0.6,0.6 >,< ,0.2,0.2,0.2 >}, D ={<qa,0.7,07,07 >, <
b,0.4,0.4,0.4 >}. Then 7, = {0y, 1y, A, B,AAB,AVB}and 1, = {0y, 15, C, D,C AD,CV D} then (X,
T4, Tp) is neutrosophic bitopological space

Let P = {< a,0.6,0.5,0.4 >,< b,0.2,0.3,0.2 >} and Let P® = {< q,0.4,0.5,0.6 >,< b,0.2,0.7,0.2 >}
T,-N-Int(P) = 05 , (74, T)-N-Int(P)= 0y.

7,-N-CI(P€) = 1y, (14, 72)-N-Cl(PC)= 14 and [( 74, T;)-N-CI(PC)]= 0.

Hence ( 7;, 7;)-N-Int(A) =[( 7;, 7;)-N-CI(A°)]<.

Proof of (iv) is straight forward

Definition 3.4

Let A be a neutrosophic set in (X, 7;, 7; ), then ( 7;, 7;)-N-neutrosophic boundary of A is defined as
(74 77)-N-Bd(A) = (73, 77)-N-CI(A) A( 15, T;)-N-CI(AC).

Proposition 3.1

Let A be neutrosophic set in (X, 7;, 7; ). Then ( 7;, 7;)-N-Bd(A) VA <(t;,, 7;)-N-CI(A).

Proof : We have from the definition ( 7;, 7;)-N-Bd(A)<(z;, , 7;)-N-CI(A) and A<(z;, ,7;)-N-CI(A) and
hence ( 7;, 7;)-N-Bd(A)VA< (7;, 7;)-N-CI(A).

Remark 3.3: The converse part of the proposition is not true. For this we cite an example.

Example 3.8

Let X={a, b} and A ={< a,0.8,0.7,0.8 >,< b,0.5,0.4,0.5 >}, B ={< a,0.6,0.6,0.6 >, <

b,0.3,0.3,0.3 >}, € ={<a,0.6,0.6,0.6 >,< b,0.2,0.2,0.2 >},

D ={<a,0.7,0.7,0.7 >,< b,0.4,0.4,0.4 >}. Then 7, = {0y, 1y, A, B,AAB,AV B}and 7, = {0y, 1y,
C, D,C AD,CV D} then (X, 14, 7,) is neutrosophic bitopological space

LetP ={<a,0.7,04,0.7 >,< b,0.4,0.4,0.3 >}

P¢={<a,0.7,0.6,0.7 >,< b,0.3,0.6,0.4 >}.

Now 7,-N-CI(P)= 1y and ( 7;, 7;)-N-CI(P) = 1

7,-N-CI(P€)= (CAD)€ and ( 1;, 7;)-N-CI((CAD)®) = (AAB)©

Now (74, 72)-N-Bd(P)= (AAB)C and

(74, T,)-N-Bd(P) VP ={< a,0.8,0.3,0.6 >,< b,0.5,0.6,0.3 >}

Hence ( 7, 7;)-N-Bd(A) v A#(t;, 7;)-N-CI(A).

Propositions 3.2
Let A and B be neutrosophic sets in (X, t;, 7; ). Then
i. (7 7;)-N-Bd(A) = (7;, 7;)-N-Bd(4).
ii. If Abe (T 7;)-N- neutrosophic closed set then ( 7;, 7;)-N-Bd(A) <A
iii. If Abe (1, 7;)-N- neutrosophic open set then ( 7;, 7;)-N-Bd(A) < A€
Proof of (i)
(75, 77)-N-Bd(A) =( 73, 7j)-N-cl(A) A (73, 7;)-N-CI(A)

={< X, /\Ti/\l']‘#i]' ’ VTi VTjo-i]" V‘L'i VT]]/E] > X€ X}/\{< X, /\‘L’i/\‘[jyij‘
1-— /\Ti/\Tjo-ij’ V’L'i V’L’juij > X€ X}
Also (1, ,Tj)-N-Bd(AC) = (73, 7j)-N-CI(A) A (75, 77)-N-CI(A)
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={< x' /\Ti/\TjYij' 1 - ATiATjUij‘ V‘ri VT]#U >: X€ X}/\
{< x' /\‘ri/\‘r]-/lij ’ VTl' VTjUij’ V‘L'i VTJVL] >: XEX}
Hence ( 7;, 7;)-N-Bd(A) = (7;, Tj)-N—Bd(AC).

Proof of (ii)
Let A be (T 7;)-N- neutrosophic closed set then ( 7;, 7;)-N-CI(A) = A

Now (7, 7;)-N-Bd(A) = (7, 7;)-N-CI(A) A (7, 7;)-N-CI(A) < (7, 7;)-N-CI(A) = A

Hence (7 7;)-N-Bd(A) < A.

Converse part is not true.

Remark 3.4: The converse part of the proposition is not true. For this we cite an example.

Example 3.9
Let X={a, b} and A={<a08,07,08><b,0504,05>}, B={<aq06,06,06><
b,0.2,0.3,0.3 >}, C={<a0.6,06,06 ><b0.20202 >}, D ={<a,07,0.7,07 >,<

b,0.4,0.4,0.4 >}. Then 1, = {0y, 15, A, B,AAB,AVB}and 1, = {0y, 1y, C, D,C AD,C V D} then (X,
T4, T,) is neutroscopic bitopological space
LetS ={<a,09,0.3,0.2 ><b,0.6,0.2,0.3 >}
S5¢={<a,0.2,0.7,0.9 >,< b,0.3,0.8,0.6 >}.
Now 7,-N-CI(S)= 1y and ( 7;, 7;)-N-Cl(1x) = 1y
7,-N-CI(5¢)= (CAD)¢ and ( 7;, 7;)-N-CI((CAD)) = (AAB)©
Now (14, T,)-N-Bd(S)= (AAB)C < S.
But Sis not a ( 7;, 7;)-N-closed set.
Hence the converse part is not true.
Proof of (iii) is straight forward.
Proposition 3.3
Let A be neutrosophic set in (X, 7;, 7; ), then
[(74, 7)) =N =Bd(A)]¢ = (14, 7j)-N-Int(A) V( 7;, 7;)-N-Int(A°)

Proof:
From the definition we have ( 7;, 7;)-N-Bd(A) = (7, 7;)-N-CI(A) A (75, 7;)-N-CI(A)

[(7i, 7j)-N-Bd(A)]=[( 7, 77)-N-CI(A)]°V [(7;, 7;)-N-CI(A9)]
= (7 7j)-N-Int(A) V [( 75, 7j)-N-Int(A°).

Example 3.10 Let X={a, b} and A ={< a,0.8,0.7,0.8 >,< b,0.5,0.4,0.5 >}, B = {< a,0.6,0.6,0.6 >, <
b,0.2,0.3,0.3 >}, C ={<a,0.6,0.6,0.6 >,< b,0.2,0.2,0.2 >}, D = {< q,0.7,0.7,0.7 >, <

b,0.4,0.4,0.4 >}. Then 7, = {Oy, 15, A, B,AAB,AVB}and 7, = {0y, 14, C, D,C AD,CV D} then
(X, 14, T2) is neutrosophic bitopological space

LetP ={<a,09,0.3,0.2 >,< b,0.6,0.2,0.3 >}

P¢={<a,0.2,0.7,0.9 >,< b,0.3,0.8,0.6 >}.

Now 17,-N-CI(P)= 1y and (74, 7,)-N-Cl(1x) = 14
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7,-N-CI(P<)= (CAD)C and ( 7, 7,)-N-CI((CAD)C) = (AAB)C

So, ( Ty, T,)-N-Bd(P)= (AAB)C and [( 7,, T,)-N-Bd(P)]<= AAB.

Now 7,-N-Int(P)= CVD, ( 14, 72)-N-Int(P)= AAB
,-N-Int(PS)= , ( 7y, 7,)-N-Int(P)= ¢ and ( 7, 7)-N-Int(A)VV[( 7, 7,)-N-Int(AS)= AAB.
Thus [(T4,T2) — N —Bd(A)]¢ = (14, T5)-N-Int(A) V( 14, T,)-N-Int(A°) .

Proposition 3.4

Let A be neutrosophic set in (X, t;, 7; ), then

(75 7)-N-Bd(A) = (73, 7;)-N-Cl(A) - (7, 7;)-N-Int(A)

Proof: From the definition of (7;, 7;)-N-Bd(A) we have

(75, 7;)-N-BA(A) = (7, 7;)-N-CI(A)A( 7, 7;)-N-CI(AC)

= (75, 7j)-N-CI(A) = [( 75, 7j)-N-CI(A9)]
= (73, 7j)-N-CI(A) =( 7, 7j)-N-Int(A).
Example 3.11
From the Example 3.10 we have
7,-N-Int(P)= CVD, ( 74, 7;)-N-Int(P)= AAB and 1y - AAB = (AAB)C.

Hence (74, 75)-N-Bd(A) = (14, 75)-N-CI(A) - ( 74, 72)-N-Int(A).

Proposition 3.5
Let A be neutrosophic set in (X, 7;, 7; ), then
(75 7j)-N-Bd(Int(A)) < (74, 7;)-N-Bd(A).
Proof :
(74 77)-N-Bd(Int(A))= ( 73, 7;)-N-Cl(Int A)A( 73, 7;)-N-Cl(Int A°)
= (13, 7;)-N-Cl(Int A) - [( 7;, 7;)-N-Cl(Int A©)]¢
= (7, 77)-N-Cl(Int A) - (7;, 7;)-N-Int(A)
<( 1, 77)-N-Cl(A) - (74, 77)-N-Int(A)
= (13, 77)-N-Bd(A).
Remark 3.5: The converse of the proposition is not true. For this we cite an example.
Example 3.12
From Example 3.10, we have
T,-N-Int(PC)= 0y, ( 71, 72)-N-Int(PC)= 0y
(74, T2)-N-Bd(Int(A))= ( 74, T2)-N-Cl(0x) A( T4, T5)-N-Cl(Int 14)
=0y
Also Now 7,-N-CI(P)= 14 and ( 74, 7,)-N-Cl(1x) = 1x
7,-N-CI(P€)= (CAD)C and ( 74, T;)-N-Cl((CAD)C) = (AAB)C
Now ( 74, 7,)-N-Bd(P)= (AAB)C.
Hence ( 74, 7,)-N-Bd(Int(A))<( 74, 7,)-N-Bd(A) but ( 74, 7,)-N-Bd(Int(A)) #( T4, 75)-N-Bd(A).

Proposition 3.6
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Let A be neutrosophic set in (X, 7;, 7; ), then
(74 77)-N-Bd(ClI(A)) <( 74, 7;)-N-Bd(A).
Proof : Straightforward.

Remark 3.6: The converse of the proposition is not true. For this we cite an example.
Example 3.13
From Example 3.10, we have
(71, T2)-N-Bd(CI(P)) = (7}, 7j)-N-Cl(1x)A( 75, T;)-N-CI( Oy)
=0y
Also Now t,-N-Cl(P)= 14 and ( 74, 7,)-N-Cl(1x) = 1x
7,-N-CI(P€)= (CAD)C and ( 13, 75)-N-CI((CAD)C) = (AAB)C
Now (14, 72)-N-Bd(P)= (AAB)C.
Hence ( 74, 75)-N-Bd(Cl(A)) <( 74, 72)-N-Bd(A) but ( 74, 7,)-N-Bd(Int(A)) #( 74, 72)-N-Bd(A).
Proposition 3.7

Let A be neutrosophic set in (X, 7;, 7; ), then

(7, 7;)-N-Int (A) =A - (7;, 7;)-N-Bd(A)

Proof: Straightforward.

Proposition 3.8

Let A and B be neutrosophic set in (X, 7;, 7; ). Then

(74 77)-N-Bd(AVB)<( 75, 7;)-N-Bd(A) V (7}, 7;)-N-Bd(B)

Proof: Straightforward.

Remark 3.7: The converse of the proposition is not true

Example 3.14

From Example 3.10, we have

Let Q = {< a,0.8,0.8,0.8 >,< b,0.5,0.5,0.5 >}0¢ = {< q,0.8,0.2,0.8 >,< b,0.5,0.5,0.5 >}
PvQ={<a0903,02><b06,0.203 >}

Now 7,-N-Cl(Q)= 1x and ( 7;, 7;)-N-CI(Q) = 1x

7,-N-CI(Q)= 1yand ( 7;, 7;)-N-CI((QF) = 1

So, (74, 72)-N-Bd(Q)=1x

Now 7,-N-CI(P vV Q)= 1y and ( 7;, 7;)-N-CI(P v Q) = 1

7,-N-CI([P v Q ]°)= (CAD)€ and ( 74, 7;)-N-CI([P V Q ]) = (AAB)C

So, (11, T2)-N-Bd(P V Q)= (AAB)C

Now (1, Tj)—N-Bd(PVQ) =(AAB)C and (t;, Tj)-N-Bd(P) V(t, Tj)—N-Bd(Q)= 1y
Hence (t;, T]-)-N—Bd(PVQ) #( Ty, Tj)-N-Bd(P) V(t, Tj)-N—Bd(Q).

Proposition 3.9
Let A and B be neutrosophic set in (X, 7;, 7; ). Then
(74 77)-N-Bd(AAB) = (1 7;)-N-Bd(A) V ( 7;, 7;)-N-Bd(B)

Proof: Straightforward.
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Conclusion: In this work we have redefined the definition of Bitopological space with the help of
netrosophic set. Then we have investigated the properties of interior, closure and boundary of
neutrosophic bitopological spaces. Hope our work will help in further study of neutrosophic
generalized closed sets in neutrosophiv bitopological space. This may lead a new beginning for
further research on the study of generalized closed sets in neutrosophic bitopological space
associated with digraph and directed graphs. This may also lead to the new properties of separation

axioms on neutrosophic bitopological space.
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