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Abstract: In this article, we have examined the Wiener index in neutrosophic graphs. Wiener index 

is one of the most important topological indices. This index is a distance-based index that is 

calculated based on the geodesic distance between two vertices. Here, after defining the Wiener 

index in neutrosophic graphs, we calculated this index for some special modes such as the complete 

neutrosophic graph, cycle, and tree. In the following, by presenting a several theorems, we 

compared this index with the connectivity index, which is one of the most important degree-based 

indicators. 
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1. Introduction 

 The theory of fuzzy sets was first proposed by Zadeh [20] in 1965, and the concept of fuzzy 

graph was first introduced by Rosenfeld [13] in 1975. Since then, much research has been done on 

fuzzy graphs, their properties, and applications. One of these problems was the calculation of degree-

based topological indices and distance-based indices in fuzzy graphs. These indicators help by 

providing a numerical value for each graph so that we can have a good criterion for comparing 

graphs with the same number of vertices. 

After that, Atanassov [6] proposed the theory of intuitionistic fuzzy set. Finally, with the 

generalization of fuzzy theory by Smarandache [15] in 1995, new sets called neutrosophic sets were 

born. By presenting this theory, researchers tried to introduce other mathematical concepts in this 

field. Among them was the concept of graphs, which led to the new concept of neutrosophic graphs. 

In recent years, many features and applications of neutrosophic graphs have been proposed by 

theorists in this field. One of them is the problem of the Decision-Making [1], Solving the supply chain 

problem [2], application in the NeutroHyperAlgebra and AntiHyper Algebra [16], and Energy and 

Spectrum [7]. One of these topics is the study of topological indices and its applications in 

neutrosophic graphs. In [8-10], we examined some of these indicators and their applications. 

In this paper, we try to define the Wiener index, which is one of the most important topological 

indices based on distance, in neutrosophic graphs, and then calculate this index for certain conditions. 

The calculation of this index in neutrosophic graphs is done for the first time in this paper. Finally, 

we compare the connectivity index, which is one of the most important degree-based indices, with 

the Wiener index and present the results. 

 

2. Preliminaries 

This section, provides some definitions and theorems needed.  
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Definition 1. [5] Let 𝐺 = (𝑁, 𝑀) be a single-valued Neutrosophic graph, where 𝑁 is a Neutrosophic 

set on 𝑉 and, 𝑀 is a Neutrosophic set on 𝐸, which satisfy the following 

 

𝑇𝑀(𝑢, 𝑣) ≤ 𝑚𝑖𝑛(𝑇𝑁(𝑢), 𝑇𝑁(𝑣)), 

𝐼𝑀(𝑢, 𝑣) ≥ 𝑚𝑎𝑥(𝐼𝑁(𝑢), 𝐼𝑁(𝑣)), 

𝐹𝑀(𝑢, 𝑣) ≥ 𝑚𝑎𝑥(𝐹𝑁(𝑢), 𝐹𝑁(𝑣)), 

 

where 𝑢 and 𝑣 are two vertices of 𝐺, and (𝑢, 𝑣) ∈  𝐸 is an edge of 𝐺. 

 

Definition 2. [5] Let 𝐺 = (𝑁, 𝑀) be a Single-Valued Neutrosophic Graph and 𝑃 is a path in 𝐺. 𝑃 is 

a collection of different vertices, 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛 such that (𝑇𝑀(𝑣𝑖−1, 𝑣𝑖), 𝐼𝑀(𝑣𝑖−1, 𝑣𝑖), 𝐹𝑀(𝑣𝑖−1, 𝑣𝑖)) > 0 

for 0 ≤ 𝑖 ≤ 𝑛. 𝑃 is a Neutrosophic cycle if 𝑣0 = 𝑣𝑛 and 𝑛 ≥ 3. 

 

Definition 3. [5] Suppose 𝐺 = (𝑁, 𝑀) a single-valued Neutrosophic graph. 𝐺 is a connected Single-

Valued Neutrosophic Graph if there exists no isolated vertex in 𝐺. (𝑣 ∈ 𝑉𝐺 is the isolated vertex, if 

there exists no incident edge to the vertex 𝑣.) 

 

Definition 4. [9] Let 𝐺 = (𝑁, 𝑀) be the connected Neutrosophic Graph. The partial connectivity 

index of 𝐺 is defined as  

𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝐶𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝐶𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

where 𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣)  is the strength of truth, 𝐶𝑂𝑁𝑁𝐼𝐺

(𝑢, 𝑣)  the strength of indeterminacy and 

𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) the strength of falsity between two vertices 𝑢 and 𝑣. We have 

 

𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣) = max {min 𝑇𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}, 

𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣) = min {max 𝐼𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}, 

𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) = min {max 𝐹𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}. 

 

Also, the totally connectivity index of 𝐺 is defined as 

𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
. 

 

Theorem 1. [9] Let 𝐺 = (𝑁, 𝑀) be a complete neutrosophic graph whit 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} such that 

𝑡1 ≤ 𝑡2 ≤ ⋯  ≤ 𝑡𝑛,  𝑖1 ≤ 𝑖2 ≤ ⋯  ≤ 𝑖𝑛 and 𝑓1 ≥ 𝑓2 ≥ ⋯  ≥ 𝑓𝑛  where 𝑡𝑗 = 𝑇𝑁(𝑣𝑗),  𝑖𝑗 = 𝐼𝑁(𝑣𝑗)  and 𝑓𝑗 =

𝐹𝑁(𝑣𝑗) for 𝑗 = 1, 2, … , 𝑛. Then  

𝑃𝐶𝐼𝑇(𝐺) = ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

, 𝑃𝐶𝐼𝐼(𝐺) = ∑ 𝑖𝑗
2

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

, 𝑃𝐶𝐼𝐹(𝐺) = ∑ 𝑓𝑗
2

𝑛−1

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 
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3. Wiener Index in Neutrosophic Graphs 

In this section, which is the main part of the article, we will introduce the Wiener index in 

neutrosophic graphs. The Wiener index is a distance-based index that is widely used in symmetric 

graphs. 

Like the connectivity index, we divide the Wiener index into a Totally and Partial Wiener index 

and define it as follows 

Definition 5. Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic Graph and 𝑣1, 𝑣2 ∈ 𝑉. A strong path 𝑃 from 𝑣1 

to 𝑣2 is called a neutrosophic geodesic if there is no strong shorter path between 𝑣1 and 𝑣2. 

Note that in the above definition, the shortest strong path must be calculated separately for each of 

truth (𝑇), indeterminacy (𝐼), and falsity (𝐹) states. 

 

Definition 6. Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic Graph. The Partial Wiener Index (𝑷𝑾𝑰) of 𝐺 is 

defined as  

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝑊𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝑊𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

when 𝑑𝑠(𝑢, 𝑣) is the minimum, the sum of the weights of the edges in geodesic between 𝑢 and 𝑣. 

Also, the Totally Wiener Index (𝑻𝑾𝑰) of 𝐺 is defined by 

𝑇𝑊𝐼(𝐺) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺) − 2𝑃𝑊𝐼𝐹(𝐺) − 𝑃𝑊𝐼𝐼(𝐺)

6
. 

 

Example 1. Consider the Neutrosophic Graph 𝐺 = (𝑁, 𝑀) as shown in figure 1, with the vertex set 

𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}  where (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑎) = (0.4, 0.3, 0.2), (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑏) = (0.6, 0.5, 0.2),  (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑐) =

(0.7, 0.2, 0.2), and (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑑) = (0.4, 0.2, 0.3), whit the edge set (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑎, 𝑏) = (0.3, 0.3, 0.3), 

(𝑇𝑀, 𝐼𝑀 , 𝐹𝑀)(𝑎, 𝑐) = (0.4, 0.3, 0.2) , (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑎, d)  =  (0.3, 0.3, 0.2) , (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑏, d)  =

 (0.4, 0.4, 0.3), (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑐, d)  =  (0.4, 0.2, 0.2), We have, 

Figure 1. A neutrosophic graph 𝐺 
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Table 1. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.4 + 0.4 + 0.4 = 1.2 0.3 0.3 

𝑎, 𝑐 0.4 0.3 0.2 

𝑎, 𝑑 0.4 + 0.4 = 0.8 0.3 0.2 

𝑏, 𝑐 0.4 + 0.4 = 0.8 0.3 + 0.3 = 0.6 0.2 + 0.3 = 0.5 

𝑏, 𝑑 0.4 0.3 + 0.3 = 0.6 0.3 

𝑐, 𝑑 0.4 0.2 0.2 

 

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.4)(0.6)(1.2) + (0.4)(0.7)(0.4) + (0.4)(0.4)(0.8) + (0.6)(0.7)(0.8)

+ (0.6)(0.4)(0.4) + (0.7)(0.4)(0.4) = 0.288 + 0.112 + 0.128 + 0.336 + 0.096 + 0.112

= 1.072, 

 

𝑃𝑊𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.3)(0.5)(0.3) + (0.3)(0.2)(0.3) + (0.3)(0.2)(0.3) + (0.5)(0.2)(0.6)

+ (0.5)(0.2)(0.6) + (0.2)(0.2)(0.2) = 0.045 + 0.018 + 0.018 + 0.060 + 0.060 + 0.008

= 0.209, 

 

𝑃𝑊𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.2)(0.2)(0.3) + (0.2)(0.2)(0.2) + (0.2)(0.3)(0.2) + (0.2)(0.2)(0.5)

+ (0.2)(0.3)(0.3) + (0.2)(0.3)(0.2) = 0.012 + 0.008 + 0.012 + 0.020 + 0.018 + 0.012

= 0.082. 

 

𝑇𝑊𝐼(𝐺) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺) − 2𝑃𝑊𝐼𝐹(𝐺) − 𝑃𝑊𝐼𝐼(𝐺)

6
=

4 + 2(1.072) − 2(0.209) − (0.082)

6
=

5.644

6

= 0.941. 

 

Theorem 2. Let 𝐺 = (𝑁, 𝑀) be a complete neutrosophic graph whit 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} such that 𝑡1 ≤

𝑡2 ≤ ⋯  ≤ 𝑡𝑛,  𝑖1 ≤ 𝑖2 ≤ ⋯  ≤ 𝑖𝑛 and 𝑓1 ≥ 𝑓2 ≥ ⋯  ≥ 𝑓𝑛  where 𝑡𝑗 = 𝑇𝑁(𝑣𝑗),  𝑖𝑗 = 𝐼𝑁(𝑣𝑗)  and 𝑓𝑗 =

𝐹𝑁(𝑣𝑗) for 𝑗 = 1, 2, … , 𝑛. Then  

𝑃𝑊𝐼𝑇(𝐺) = ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

, 𝑃𝑊𝐼𝐼(𝐺) = ∑ 𝑖𝑗
2

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

, 𝑃𝑊𝐼𝐹(𝐺) = ∑ 𝑓𝑗
2

𝑛−1

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 

 

Proof. Consider neutrosophic graph 𝐺 = (𝑁, 𝑀) with the conditions given in the theorem. According 

to the definition of the Wiener index 
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𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

                           (1) 

 

Since 𝐺 is a complete neutrosophic graph, there is a path of length one between the two vertices. 

We show that the path is geodesic. Let 𝑢 = 𝑣1. Then for any 2 ≤ 𝑖 ≤ 𝑛, we have 𝑡1 ≤ 𝑡𝑖, it is easy to 

see that 
𝑑𝑠𝑇

(𝑣1,  𝑣𝑖) = 𝑡1, 2 ≤ 𝑖 ≤ 𝑛, 

 

now, we have for 𝑣2, 
𝑑𝑠𝑇

(𝑣2,  𝑣𝑖) = 𝑡2, 3 ≤ 𝑖 ≤ 𝑛, 

 

for 𝑣𝑘 , 
𝑑𝑠𝑇

(𝑣𝑘 ,  𝑣𝑖) = 𝑡𝑘, 𝑘 + 1 ≤ 𝑖 ≤ 𝑛, 

 

and, we have for 𝑣𝑛−1, 
𝑑𝑠𝑇

(𝑣𝑛−1,  𝑣𝑛) = 𝑡𝑛−1, 

 

now, we get by placing the above relation in (1) 

 

𝑃𝑊𝐼𝑇(𝐺) = 𝑇𝑁(𝑣1)𝑇𝑁(𝑣2)𝑡1 + ⋯ +  𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑛)𝑡1 + 𝑇𝑁(𝑣2)𝑇𝑁(𝑣3)𝑡2 + ⋯ +  𝑇𝑁(𝑣2)𝑇𝑁(𝑣𝑛)𝑡2 + ⋯

+  𝑇𝑁(𝑣𝑘)𝑇𝑁(𝑣𝑘+1)𝑡𝑘 + ⋯ +  𝑇𝑁(𝑣𝑘)𝑇𝑁(𝑣𝑛)𝑡𝑘 + ⋯ + 𝑇𝑁(𝑣𝑛−1)𝑇𝑁(𝑣𝑛)𝑡𝑛−1

=  𝑡1𝑡2𝑡1 + ⋯ + 𝑡1𝑡𝑛𝑡1 + 𝑡2𝑡3𝑡2 + ⋯ + 𝑡2𝑡𝑛𝑡2 + ⋯ + 𝑡𝑘𝑡𝑘+1𝑡𝑘 + ⋯ + 𝑡𝑘𝑡𝑛𝑡𝑘 + ⋯

+ 𝑡𝑛−1𝑡𝑛𝑡𝑛−1

=  𝑡1
2(𝑡2 + ⋯ + 𝑡𝑛) +  𝑡2

2(𝑡3 + ⋯ + 𝑡𝑛) + ⋯ +  𝑡𝑘
2(𝑡𝑘+1 + ⋯ + 𝑡𝑛) + ⋯ + 𝑡𝑛−1

2 𝑡𝑛

=  ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

. 

 

Similarly, 𝑃𝑊𝐼𝐼(𝐺) and 𝑃𝑊𝐼𝐹(𝐺) can be proved. 

 

 

Corollary 1. Consider the complete neutrosophic graph 𝐺 = (𝑁, 𝑀)  with the above theorem 

conditions, then 

𝑃𝑊𝐼𝑇(𝐺) = 𝑃𝐶𝐼𝑇(𝐺), 

𝑃𝑊𝐼𝐼(𝐺) = 𝑃𝐶𝐼𝐼(𝐺), 

𝑃𝑊𝐼𝐹(𝐺) = 𝑃𝐶𝐼𝐹(𝐺). 

Also, 𝑇𝑊𝐼(𝐺) = 𝑇𝐶𝐼(𝐺). 

Proof. According to theorem 1, and the above theorem is clear. 

 

 

Theorem 3. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic graph with |𝑁∗| = 𝑛, such that 𝐺∗ is a tree. If for each 

𝑢𝑣 ∈ 𝑀, 𝐺 − 𝑢𝑣 has two connecting components 𝑤1 and 𝑤2, it has 𝑙 and 𝑘 vertices, respectively 

such that 𝑙 + 𝑘 = 𝑛. Then  

𝑃𝑊𝐼𝑇(𝐺) = ∑ 𝑇𝑀(𝑢𝑣)

𝑢𝑣∈𝐺

∑ 𝑇𝑁(𝑢𝑖)

𝑙

𝑖=1

∑ 𝑇𝑁(𝑣𝑗)

𝑘

𝑗=1

, 

𝑃𝑊𝐼𝐼(𝐺) = ∑ 𝐼𝑀(𝑢𝑣)

𝑢𝑣∈𝐺

∑ 𝐼𝑁(𝑢𝑖)

𝑙

𝑖=1

∑ 𝐼𝑁(𝑣𝑗)

𝑘

𝑗=1

, 
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𝑃𝑊𝐼𝐹(𝐺) = ∑ 𝐹𝑀(𝑢𝑣)

𝑢𝑣∈𝐺

∑ 𝐹𝑁(𝑢𝑖)

𝑙

𝑖=1

∑ 𝐹𝑁(𝑣𝑗)

𝑘

𝑗=1

. 

 

Proof. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic graph with |𝑁∗| = 𝑛, and 𝐺∗ is a tree. Now suppose we 

remove the desired edge 𝑢𝑣, 𝑢𝑣 ∈ 𝑀, from 𝐺. Graph 𝐺 is divided into two connecting components 

𝑤1 and 𝑤2, so that 𝑤1 will contain 𝑙 vertices and 𝑤2 will contain 𝑘 = 𝑛 − 𝑙 vertices. If 𝑙 = 1 and 

𝑘 = 𝑛 − 1, and 𝑣1 ∈ 𝑤1 then 

 

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

=   𝑇𝑁(𝑣1)𝑇𝑁(𝑣2)𝑇𝑀(𝑢𝑣) + 𝑇𝑁(𝑣1)𝑇𝑁(𝑣3)(𝑇𝑀
(𝑢𝑣) + 𝑒1) + ⋯

+ 𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑛)(𝑇𝑀
(𝑢𝑣) + ⋯ + 𝑒𝑚) + ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇

(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁−𝑣1

. 

where 𝑒𝑖 ∈ 𝑀, and 𝑒𝑖 ≠ 𝑢𝑣. Repeat the same process for ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)𝑢,𝑣 ∈𝑁−𝑣1

. We continue 

this until only one vertex remains in 𝑤2. Then, by factoring and summing the number of vertices of 

the two components, we reach the desired result. Similarly, 𝑃𝑊𝐼𝐼(𝐺) and 𝑃𝑊𝐼𝐹(𝐺) can be proved. 

 

 

Theorem 4. Let 𝐺 = (𝑁, 𝑀) be a connected neutrosophic graph with the unique strong spanning tree 

𝑇. then 

𝑃𝑊𝐼𝑇(𝐺) = 𝑃𝑊𝐼𝑇(𝑇), 𝑃𝑊𝐼𝐼(𝐺) = 𝑃𝑊𝐼𝐼(𝑇),   𝑃𝑊𝐼𝐹(𝐺) = 𝑃𝑊𝐼𝐹(𝑇). 

 

Hence 𝑇𝑊𝐼(𝐺) = 𝑇𝑊𝐼(𝑇). 

 

Proof. Let 𝐺 be a connected neutrosophic graph and 𝑇 is the unique strong spanning tree of 𝐺. By 

definition of strong spanning tree, if u and v are two vertices of G, we have  

 

𝑑𝑠𝑇
(𝑢, 𝑣)(𝐺) = 𝑑𝑠𝑇

(𝑢, 𝑣)(𝑇), 𝑑𝑠𝐼
(𝑢, 𝑣)(𝐺) = 𝑑𝑠𝐼

(𝑢, 𝑣)(𝑇), 𝑑𝑠𝐹
(𝑢, 𝑣)(𝐺) = 𝑑𝑠𝐹

(𝑢, 𝑣)(𝑇). 

 

Since, it is clear from the above relation that 

 

𝑃𝑊𝐼𝑇(𝐺) = 𝑃𝑊𝐼𝑇(𝑇), 𝑃𝑊𝐼𝐼(𝐺) = 𝑃𝑊𝐼𝐼(𝑇),   𝑃𝑊𝐼𝐹(𝐺) = 𝑃𝑊𝐼𝐹(𝑇). 

 

Therefore 𝑇𝑊𝐼(𝐺) = 𝑇𝑊𝐼(𝑇). 

 

 

Theorem 5. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic graph with 𝐺∗ = 𝐶𝑛. Let 𝑀 be a constant function. 

Then 

1. For 𝑛 = 2𝑚, 𝑚 ∈ ℕ 

𝑃𝑊𝐼𝑇(𝐺) = ∑ 𝑘𝑡

𝑛
2

−1

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

) + 
𝑛

2
𝑡 ∑ 𝑇𝑁(𝑢𝑙)𝑇𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

,  

𝑃𝑊𝐼𝐼(𝐺) = ∑ 𝑘𝑖

𝑛
2

−1

𝑘=1

(∑ 𝐼𝑁(𝑢𝑗)𝐼𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

) + 
𝑛

2
𝑖 ∑ 𝐼𝑁(𝑢𝑙)𝐼𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

,  
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𝑃𝑊𝐼𝐹(𝐺) = ∑ 𝑘𝑓

𝑛
2

−1

𝑘=1

(∑ 𝐹𝑁(𝑢𝑗)𝐹𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

) + 
𝑛

2
𝑓 ∑ 𝐹𝑁(𝑢𝑙)𝐹𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

,  

 

2. For 𝑛 = 2𝑚 + 1, 𝑚 ∈ ℕ 

𝑃𝑊𝐼𝑇(𝐺) = ∑ 𝑘𝑡

𝑛−1
2

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

), 

𝑃𝑊𝐼𝐼(𝐺) = ∑ 𝑘𝑖

𝑛−1
2

𝑘=1

(∑ 𝐼𝑁(𝑢𝑗)𝐼𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

), 

𝑃𝑊𝐼𝐹(𝐺) = ∑ 𝑘𝑓

𝑛−1
2

𝑘=1

(∑ 𝐹𝑁(𝑢𝑗)𝐹𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

). 

 

Note that for 𝑗 + 𝑘 > 𝑛, 𝑢𝑗+𝑘 = 𝑢𝑑, this is, 𝑗 + 𝑘 ≡ 𝑑 (mode 𝑛). 

 

Also for 𝐺 − 𝑢𝑣, we have 

𝑃𝑊𝐼𝑇(𝐺 − 𝑢𝑣) = ∑ 𝑘𝑡

𝑛−1

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛−𝑘

𝑗=1

), 

𝑃𝑊𝐼𝐼(𝐺 − 𝑢𝑣) = ∑ 𝑘𝑖

𝑛−1

𝑘=1

(∑ 𝐼𝑁(𝑢𝑗)𝐼𝑁(𝑢𝑗+𝑘)

𝑛−𝑘

𝑗=1

), 

𝑃𝑊𝐼𝐹(𝐺 − 𝑢𝑣) = ∑ 𝑘𝑓

𝑛−1

𝑘=1

(∑ 𝐹𝑁(𝑢𝑗)𝐹𝑁(𝑢𝑗+𝑘)

𝑛−𝑘

𝑗=1

). 

 

Where 𝑀 = (𝑡, 𝑖, 𝑓) is a constant function. 

 

Proof. First, we assume that 𝐺∗ is a cycle of even length, and 𝑀 = (𝑡, 𝑖, 𝑓) is a constant function. 

Hence each edge of 𝐺 is a neutral edge. Then, the maximum length of a neutrosophic geodesic in 𝐺 

is 
𝑛

2
. Now consider a case where the distance between two vertices is less than 

𝑛

2
. Suppose the distance 

between 𝑢 and 𝑣 is equal to 𝑘, where 𝑘 is less than 
𝑛

2
. In that case, we define the geodesic length 

between the two vertices 𝑢 and 𝑣 as follows 

 

𝑃𝑘 = {(𝑢, 𝑣) ∈  𝑁∗ × 𝑁∗, k is equal to the geodetic length between u and v }, 

 

On the other hand, we know that there are 
𝑛

2
 pairs of vertices (𝑢, 𝑣) such that the geodesic 

length between them is exactly equal to 
𝑛

2
(𝑡, 𝑖, 𝑓), for these 

𝑛

2
 pairs of vertices, it is sufficient to obtain 

a product of 𝑇𝑁(𝑢) in 𝑇𝑁(𝑣) [Similarly, 𝐼𝑁(𝑢) in 𝐼𝑁(𝑣), and 𝐹𝑁(𝑢) in 𝐹𝑁(𝑣)]. And then sum on 𝑢 

and 𝑣. Then we get 

 

𝑛

2
𝑡 ∑ 𝑇𝑁(𝑢𝑙)𝑇𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

,                                                  (1) 
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[Similarly for 𝐼 and 𝐹]. Now back to the state that 1 ≤ 𝑘 <
𝑛

2
. For each vertex such as 𝑢 on the cycle 

𝐶𝑛, there is a vertex with distance 𝑘𝑡 from it. Suppose 𝑘 =  1, so we have 

 

𝑇𝑁(𝑢1)𝑇𝑁(𝑢2) + 𝑇𝑁(𝑢2)𝑇𝑁(𝑢3) + ⋯ +  𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+1) + ⋯ + 𝑇𝑁(𝑢𝑛)𝑇𝑁(𝑢𝑛+1), 

 

since 𝑛 + 1 ≡ 1 (mode 𝑛), hence 𝑇𝑁(𝑢𝑛)𝑇𝑁(𝑢𝑛+1) = 𝑇𝑁(𝑢𝑛)𝑇𝑁(𝑢1). Then 
 

for 𝑘 = 1, we have 
 

1 × 𝑡 × ∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+1)

𝑛

𝑗=1

, 

for 𝑘 = 2, 

2 × 𝑡 × ∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+2)

𝑛

𝑗=1

, 

for 𝑘 = 𝑚, 𝑚 <
𝑛

2
, 

𝑚 × 𝑡 × ∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑚)

𝑛

𝑗=1

, 

 

by continuing this process and summing on 𝑘, we get 

 

∑ 𝑘𝑡

𝑛
2

−1

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

),                                            (2) 

 

use from (1) and (2), 

𝑃𝑊𝐼𝑇(𝐺) = (1) + (2) = ∑ 𝑘𝑡

𝑛
2

−1

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

) + 
𝑛

2
𝑡 ∑ 𝑇𝑁(𝑢𝑙)𝑇𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

.  

 

To prove that 𝑛 is odd, note that the maximum distance between the vertices 𝑢, and 𝑣 is 
𝑛−1

2
. 

The continuation of the proof is similar to the case where n is even. 

 

 

Theorem 6. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic tree |𝑁∗| ≥ 3. Then 

 

𝑃𝐶𝐼𝑇(𝐺) < 𝑃𝑊𝐼𝑇(𝐺), 𝑃𝐶𝐼𝐼(𝐺) < 𝑃𝑊𝐼𝐼(𝐺),  𝑃𝐶𝐼𝐹(𝐺) < 𝑃𝑊𝐼𝐹(𝐺). 

 

But, 𝑇𝐶𝐼(𝐺) need not be less than or equal to 𝑇𝑊𝐼(𝐺). 

 

Proof. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic tree and |𝑁∗| ≥ 3. Since in the neutrosophic tree, there is a 

unique strong path between vertices 𝑢  and 𝑣 , for any 𝑢  and 𝑣 . hence this path is the unique 

strongest path from 𝑢  to 𝑣 . then, 𝑑𝑠𝑇
(𝑢, 𝑣) , for each 𝑢  and 𝑣 , is equal the sum of the truth-

membership values of edges where those edges belong to the strong path from 𝑢 to 𝑣. In other 

hands, 𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣)  is truth-membership values of the weakest edge of the (𝑢 − 𝑣) − path. It 

follows that 
𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣) ≤ 𝑑𝑠𝑇

(𝑢, 𝑣), 
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In the above relation, equality occurs when 𝑢𝑣 is a strong edge. Otherwise 

 
𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣) < 𝑑𝑠𝑇

(𝑢, 𝑣), 

hhen, we have 

𝑃𝐶𝐼𝑇(𝐺) < 𝑃𝑊𝐼𝑇(𝐺). 

 

Similarly, 𝑃𝑊𝐼𝐼(𝐺) and 𝑃𝑊𝐼𝐹(𝐺) can be proved. 

 

 

Here we show with an example that 𝑇𝐶𝐼(𝐺) dose not always have to be less than 𝑇𝑊𝐼(𝐺). 

Example 2. Consider the Neutrosophic tree 𝐺 = (𝑁, 𝑀) as shown in figure 2, 

 

 

Figure 2. A neutrosophic tree with 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} 

 

Note that here 𝑏𝑐 is a weak edge. 

Table 2. The strength of connectedness and the geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣) 𝐶𝑂𝑁𝑁𝐼𝐺(𝑢, 𝑣) 𝐶𝑂𝑁𝑁𝐹𝐺(𝑢, 𝑣) 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.4 0.3 0.3 0.4 0.3 0.3 

𝑎, 𝑐 0.3 0.4 0.5 0.3 0.4 0.5 

𝑎, 𝑑 0.4 0.2 0.3 0.4 0.2 0.3 

𝑏, 𝑐 0.3 0.4 0.5 0.7 0.7 0.8 

𝑏, 𝑑 0.4 0.3 0.3 0.8 0.5 0.6 

𝑐, 𝑑 0.3 0.4 0.5 0.7 0.6 0.8 

 

By direct calculations, we have 

𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.4 ∗ 0.6 ∗ 0.4 + 0.4 ∗ 0.3 ∗ 0.3 + 0.4 ∗ 0.5 ∗ 0.4 + 0.6 ∗ 0.3 ∗ 0.3 + 0.6 ∗ 0.5 ∗ 0.4

+ 0.3 ∗ 0.5 ∗ 0.3 = 0.096 +  0.036 +  0.080 +  0.054 +  0.120 +  0.045 =  0.431, 

𝑃𝐶𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.036 + 0.080 + 0.016 + 0.060 + 0.018 + 0.040 = 0.25, 

𝑃𝐶𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.072 + 0.14 + 0.036 + 0.21 + 0.054 + 0.105 = 0.617, 
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𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
=

3.378

6
= 0.563. 

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.096 + 0.036 + 0.08 + 0.126 + 0.24 + 0.105 = 0.683, 

𝑃𝑊𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.036 + 0.08 + 0.016 + 0.105 + 0.03 + 0.060 = 0.327, 

𝑃𝑊𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.072 + 0.14 + 0.036 + 0.336 + 0.108 + 0.168 = 0.86, 

𝑇𝑊𝐼(𝐺) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺) − 2𝑃𝑊𝐼𝐹(𝐺) − 𝑃𝑊𝐼𝐼(𝐺)

6
=

3.319

6
= 0.553. 

As seen in this example 

𝑃𝐶𝐼𝑇(𝐺) = 0.431 < 𝑃𝑊𝐼𝑇(𝐺) = 0.683, 

  𝑃𝐶𝐼𝐼(𝐺) = 0.25 < 𝑃𝑊𝐼𝐼(𝐺) = 0.327, 

   𝑃𝐶𝐼𝐹(𝐺) = 0.617 < 𝑃𝑊𝐼𝐹(𝐺) = 0.86. 

But, we have 𝑇𝐶𝐼(𝐺) = 0.563 > 𝑇𝑊𝐼(𝐺) = 0.553. 

 

The neutrosophic graph shown in the figure below is also a tree in which 𝑃𝐶𝐼𝑇(𝐺) < 𝑃𝑊𝐼𝑇(𝐺),

𝑃𝐶𝐼𝐼(𝐺) < 𝑃𝑊𝐼𝐼(𝐺),  𝑃𝐶𝐼𝐹(𝐺) < 𝑃𝑊𝐼𝐹(𝐺). And, 𝑇𝐶𝐼(𝐺) < 𝑇𝑊𝐼(𝐺). 

 

Figure 3. A neutrosophic tree with 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} 

 

Theorem 7. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic tree |𝑁∗| ≥ 3, With 𝐺∗ is a star. Let 𝑀 be a constant 

function. if 𝑣1 is the center vertex and 𝑣2, 𝑣3, … , 𝑣𝑛 are the vertices adjacent to vertex 𝑣1, then  

𝑃𝑊𝐼𝑇(𝐺) = 2𝑡 ∑ 𝑇𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

, 

  𝑃𝑊𝐼𝐼(𝐺) = 2𝑖 ∑ 𝐼𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝐼𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 𝑖𝐼𝑁(𝑣1) ∑ 𝐼(𝑣𝑗)

𝑛

𝑗=2

, 

  𝑃𝑊𝐼𝐹(𝐺) = 2𝑓 ∑ 𝐹𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝐹𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 𝑓𝐹𝑁(𝑣1) ∑ 𝐹(𝑣𝑗)

𝑛

𝑗=2

, 
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where 𝑀 = (𝑡, 𝑖, 𝑓). 

 

Proof. Let 𝐺 = (𝑁, 𝑀)  be a neutrosophic tree |𝑁∗| ≥ 3 , With 𝐺∗  is a star. Since = (𝑡, 𝑖, 𝑓)  is a 

constant function and 𝑣𝑖 is the center vertex, for each 𝑣𝑖, 1 < 𝑖 ≤ 𝑛, we have 

  
𝑑𝑠𝑇

(𝑣1, 𝑣𝑖) = 𝑡, 𝑑𝑠𝐼
(𝑣1, 𝑣𝑖) = 𝑖, 𝑑𝑠𝐹

(𝑣1, 𝑣𝑖) = 𝑓. 

 

Also, for 𝑣𝑖 and 𝑣𝑗, 𝑖, 𝑗 ≠ 1, then 

 

𝑑𝑠𝑇
(𝑣𝑗 , 𝑣𝑖) = 2𝑡, 𝑑𝑠𝐼

(𝑣𝑗 , 𝑣𝑖) = 2𝑖, 𝑑𝑠𝐹
(𝑣𝑗 , 𝑣𝑖) = 2𝑓. 

 

Then 

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑣𝑖)𝑇𝑁(𝑣𝑗)𝑑𝑠𝑇
(𝑣𝑖 ,  𝑣𝑗)

𝑣𝑖,𝑣𝑗 ∈𝑁

= ∑ 𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑗)𝑑𝑠𝑇
(𝑣1,  𝑣𝑗)

𝑣𝑗 ∈𝑁

+ ∑ 𝑇𝑁(𝑣𝑖)𝑇𝑁(𝑣𝑗)𝑑𝑠𝑇
(𝑣𝑖 ,  𝑣𝑗)

𝑣𝑖,𝑣𝑗 ∈𝑁

𝑖≠1

= 𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

+ 2𝑡 ∑ 𝑇𝑁(𝑣𝑖)𝑇𝑁(𝑣𝑗)𝑑𝑠𝑇
(𝑣𝑖 ,  𝑣𝑗)

𝑣𝑖,𝑣𝑗 ∈𝑁

𝑖≠1

= 𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

+ [2𝑡 ∑ 𝑇𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 2𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

]

=  2𝑡 ∑ 𝑇𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

. 

Similarly, 𝑃𝑊𝐼𝐼(𝐺) and 𝑃𝑊𝐼𝐹(𝐺) can be proved. 

 

4. Applications  

One of the most important topics is the use of neutrosophic sets in other sciences and also the 

use of these assemblies to model various problems. Many applications have been discussed by 

experts so far. Which can be referred to as application of neutrosophic in graphs [12, 17-19], 

application in algebraic topics [11, 14], application in intelligent systems and optimization [3, 4]. 

Here the Wiener index is calculated for a neutrosophic graph associated with a real-time 

example. You can see this issue and its explanation on the website www.pantechsolutions.net. The 

neutrosophic graph of this issue is also given in [5]. There, the author examines energy, Laplacian 

energy, and signless Laplacian energy. We also use the modeling used in [5] here. This neutrosophic 

graph is intended for four different time periods. According to each time period, we define a 

neutrosophic graph in the following order: 

 G1 from 16 January 2018 to 15 February 2018 (figure 3); 

 G2 from 16 February 2018 to 15 March 2018 (figure 4); 

 G3 from 16 March 2018 to 15 April 2018 (figure 5); 

 G4 from 16 April 2018 to 15 May 2018 (figure 6); 

We now calculate the Wiener index (partial Wiener index and totally Wiener index) for each of 

the above time periods. 

http://www.pantechsolutions.net/
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Figure 4. Neutrosophic graph 𝐺1 

Table 3. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.1 0.3 + 0.2 = 0.5 0.4 

𝑎, 𝑐 0.1 0.3 0.4 + 0.3 = 0.7 

𝑎, 𝑑 0.1 + 0.2 = 0.3 0.3 + 0.4 = 0.7 0.4 + 0.4 = 0.8 

𝑏, 𝑐 0.2 + 0.3 = 0.5 0.2 0.3 

𝑏, 𝑑 0.2 0.3 0.3 + 0.3 = 0.6 

𝑐, 𝑑 0.3 0.2 + 0.3 = 0.5 0.3 

 

𝑃𝑊𝐼𝑇(𝐺1) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.2)(0.3)(0.1) + (0.2)(0.4)(0.1) + (0.2)(0.5)(0.3) + (0.3)(0.4)(0.5)

+ (0.3)(0.5)(0.2) + (0.4)(0.5)(0.3) = 0.194, 

𝑃𝑊𝐼𝐼(𝐺1) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.3)(0.1)(0.5) + (0.3)(0.1)(0.3) + (0.3)(0.2)(0.7) + (0.1)(0.1)(0.2)

+ (0.1)(0.2)(0.3) + (0.1)(0.2)(0.5) = 0.084, 

𝑃𝑊𝐼𝐹(𝐺1) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.1)(0.2)(0.4) + (0.1)(0.3)(0.7) + (0.1)(0.1)(0.8) + (0.2)(0.3)(0.3)

+ (0.2)(0.1)(0.6) + (0.3)(0.1)(0.3) = 0.076, 

 

𝑇𝑊𝐼(𝐺1) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺1) − 2𝑃𝑊𝐼𝐹(𝐺1) − 𝑃𝑊𝐼𝐼(𝐺1)

6
=

4 + 2(0.194) − 2(0.076) − (0.084)

6
=

4.152

6

= 0.692. 
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Figure 5. Neutrosophic graph 𝐺2 

Table 4. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.3 0.4 0.2 

𝑎, 𝑐 0.2 0.5 0.3 

𝑎, 𝑑 0.3 0.3 + 0.5 = 0.8 0.2 + 0.3 = 0.5 

𝑏, 𝑐 0.2 0.4 + 0.5 = 0.9 0.2 + 0.3 = 0.5 

𝑏, 𝑑 0.3 0.4 + 0.5 + 0.3 = 1.2 0.3 

𝑐, 𝑑 0.2 + 0.3 = 0.5 0.3 0.3 + 0.2 + 0.3 = 0.8 

 

𝑃𝑊𝐼𝑇(𝐺2) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.072 + 0.036 + 0.090 + 0.024 + 0.060 + 0.075 = 0.357, 

𝑃𝑊𝐼𝐼(𝐺2) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.024 + 0.015 + 0.048 + 0.018 + 0.048 + 0.006 = 0.159, 

𝑃𝑊𝐼𝐹(𝐺2) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.004 + 0.018 + 0.010 + 0.015 + 0.003 + 0.024 = 0.074, 

 

𝑇𝑊𝐼(𝐺2) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺2) − 2𝑃𝑊𝐼𝐹(𝐺2) − 𝑃𝑊𝐼𝐼(𝐺2)

6
=

4 + 2(0.357) − 2(0.074) − (0.159)

6
=

4.307

6

= 0.718. 
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Figure 6. Neutrosophic graph 𝐺3 

Table 5. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.6 0.5 + 0.6 = 1.1 0.4 

𝑎, 𝑐 0.5 0.6 0.3 

𝑎, 𝑑 0.5 + 0.1 = 0.6 0.6 + 0.5 + 0.5 = 1.6 0.3 + 0.4 = 0.7 

𝑏, 𝑐 0.6 + 0.5 = 1.1 0.5 0.4 + 0.3 = 0.7 

𝑏, 𝑑 0.1 0.5 0.4 + 0.3 + 0.4 = 1.1 

𝑐, 𝑑 0.1 0.5 + 0.5 = 1 0.4 

 

𝑃𝑊𝐼𝑇(𝐺3) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.288 + 0.210 + 0.072 + 0.616 + 0.016 + 0.014 = 1.216, 

𝑃𝑊𝐼𝐼(𝐺3) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.044 + 0.018 + 0.080 + 0.060 + 0.1 + 0.15 = 0.452, 

𝑃𝑊𝐼𝐹(𝐺3) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.008 + 0.006 + 0.042 + 0.007 + 0.033 + 0.012 = 0.108 

 

𝑇𝑊𝐼(𝐺3) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺3) − 2𝑃𝑊𝐼𝐹(𝐺3) − 𝑃𝑊𝐼𝐼(𝐺3)

6
=

4 + 2(1.216) − 2(0.108) − (0.452)

6
=

5.548

6

= 0.925. 
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Figure 7. Neutrosophic graph 𝐺4 

Table 6. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.3 + 0.4 + 0.3 = 1 0.5 0.3 

𝑎, 𝑐 0.3 0.6 0.3 + 0.3 = 0.6 

𝑎, 𝑑 0.3 + 0.4 = 0.7 0.5 + 0.4 = 0.9 0.5 + 0.4 = 0.9 

𝑏, 𝑐 0.3 + 0.4 = 0.7 0.5 + 0.6 = 1.1 0.3 

𝑏, 𝑑 0.3 0.4 0.3 + 0.4 = 0.7 

𝑐, 𝑑 0.4 0.6 + 0.5 = 1.1 0.4 

 

𝑃𝑊𝐼𝑇(𝐺4) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.20 + 0.072 + 0.196 + 0.210 + 0.105 + 0.168 = 0.951, 

𝑃𝑊𝐼𝐼(𝐺4) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.050 + 0.180 + 0.045 + 0.066 + 0.008 + 0.033 = 0.382, 

𝑃𝑊𝐼𝐹(𝐺4) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.009 + 0.036 + 0.108 + 0.006 + 0.028 + 0.032 = 0.219, 

 

𝑇𝑊𝐼(𝐺4) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺4) − 2𝑃𝑊𝐼𝐹(𝐺4) − 𝑃𝑊𝐼𝐼(𝐺4)

6
=

4 + 2(0.951) − 2(0.219) − (0.382)

6
=

5.082

6

= 0.847. 

 

Now, using the Wiener index obtained for each of the neutrosophic graphs 𝐺1, 𝐺2, 𝐺3, and 𝐺4, 

we can compare these four components in the time intervals given in the problem. 
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Figure 8. Wiener index comparison chart in 𝐺1, 𝐺2, 𝐺3, and 𝐺4 

 

As shown in Figure 7, they can be easily studied using the Wiener index and assigning a logical value 

to each of the neutrosophic graphs. 

 

Conclusion 

In this article, we examine the Wiener index in neutrosophic graphs. First, this index was defined 

for this group of graphs and then it was calculated for certain modes of neutrosophic graphs. In the 

following, we provide an example of the application of this index in real problems. As you can see 

here, this index, which is one of the most important topological indices based on distance, can be a 

good criterion for comparing neutrosophic graphs under the same conditions. This index can also be 

studied and used for bipolar and interval valued neutrosophic graphs. 
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