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Abstract: The simplified form of a neutrosophic set (NS) was introduced as the simplified NS (S-NS) 
containing an interval-valued NS (IV-NS) and a single-valued NS (SV-NS) when its truth, 
indeterminacy and falsity membership degrees are constrained in the real standard interval [0, 1] 
for the convenience of actual applications. Then, Ye presented subtraction operations of simplified 
neutrosophic numbers (S-NNs), containing the subtraction operations of interval-valued 
neutrosophic numbers (IV-NNs) and single-valued neutrosophic numbers (SV-NNs) in S-NN 
setting. However, the subtraction operations of S-NSs lack actual applications in current research. 
Since simplified neutrosophic aggregation operators are one of critical mathematical tools in 
decision making (DM) applications, they have been not investigated so far. Regarding the 
subtraction operations of S-NNs (SV-NNs and IV-NNs), this work proposes an IV-NN subtraction 
operational weighted arithmetic averaging (IV-NNSOWAA) operator and a SV-NN subtraction 
operational weighted arithmetic averaging (SV-NNSOWAA) operator as a necessary complement 
to existing aggregation operators of S-NNs to aggregate S-NNs (SV-NNs and IV-NNs). Then, a DM 
approach is developed by means of the SV-NNSOWAA and IV-NNSOWAA operators. Finally, an 
illustrative example is presented to indicate the applicability and effectiveness of the developed 
approach. 

Keywords: Decision making; Simplified neutrosophic set; Subtraction operation; Subtraction 
operational aggregation operator 

 
 

1. Introduction 

Neutrosophic set (NS) introduced by Smarandache [1] can depict indeterminate and 
inconsistent information, which is characterized independently by its truth, falsity and 
indeterminacy membership degrees in the real standard or non-standard interval ]0, 1+[. As a 
simplified form of NS, however, a simplified NS (S-NS) can be introduced when the truth, falsity and 
indeterminacy membership degrees are constrained in the real standard [0, 1] for the convenience of actual 
applications. Thus, Ye [2] introduced the S-NS composed of an interval-valued NS (IV-NS) [3] and a 
single-valued NS (SV-NS) [4], as the subclass of NS. S-NSs can depict the inconsistent and 
indeterminate information which exists in actual situations, while (interval-valued) intuitionistic 
fuzzy sets (IFSs) cannot do it. Therefore, S-NSs have received more and more attention in various 
fields. So far S-NSs (SV-NSs and IV-NSs) have been utilized in image processing [5], medical 
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diagnosis [6], clustering analysis [7, 8], fault diagnosis [9-11], decision making (DM) [12-23] and so 
on.  

Then, division and subtraction operations of (interval-valued) IFSs were presented in existing 
literature [26-28], and then the subtraction operational aggregation operators (SOAOs) of IFSs were 
developed for DM problems of clay-brick selection [29]. After that, division and subtraction 
operations of S-NSs [30], containing the division and subtraction operations of IV-NNs and SV-NNs, 
were proposed as the operational generalization of (interval-valued) IFSs. However, the subtraction 
operations of S-NSs lack actual applications in current research. Since simplified neutrosophic 
number (S-NN) aggregation operators are one of critical mathematical tools in DM applications, the 
SOAOs of S-NNs have been not investigated so far. Since S-NSs are the extension of (interval-valued) 
IFSs, the SOAOs of (interval-valued) IFSs can be also generalized to S-NSs to form the SOAOs of 
S-NSs as a necessary complement to existing aggregation operators of S-NNs. Hence, this paper 
presents an IV-NN subtraction operational weighted arithmetic averaging (IV-NNSOWAA) 
operator and a SV-NN subtraction operational weighted arithmetic averaging (SV-NNSOWAA) 
operator based on the S-NN (IV-NN and SV-NN) aggregation operators [18-20] and establishes their 
multi-attribute DM approach in S-NN setting. 

For this study, the remainder of this paper is formed as the structure. Section 2 introduces some 
basic notion of S-NSs and operations of S-NNs (IV-NNs and SV-NNs). Section 3 proposes the 
SV-NNSOWAA and IV-NNSOWAA operators of S-NNs. A multi-attribute DM approach is 
developed by using the SV-NNSPOWAA or IV-NNSOWAA operator in Section 4. In Section 5, an 
illustrative example is provided to indicate the applicability and effectiveness of the developed 
approach. Some conclusions and future work are contained in Section 6. 

2. Some basic notion of S-NSs and operations of S-NNs  

By the truth, falsity and indeterminacy membership degrees constrained in the real standard 
interval [0, 1] for the convenience of actual applications, Ye [2] introduced the S-NS notion as a 
subclass of NS. 
Definition 1 [2]. A S-NS N in a universal of discourse U is characterized by a truth-membership 
function TMN(u), a falsity-membership function FMN(u), and an indeterminacy-membership 
function IMN(u), where the values of the three functions TMN(u), IMN(u) and FMN(u) are three real 
single/interval values in the real standard interval [0, 1], such that TMN(u), IMN(u), FMN(u)  [0, 1] 
and 0 ≤ TMN(u) + IMN(u) + FMN(u) ≤ 3 for SV-NS and then TMN(u), IMN(u), FMN(u)  [0, 1] and 0 ≤ sup 
TMN(u) + sup IMN(u) + sup FMN(u) ≤ 3 for IV-NS. Thus, a S-NS N is denoted as the following 
mathematical symbol: 

 , ( ), ( ), ( ) |N N NN u TM u IM u FM u u U  . 

For the simplified representation, the element , ( ), ( ), ( )N N Nu TM u IM u FM u  in the S-NS N 

is simply denoted as the S-NN a = <TMa, IMa, FMa>, including IV-NN and SV-NN. 
Suppose that two S-NNs are , ,a a aa TM IM FM  and , ,b b bb TM IM FM , then there 

are the following relations [2]: 
(i) ,1 ,c

a a aa FM IM TM  for the complement of the SV-NN a and 

[inf ,sup ],[1 sup ,1 inf ],[inf ,sup ]c
a a a a a aa FM FM IM IM TM TM    for the complement of 

the IV-NN a; 
(ii) a ⊆ b if and only if a bTM TM , a bIM IM , and a bFM FM  for the SV-NN a and 

inf infa bTM TM , inf infa bIM IM , inf infa bFM FM  sup supa bTM TM , 

sup supa bIM IM , and sup supa bFM FM  for the IV-NN a; 
(iii) a = b if and only if a ⊆ b and b ⊆ a. 
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For two S-NNs , ,a a aa TM IM FM  and , ,b b bb TM IM FM , their operational laws 

are introduced as follows [18, 20]: 
(i) , ,a b a b a b a ba b TM TM TM TM IM IM FM FM    for SV-NNs and 

[inf inf inf inf ,sup sup sup sup ],
[inf inf ,sup sup ],[inf inf ,sup sup ]

a b a b a b a b

a b a b a b a b

TM TM TM TM TM TM TM TM
a b

IM IM IM IM FM FM FM FM
   

   for 

IV-NNs; 
(ii) , ,a b a b a b a b a ba b TM TM IM IM IM IM FM FM FM FM       for SV-NNs and 

[inf inf ,sup sup ],
[inf inf inf inf , sup sup sup sup ],
[inf inf inf inf ,sup sup sup sup ]

a b a b

a b a b a b a b

a b a b a b a b

TM TM TM TM
a b IM IM IM IM IM IM IM IM

FM FM FM FM FM FM FM FM
     

   

 for 

IV-NNs; 

(iii) 1 (1 ) , ,a a aa TM IM FM       for SV-NN and  > 0 and 

[1 (1 inf ) ,1 (1 sup ) ],

[(inf ) , (sup ) ],[(inf ) , (sup ) ]
a a

a a a a

TM TM
a

IM IM FM FM

 

   


   
  for IV-NN and  > 0; 

(iv) ,1 (1 ) ,1 (1 )a a aa TM IM FM         for SV-NN and  > 0 and 

[(inf ) , (sup ) ],[1 (1 inf ) ,1 (1 sup ) ],

[1 (1 inf ) ,1 (1 sup ) ]
a a a a

a a

TM TM IM IM
a

FM FM

   


 

   


   
 for IV-NN and  > 0. 

For any S-NN a = <TMa, IMa, FMa>, its score functions can be introduced as follows [18]: 
( ) (2 ) / 3, ( ) [0,1]a a aS a TM IM FM S a      for SV-NN,                (1) 

( ) (4 inf inf inf sup sup sup ) / 6, ( ) [0,1]a a a a a aS a TM IM FM TM IM FM S a         for 
IV-NN. (2) 

Set , ,
j j jj a a aa TM IM FM  (j = 1, 2, …, n) as a group of S-NNs. Then we can introduce the 

following SV-NN weighted arithmetic averaging (SV-NNWAA) and IV-NN weighted arithmetic 
averaging (IV-NNWAA) operators [18, 20]: 

1 2
1 1 1 1

( , ,..., ) 1 (1 ) , ( ) , ( )j j j

j j j

n n nn w w w
n j j a a a

j j j j

SV NNWAA a a a w a TM IM FM
   

        , (3) 

1 2
1

1 1

1 1 1 1

( , ,..., )

1 (1 inf ) ,1 (1 sup ) ,

(inf ) , (sup ) , (inf ) , (sup )

j j

j j

j j j j

j j j j

n

n j j
j

n nw w
a a

j j

n n n nw w w w
a a a a

j j j j

IV NNWAA a a a w a

TM TM

IM IM FM FM



 

   

 

 
    

 
   
   
   



 

   

, (4) 

where wj (j = 1, 2, …, n) is the weight of aj (j = 1, 2, …, n) for wj  [0, 1] and 1
1

 

n

j jw . 

3. SOAOs of S-NNs (SV-NNs and IV-NNs)  

In this section, we present SOAOs based on the subtraction operation of S-NNs (SV-NNs and 
IV-NNs). 
Definition 2 [30]. Set a = <TMa, IMa, FMa> and b = <TMb, IMb, FMb> as two S-NNs (SV-NNs and 
IV-NNs), then the subtraction operations of the S-NNs a and b are defined below: 
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, ,
1

a b a a

b b b

TM TM IM FMa b
TM IM FM


 


 for SV-NNs,                     (5) 

inf inf sup sup, ,
1 inf 1 sup

inf sup inf sup, , ,
inf sup inf sup

a b a b

b b

a a a a

b b b b

TM TM TM TM
TM TM

a b
IM IM FM FM
IM IM FM FM

  
    
   
   
   

 for IV-NNs,         (6) 

which is valid under the conditions a  b, TMb  1, IMb  0, and FMb  0 for the SV-NNs a and b, 
and then a  b, TMb  [1, 1], IMb  [0, 0], and FMb  [0, 0] for the IV-NNs a and b. 

Corresponding to the operational laws of S-NNs, we give the following theorem. 
Theorem 1. Set a = <TMa, IMa, FMa> and b = <TMb, IMb, FMb> as two S-NNs and  > 0. Then, there are 
the following subtraction operational laws: 

( ) 1 1 , , , , 1, , 0
1

a b a a
b b b

b b b

TM TM IM FMa b if a b TM IM FM
TM IM FM

  


     

                
 for SV-NNs, (7) 

inf inf sup sup1 1 ,1 1 ,
1 inf 1 sup

( ) , , [1,1], ,
inf sup inf sup, , ,
inf sup inf sup

a b a b

b b

b b b

a a a a

b b b b

TM TM TM TM
TM TM

a b if a b TM IM FM
IM IM FM FM
IM IM FM FM

 

   


     
                
          
          
             

[0,0]
 

for IV-NNs, (8) 

( ) ,1 1 ,1 1 , , 1, , 0
1

a b a a
b b b

b b b

TM TM IM FMa b if a b TM IM FM
TM IM FM

  

      
                  

 for 

SV-NNs, (9) 

inf inf sup sup, ,
1 inf 1 sup

inf sup( ) 1 1 ,1 1 , , , [1,1]
inf sup

inf sup1 1 ,1 1
inf sup

a b a b

b b

a a
b

b b

a a

b b

TM TM TM TM
TM TM

IM IMa b if a b TM
IM IM

FM FM
FM FM

 

 



 

     
          
    
           
     
    
       
     

, , [0,0]b bIM FM 
 

for IV-NNs. (10) 
Obviously, Eqs. (7)-(10) are true according to the operational laws of S-NNs. 

Definition 3. Set , ,
j j jj a a aa TM IM FM and , ,

j j jj b b bb TM IM FM  (j = 1, 2, …, n) as two 

groups of S-NNs and , ,
j j jj j j c c cc a b TM IM FM    (j = 1, 2, …, n) as a group of subtraction 

operations between aj and bj. Based on Eqs. (3), (4) and (7)-(10), we can present the SV-NNSOWAA 
and IV-NNSOWAA operators: 

1 2
1 1

1 1 1

( , ,..., ) ( )

1 (1 ) , ( ) , ( )j j j

j j j

n n

n j j j j j
j j

n n nw w w
c c c

j j j

SV NNSOWAA c c c w c w a b

TM IM FM

 

  

   

  

 

  
 for SV-NNs,     (11) 
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1 2
1 1

1 1

1 1 1 1

( , ,..., ) ( )

1 (1 inf ) ,1 (1 sup ) ,

(inf ) , (sup ) , (inf ) , (sup )

j j

j j

j j j j

j j j j

n n

n j j j j j
j j

n nw w
c c

j j

n n n nw w w w
c c c c

j j j j

IV NNSOWAA c c c w c w a b

TM TM

IM IM FM FM

 

 

   

   

 
    

 
   
   
   

 

 

   

 for IV-NNs, (12) 

where wj (j = 1, 2, …, n) is the weight of cj = aj – bj (j = 1, 2, …, n) for wj  [0, 1] and 1
1

 

n

j jw , and 

the three elements in cj for the SV-NNs a and b contain the following forms: 

[0,1], 1
1

0,

j j

j j j

jj

a b
a b b

bc

TM TM
if TM TM and TM

TMTM

otherwise


  

 



,              (13) 

[0,1], 0

1,

j

j j j

jj

a
a b b

bc

IM
if IM IM and IM

IMIM

otherwise


  

 



,                     (14) 

[0,1], 0

1,

j

j j j

jj

a
a b b

bc

FM
if FM FM and FM

FMFM

otherwise


  

 



,                  (15) 

or the three elements in cj for the IV-NNs a and b contain the following forms: 
inf inf sup sup

, [0,1], [1,1]
1 inf 1 sup

[0,0],

j j j j

j j j

j j j

a b a b
a b b

c b b

TM TM TM TM
if TM TM and TM

TM TM TM

otherwise

  
        



, (16) 

inf sup
, [0,1], [0,0]

inf sup

[1,1],

j j

j j j

j j j

a a
a b b

c b b

IM IM
if IM IM and IM

IM IM IM

otherwise

 
       


,        (17) 

inf sup
, [0,1], [0,0]

inf sup

[1,1],

j j

j j j

j j j

a a
a b b

c b b

FM FM
if FM FM and FM

FM FM FM

otherwise

 
       


.     (18) 

4. Multi-attribute DM approach corresponding to the SV-NNSOWAA and IV-NNSOWAA 
operators 

Regarding the SV-NNSOWAA and IV-NNSOWAA operators, we can establish a 
multi-attribute DM approach to deal with the DM problem with S-NNs (SV-NNs and IV-NNs). 

As for a multi-attribute DM problem in S-NN setting, suppose that P = {P1, P2, …, Pm} is a set of 
alternatives and R = {r1, r2, …, rn} is a set of attributes. Then the suitability assessment of an 
alternative Pi (i = 1, 2, …, m) over an attribute rj (j = 1, 2, …, n) is expressed by a S-NN 

, ,
ij ij ijij a a aa TM IM FM  (i = 1, 2, …, m; j = 1, 2, …, n), where 

ijaTM  indicates the degree that the 

alternative Pi is satisfactory to the attribute rj, 
ijaIM  indicates the indeterminate degree that the 

alternative Pi is satisfactory and/or unsatisfactory to the attribute rj, and 
ijaFM  indicates the degree 
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that the alternative Pi is unsatisfactory to the attribute rj. Thus, all the assessment values of S-NNs 
can be structured as a S-NN decision matrix D = (aij)mn. Then, the weight of each attribute rj (j = 1, 

2, …, n) is wj (j = 1, 2, …, n) for wj  [0, 1] and 1
1

 

n

j jw .  

Regarding the DM problem with S-NNs (SV-NNs or IV-NNs), the decision steps is indicated as 
follows: 

Step 1. From the S-NN decision matrix D = (aij)mn, the j-th S-NN positive ideal solution can be 

determined by the SV-NN , , max( ), min( ), min( )j j j j ij ij iji ii
a TM IM FM TM IM FM      or the 

IV-NN 

max(inf ),max(sup ) ,

, , min(inf ),min(sup ) ,

min(inf ),min(sup )

ij iji i

j j j j ij iji i

ij iji i

TM TM

a TM IM FM IM IM

FM FM

   

 
 
    
 
 

 (j = 1, 2, …, n; i = 1, 2, …, 

m), while the j-th S-NN negative ideal solution can be determined by the SV-NN 

, , min( ), max( ), max( )j j j j ij ij iji i i
a TM IM FM TM IM FM     or the IV-NN 

min(inf ), min(sup ) ,

, , max(inf ),max(sup ) ,

max(inf ),max(sup )

ij iji i

j j j j ij iji i

ij iji i

TM TM

a TM IM FM IM IM

FM FM

   

 
 
    
 
 

 (j = 1, 2, …, n; i = 1, 2, …, m). 

Step 2. Two collective values 
id and 

id  (i = 1, 2, …, m) for each alternative Pi (i = 1, 2, …, m) 
can be obtained by the SV-NNSOWAA and IV-NNSOWAA operators: 

1 2
1 1

1 1 1

( , ,..., ) ( )

1 (1 ) , ( ) , ( )j j j

ij ij ij

n n

i i i in j ij j j ij
j j

n n nw w w

c c c
j j j

d SV NNSOWAA c c c w c w a a

TM IM FM  

     

 

  

    

  

 

  
 for the SV-NN aij, (19) 

1 2
1 1

1 1

1 1 1 1

( , ,..., ) ( )

1 (1 inf ) ,1 (1 sup ) ,

(inf ) , (sup ) , (inf ) , (sup )

j j

ij ij

j j j j

ij ij ij ij

n n

i i i in j ij j j ij
j j

n nw w

c c
j j

n n n nw w w w

c c c c
j j j j

d IV NNSOWAA c c c w c w a a

TM TM

IM IM FM FM

 

   

     

 

 

   

    

 
    

 
  
  
  

 

 

   




 for the 

IV-NN aij, (20) 

1 2
1 1

1 1 1

( , ,..., ) ( )

1 (1 ) , ( ) , ( )j j j

ij ij ij

n n

i i i in j ij j ij j
j j

n n nw w w

c c c
j j j

d SV NNSOWAA c c c w c w a a

TM IM FM  

     

 

  

    

  

 

  
 for the SV-NN aij, (21) 
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1 2
1 1

1 1

1 1 1 1

( , , ..., ) ( )

1 (1 inf ) ,1 (1 sup ) ,

(inf ) , (sup ) , (inf ) , (sup )

j j

ij ij

j j j j

ij ij ij ij

n n

i i i in j ij j ij j
j j

n nw w

c c
j j

n n n nw w w w

c c c c
j j j j

d IV NNSOWAA c c c w c w a a

TM TM

IM IM FM FM

 

   

     

 

 

   

    

 
    

 
  
  
  

 

 

   




 for the 

IV-NN aij, (22) 

where wj (j = 1, 2, …, n) is the attribute weight for wj  [0, 1] and 1
1

 

n

j jw , and the components 

in the SV-NNs 
ijc  and 

ijc  contain the following forms: 

, 1
1

0,

ijj

ij ijj
ijij

aa
a aa

ac

TM TM
if TM TM and TM

TM TM

otherwise








 

 



, 

, 0

1,

j

ij ijj
ijij

a
a aa

ac

IM
if IM IM and IM

IM IM

otherwise








 

 



, 

, 0

1,

j

ij ijj
ijij

a
a aa

ac

FM
if FM FM and FM

FM FM

otherwise








 

 



, 

, 1
1

0,

ij j

ijj j

jij

a a
aa a

ac

TM TM
if TM TM and TM

TMTM

otherwise



 




   




, 

, 0

1,

ij

ijj j

jij

a
aa a

ac

IM
if IM IM and IM

IMIM

otherwise

 




 

 



, 

, 0

1,

ij

ijj j

jij

a
aa a

ac

FM
if FM FM and FM

FMFM

otherwise

 




 

 



, 

and the components in the IV-NNs 
ijc  and 

ijc  contain the following forms: 

inf inf sup sup
, , [1,1]

1 inf 1 sup

[0,0],

ij ijj j

ij ijj
ij ijij

a aa a
a aa

a ac

TM TM TM TM
if TM TM and TM

TM TM TM

otherwise

 





   
       


, 

inf sup
, , [0,0]

inf sup

[1,1],

j j

ij ijj
ij ijij

a a
a aa

a ac

IM IM
if IM IM and IM

IM IM IM

otherwise

 





 
      



, 
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inf sup
, , [0,0]

inf sup

[1,1],

j j

ij ijj
ij ijij

a a
a aa

a ac

FM FM
if FM FM and FM

FM FM FM

otherwise

 





 
      


, 

inf inf sup sup
, , [1,1]

1 inf 1 sup

[0,0],

ij ijj j

ijj j

ij j j

a aa a
aa a

c a a

TM TM TM TM
if TM TM and TM

TM TM TM

otherwise

 

 

  

  
       


, 

inf sup
, , [0,0]

inf sup

[1,1],

ij ij

ijj j

ij j j

a a
aa a

c a a

IM IM
if IM IM and IM

IM IM IM

otherwise

 

  

 
      


, 

inf sup
, , [0,0]

inf sup

[1,1],

ij ij

ijj j

ij j j

a a
aa a

c a a

FM FM
if FM FM and FM

FM FM FM

otherwise

 

  

 
      


. 

Step 3. By Eq. (1) and (2), we calculate the score values of S( 
id ) and S( 

id ) (i = 1, 2, …, m). 
Step 4. The relative closeness degree of each alternative with respect to the S-NN ideal solution 

(i = 1, 2, …, m) is calculated by 

)()(
)(








ii

i
i dSdS

dSC  for Ci  [0, 1].                         (23) 

Clearly, the larger value of Ci reveals that an alternative is closer to the ideal solution and 
farther from the negative ideal solution simultaneously. Therefore, all the alternatives can be 
ranked in the descending order according to the values of Ci (i = 1, 2, …, m). The alternative with the 
largest value is chosen as the best one. 

Step 5. End. 

5. Illustrative example  

For convenient comparison, we consider the multi-attribute DM problem adapted from [12]. 
Some investment company needs to invest a sum of money into the best company. Then, the panel 
indicates four possible alternatives as their set P = {P1, P2, P3, P4}, where P1, P2, P3, and P4 are denoted 
as a car company, a food company, a computer company, and an arms company, respectively. To 
select the best company, they must be assessed by the three attributes: r1 (risk), r2 (growth) and r3 
(environmental impact), while their weight vector is specified by w = (0.35, 0.25, 0.4). The four 
alternatives are assessed over the three attributes by the suitable assessments, then their assessment 
values are represented by the form of S-NNs (SV-NNs and IV-NNs) and constructed as the SV-NN 
decision matrix: 





















 

2.0,3.0,4.02.0,1.0,6.01.0,1.0,7.0
2.0,3.0,5.03.0,2.0,5.03.0,2.0,3.0
2.0,2.0,5.02.0,1.0,6.02.0,1.0,6.0
5.0,2.0,2.03.0,2.0,4.03.0,2.0,4.0

)( nmijaD , 

and the IV-NN decision matrix: 
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( )

[0.4,0.5],[0.2,0.3],[0.3,0.4] [0.4,0.5],[0.2,0.3],[0.3,0.4] [0.2,0.3],[0.2,0.3],[0.5,0.6]
[0.6,0.7],[0.1,0.2],[0.2,0.3] [0.6,0.7],[0.1,0.2],[0.2,0.3] [0.5,0.6],[0.2,0.3],[0.2,0.3]
[0.3,0.4],[0.2,

ij m nD a 


0.3],[0.3,0.4] [0.5,0.6],[0.2,0.3],[0.3,0.4] [0.5,0.6],[0.3,0.4],[0.2,0.3]

[0.7,0.8],[0.1,0.2],[0.1,0.2] [0.6,0.7],[0.1,0.2],[0.2,0.3] [0.4,0.5],[0.3,0.4],[0.2,0.3]

 
 
 
 
 
  

. 

On the one hand, the proposed DM approach can be applied in the DM problem with SV-NNs 
and depicted by the following decision steps: 

Step 1. By , , max( ),min( ),min( )j j j j ij ij iji ii
a TM IM FM TM IM FM      (i = 1, 2, 3, 4; j = 1, 

2, 3) for the SV-NN decision matrix D = (aij)mn, we can determine the SV-NN positive ideal solution 
(ideal alternative):  

}2.0,2.0,5.0,2.0,1.0,6.0,1.0,1.0,7.0{},,{ 321   aaaP , 

then by , , min( ),max( ),max( )j j j j ij ij iji i i
a TM IM FM TM IM FM      (j = 1, 2, …, n), we can 

determine the SV-NN negative ideal solution (non-ideal alternative): 
}5.0,3.0,2.0,3.0,2.0,4.0,3.0,2.0,3.0{},,{ 321   aaaP . 

Step 2. By using Eqs. (19) and (21), we can obtain the two aggregated values 
id and 

id  (i = 1, 
2, …, m) for each alternative Pi (i = 1, 2, …, m): 


1d = <0.4126, 0.6598, 0.4264>, 

2d = <0.0958, 1.0000, 0.7846>, 
3d  = <0.2970, 0.5610, 0.6152>, and 


4d = <0.0703, 0.8503, 1.0000>; 


1d = <0.0525, 0.8503, 1.0000>, 

2d = <0.3844, 0.5610, 0.5435>, 
3d  = <0.2083, 1.0000, 0.6931>, and 


4d = <0.4013, 0.6598, 0.4264>. 

Step 3. By applying Eq. (1), we calculate the score values of S( 
id ) and S( 

id ) (i = 1, 2, 3, 4): 

)( 1
dS = 0.4421, )( 2

dS = 0.1037, )( 3
dS = 0.3736, and )( 4

dS = 0.0733; 

)( 1
dS = 0.0674, )( 2

dS = 0.4267, )( 3
dS = 0.1717, and )( 4

dS = 0.4384. 
Step 4. By using Eq. (23), we calculate the relative closeness degrees of each alternative with 

respect to the SV-NN ideal solution: 
C1 = 0.1323, C2 = 0.8044, C3 = 0.3149, and C4 = 0.8567. 
Since the ranking order of the relative closeness degrees is C4 > C2 > C3 > C1, the ranking order 

of the four alternatives is P4  P2  P3  P1. Hence, the best alternative is P4.  
On the other hand, the proposed DM approach can be also applied in the DM problem with 

IV-NNs and depicted by the following decision steps: 

Step 1. By

max(inf ),max(sup ) ,

, , min(inf ),min(sup ) ,

min(inf ),min(sup )

ij iji i

j j j j ij iji i

ij iji i

TM TM

a TM IM FM IM IM

FM FM

   

 
 
    
 
 

 (i = 1, 2, 3, 4; j = 1, 2, 3) 

for the IV-NN decision matrix D = (aij)mn, we can determine the IV-NN positive ideal solution (ideal 
alternative):  

1 2 3

[0.7,0.8],[0.1,0.2],[0.1,0.2] ,
{ , , } [0.6,0.7],[0.1,0.2],[0.2,0.3] ,

[0.5,0.6],[0.2,0.3],[0.2,0.3]
P a a a   

 
   

 

. 
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By 

min(inf ),min(sup ) ,

, , max(inf ),max(sup ) ,

max(inf ),max(sup )

ij iji i

j j j j ij iji i

ij iji i

TM TM

a TM IM FM IM IM

FM FM

   

 
 
    
 
 

 (j = 1, 2, …, n), we can 

determine the IV-NN negative ideal solution (non-ideal alternative): 

1 2 3

[0.3,0.4],[0.2,0.3],[0.3,0.4] ,
{ , , } [0.4,0.5],[0.2,0.3],[0.3,0.4] ,

[0.2,0.3],[0.3,0.4],[0.5,0.6]
P a a a   

 
   

 

. 

Step 2. By using Eqs. (20) and (22), we can obtain the two aggregated values 
id and 

id  (i = 1, 
2, …, m) for each alternative Pi (i = 1, 2, …, m): 


1d = <[0.4126, 0.4894], [0.6598, 0.7841], [0.4264, 0.5533]>, 

2d = <[0.0958, 0.1323], [1.0000, 1.0000], 

[0.7846, 0.8677]>, 
3d  = <[0.2970, 0.3665], [0.5610, 0.6988], [0.6152, 0.7301]>, and 

4d = <[0.0703, 
0.0854], [0.8503, 0.8913], [1.0000, 1.0000]>; 


1d = <[0.0525, 0.0618], [0.8503, 0.8913], [1.0000, 1.0000]>, 

2d = <[0.3844, 0.4480], [0.5610, 0.6988], 

[0.5435, 0.6377]>, 
3d  = <[0.2083, 0.2439], [1.0000, 1.0000], [0.6931, 0.7579]>, and 

4d = <[0.4013, 
0.4763], [0.6598, 0.7841], [0.4264, 0.5533]>. 

Step 3. By applying Eq. (2), we calculate the score values of S( 
id ) and S( 

id ) (i = 1, 2, 3, 4): 

)( 1
dS = 0.4131, )( 2

dS = 0.0960, )( 3
dS = 0.3431, and )( 4

dS = 0.0690; 

)( 1
dS = 0.0621, )( 2

dS = 0.3986, )( 3
dS = 0.1669, and )( 4

dS = 0.4090. 
Step 4. By using Eq. (23), we calculate the relative closeness degrees of each alternative with 

respect to the SV-NN ideal solution: 
C1 = 0.1307, C2 = 0.8059, C3 = 0.3272, and C4 = 0.8556. 
Since the ranking order of the relative closeness degrees is C4 > C2 > C3 > C1, the ranking order 

of the four alternatives is P4  P2  P3  P1. Hence, the best alternative is P4.  
By the comparison of the above decision results with the decision results obtained in [12], both 

the ranking order of the four alternatives and the best one above are the same as in [12].  
 

Table 1. Decision results of multi-attribute DM approaches regarding various weighted 
aggregation operators of SV-NNs and IV-NNs 

Aggregation 
operator Score value Relative closeness 

degree Ranking order 

SV-NNWSOAA 

S(d1+) = 0.4421, S(d2+) = 0.1037, 
S(d3+) = 0.3736, S(d4+) = 0.0733; 
S(d1

) = 0.0674, S(d2
) = 0.4267, 

S(d3
) = 0.1717, S(d4

) = 0.4384 

C1 = 0.1323, C2 = 
0.8044, C3 = 0.3149, 
C4 = 0.8567 

P4  P2  P3  P1 

IV-NNWSOAA 

S(d1+) = 0.4131, S(d2+) = 0.0960,    
S(d3+) = 0.3431, S(d4+) = 0.0690; 
S(d1

) = 0.0621, S(d2
) = 0.3986, 

S(d3
) = 0.1669, S(d4

) = 0.4090 

C1 = 0.1307, C2 = 
0.8059, C3 = 0.3272, 
C4 = 0.8556 

P4  P2  P3  P1 

SV-NNWAA [18, 20] 
S(d1) = 0.5611, S(d2) = 0.6891, 
S(d3) = 0.6194, S(d4) = 0.6901 / P4  P2  P3  P1 

IV-NNWAA [18, 20] 
S(d1) = 0.5407, S(d2) = 0.6696, 
S(d3) = 0.5993, S(d4) = 0.6712 / P4  P2  P3  P1 
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To demonstrate the effectiveness and rationality of the proposed DM approach in this paper, 
we compare it with existing DM approaches based on the SV-NNWAA and IV-NNWAA operators 
[18, 20]. By directly using the SV-NNWAA operator of Eq. (3) and IV-NNWAA operator of Eq. (4) 
and the score function of Eqs. (1) and (2), we can obtain all the aggregated values of 

1 2 3 4( , , , )i i i i id SV NNWAA a a a a   and 1 2 3 4( , , , )i i i i id IV NNWAA a a a a  , and then the score 
values of S(di) and decision results for each alternative Pi (i = 1, 2, …, m) are tabulated in Table 1. 

In Table 1, all the ranking orders of the four alternatives given by the multi-attribute DM 
approaches based on the SV-NNWSOAA, IV-NNWSOAA, SV-NNWAA, and IV-NNWAA 
operators are identical, and then the best choices indicate the same alternative P4, which show the 
effectiveness of the proposed approach. Clearly, the DM results obtained by the SV-NNWSOAA 
and IV-NNWSOAA operators reveals stronger identification than the DM results obtained by 
existing SV-NNWAA and IV-NNWAA operators [18, 19] because the values of the relative 
closeness degrees show bigger difference than the score values in existing approaches [18, 19]. 
Therefore, the DM method proposed in this paper is reasonable and provides an effective DM way 
for decision-makers. 

6. Conclusion 

Regarding existing subtraction operations of S-NNs (SV-NNs and IV-NNs), this paper firstly 
presented the SV-NNSOWAA and IV-NNSOWAA operators for S-NNs as a necessary complement 
to existing aggregation operators of S-NNs. Next, we developed a multi-attribute DM approach 
based on the SV-NNWSOAA and IV-NNSOWAA operators for the first time. Finally, an illustrative 
example was presented to demonstrate the applicability and effectiveness of the developed 
approach. However, the main advantage of the proposed DM approach is that the DM results in this 
study reveals stronger identification than the DM results of existing DM approaches. In the future 
work, the developed approach will be further extended to other fields, such as image processing and 
clustering analysis. 
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