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1. Introduction

Many investigators in business, science, economy and a variety of other branches deal with

modeling unknown data on a regular basis. For these ambiguous and uncertainties, traditional

techniques are not always successful. Lotfi A. Zadeh [16] instigated the idea of membership

or truth value to the elements of collection of well-defined objects called, sets. These systems

can handle a variety of inputs, including ambiguous, distorted, or inaccurate data. The idea of

fuzzy topology was initially developed by Chang [2] in 1967. Many topological structures and

generalizations have developed in time utilizing fuzzy sets. In addition to the degree of truth

membership, Atanassov [1] paired non-membership value called false membership, which was

the generalization of fuzzy sets, called intuitionistic fuzzy sets. In 1997, intuitionistic fuzzy

topology was found by Coker [4]. Along with the two membership values, Smarandache [11]

introduced the idea of indeterminacy membership function in 1999. Neutrosophic sets play

an important part in many aspects like, decision making, medical diagnosis, etc., Wang and

Smarandache [13] introduced the notion of interval valued neutrosophic sets.

Qualitative attributes can be easily expressed in linguistic terms, which was developed by

Zadeh [17]. The idea of linguistic variables was applied in decision making by Herrara etc.,al [9]

in 2000 and Herrara-Viedma, Vergegay [8] in 1996. Su [12] used linguistic preference informa-

tion in group decision making. Chen, Liu, etc.,al [3] introduced linguistic intuitionistic fuzzy

number(LIFN) in 2015. As LIFN lacks indeterminacy, Ye [15] in 2015, proposed the notion of
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single valued neutrosophic linguistic numbers and developed an extended TOPSIS model for

MAGDM approach utilizing SVNLNs. An extended COPRAS model for MAGDM based on

SVN 2-tuple neutrosophic environment was developed by Wei, Wu, etc.,al [14]. Fang, Zebo

etc.,al [6] found linguistic neutrosophic numbers in 2017, with a concrete definition.This paper

is categorized as follows: Section 2 deals with the basic definitions of LNNs. In Section 3, the

idea of linguistic neutrosophic topology is introduced and some properties are discussed. Lin-

guistic neutrosophic derived set is discussed in section 4. In last section, the notion of linguistic

neutrosophic continuity and linguistic neutrosophic dense sets are defined and discussed with

suitable examples.

2. Preambles

Definition 2.1. [11] Let S be a space of points (objects), with a generic element in x denoted

by S. A neutrosophic set A in S is characterized by a truth-membership function TA, an

indeterminacy membership function IA and a falsity-membership function FA. TA(x), IA(x)

and FA(x) are real standard or non-standard subsets of ]0−, 1+[. That is

TA : S →]0−, 1+[, IA : S →]0−, 1+[, FA : S →]0−, 1+[

There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0− ≤ sup TA(x)+ sup IA(x)+

sup FA(x) ≤ 3+.

Definition 2.2. [11] Let S be a space of points (objects), with a generic element in x denoted

by S. A single valued neutrosophic set (SVNS) A in S is characterized by truth-membership

function TA, indeterminacy-membership function IA and falsity-membership function FA. For

each point S in S, TA(x), IA(x), FA(x) ∈ [0, 1].

When S is continuous, a SVNS A can be written as A =
∫
〈T (x), I(x), F (x)〉/x ∈ S.

When S is discrete, a SVNS A can be written as A =
∑
〈T (xi), I(xi), F (xi)〉/xi ∈ S.

Definition 2.3. [6] Let S = {sθ|θ = 0, 1, 2, ....., τ} be a finite and totally ordered discrete

term set, where τ is the even value and sθ represents a possible value for a linguistic variable.

For example, when τ = 6, S can be expressed as, S = {very bad, bad, fair, very fair, good,

very good}.

Su [12] extended the discrete linguistic term set S into a continuous term set S = {sθ|θ ∈
[0, q]}, where, if sθ ∈ S, then we call sθ the original term, otherwise it is called as a virtual

term.

Definition 2.4. [6] Let Q = {s0, s1, s2, ..., st} be a linguistic term set (LTS) with odd cardi-

nality t+1 and Q = {sh/s0 ≤ sh ≤ st, h ∈ [0, t]}. Then, a linguistic single valued neutrosophic

set A is defined by,
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A = {〈x, sθ(x), sψ(x), sσ(x)〉|x ∈ S}, where sθ(x), sψ(x), sσ(x) ∈ Q represent the linguistic

truth, linguistic indeterminacy and linguistic falsity degrees of S to A, respectively, with con-

dition 0 ≤ θ+ψ+σ ≤ 3t. This triplet (sθ, sψ, sσ) is called a linguistic single valued neutrosophic

number.

Definition 2.5. [6] Let α = (sθ, sψ, sσ), α1 = (sθ1, sψ1, sσ1), α2 = (sθ2, sψ2, sσ2) be three

LSVNNs, then

(1) αc = (sσ, sψ, sθ);

(2) α1 ∪ α2 = (max(θ1, θ2),min(ψ1, ψ2),min(σ1, σ2));

(3) α1 ∩ α2 = (min(θ1, θ2),max(ψ1, ψ2),max(σ1, σ2));

(4) α1 = α2 iff θ1 = θ2, ψ1 = ψ2, σ1 = σ2;

Definition 2.6. Let α = (lθ, lψ, lσ) be a LSVNN. The set of all labels is, L = {l0, l1, l2, ....., lt}.
Then the unit linguistic neutrosophic set (1LN ) is defined as 1LN = (lt, l0, l0), which is the

truth membership,and the zero linguistic neutrosophic set (0LN ) is defined as 0LN = (l0, lt, lt),

which is the falsehood membership.

Example 2.7. For the linguistic neutrosophic set, L = {very bad, bad, fair, very fair, good,

very good}, the set of all labels be, L = {l0, l1, l2, l3, l4, l5}.
Then the unit LNs is defined as 1LN = (l5, l0, l0), and the zero LNs is defined as 0LN =

(l0, l5, l5).

3. Linguistic Neutrosophic Topology

In this chapter, we introduce the concepts of linguistic neutrosophic topological spaces.

Definition 3.1. For a linguistic neutrosophic topology π, the collection of linguistic neutro-

sophic sets should obey,

(1) 0LN , 1LN ∈ π
(2) K1

⋂
K2 ∈ π for any K1,K2 ∈ π

(3)
⋃
Ki ∈ π,∀{Ki : i ∈ J} ⊆ π

We call, the pair (SLN , πLN ), a linguistic neutrosophic topological space.

Remark 3.2. Let (SLN , πLN ) be a linguistic neutrosophic topological space (LNTS). Then,

(SLN , πLN )c is the dual LN topology, whose elements are Kc
LN for KLN ∈ (SLN , πLN ). Any

open set in πLN is known as linguistic neutrosophic open set(LNOsS). Any closed set in πLN is

known as linguistic neutrosophic closed set(LNCS) iff it’s complement is linguistic neutrosophic

open set.
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Example 3.3. Let ULN be the universe of discourse ULN = {u, v, w, z} and SLN = {u, v}
and the linguistic term set be, L = { very poor, poor, very bad, bad, fair, good, very good}
Then L can be taken as, L = {l0, l1, l2, l3, l4, l5, l6}.
Let KLN = {〈u, (l5, l3, l4)〉, 〈v, (l4, l2, l3)〉},
That is, the element u’s degree of appurtenance to the set KLN is good(l5)

the element u’s degree of indeterminate-appurtenance to the set KLN is bad(l3)

the element u’s degree of non-appurtenance to the set KLN is fair(l4).

And the element v’s degree of appurtenance to the set KLN is fair(l4)

the element v’s degree of indeterminate-appurtenance to the set KLN is very bad(l2)

the element v’s degree of non-appurtenance to the set KLN is bad(l3).

Let, HLN = {〈u, (l6, l2, l2)〉, 〈v, (l6, l1, l0)〉}
That is, the element u’s degree of appurtenance to the set HLN is very good(l6)

the element u’s degree of indeterminate-appurtenance to the set HLN is very bad(l2)

the element u’s degree of non-appurtenance to the set HLN is very bad(l2).

And the element v’s degree of appurtenance to the set HLN is very good(l6)

the element v’s degree of indeterminate-appurtenance to the set HLN is poor(l1)

the element v’s degree of non-appurtenance to the set HLN is very poor(l0).

Similarly, let MLN = {〈u, (l6, l3, l2)〉, 〈v, (l6, l2, l0)〉}
That is, the element u’s degree of appurtenance to the set MLN is very good(l6)

the element u’s degree of indeterminate-appurtenance to the set MLN is bad(l3)

the element u’s degree of non-appurtenance to the set MLN is very bad(l2).

And the element v’s degree of appurtenance to the set MLN is very good(l6)

the element v’s degree of indeterminate-appurtenance to the set MLN is very bad(l2)

the element v’s degree of non-appurtenance to the set MLN is very poor(l0).

Then the collection πLN = {0LN ,KLN , HLN ,MLN ,KLN ∨HLN , 1LN} forms a LN topology

on (SLN , πLN ).

Definition 3.4. The linguistic neutrosophic closure and linguistic neutrosophic interior are

given by,

(i) LNint(KLN ) =
⋃
{OLN/OLN is a LNOSinSLN where OLN ⊆ KLN} and it is the

largest LN open subset of KLN .

(ii) LNcl(HLN ) =
⋂
{JLN/JLN is a LNCSinSLN whereHLN ⊆ JLN} and it is the smallest

LN closed set containing HLN .

Example 3.5. In example 3.3, LNint(KLN ) = NLN and LNcl(KLN ) = 1LN

Theorem 3.6. Let (SLN , πLN ) be a LNTS and KLN , HLN ∈ SLN . Then
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(i) KLN ∈ LNcl(KLN )

(ii) KLN is LN closed if and only if KLN = LNcl(KLN )

(iii) LNcl(φLN ) = φLN and LNcl(SLN ) = SLN .

(iv) KLN ⊆ HLN ⇒ LNcl(KLN ) ⊆ LNcl(HLN )

(v) LNcl(KLN ∪HLN ) = LNcl(KLN ) ∪ LNcl(HLN )

(vi) LNcl(KLN ∩HLN ) ⊆ LNcl(KLN ) ∩ LNcl(HLN )

(vii) LNcl(LNcl(KLN )) = LNcl(KLN )

Proof:

(i) From the definition, KLN ∈ LNcl(KLN )

(ii) If KLN is LN closed, then KLN is the smallest LN closed set containing KLN . So,

KLN = LNcl(KLN ).

Conversely, if KLN = LNcl(KLN ), then KLN is the smallest LN closed set containing

KLN and hence KLN is LN closed.

(iii) If KLN is LN closed, then KLN = LNcl(KLN ). As φLN and SLN are LN closed,

LNcl(φLN ) = φLN and LNcl(SLN ) = SLN .

(iv) When KLN ⊆ HLN , since HLN ⊆ LNcl(HLN ) and KLN ⊆ LNcl(HLN ). That is,

LNcl(HLN ) is a LN closed set that contains K. But LNcl(KLN ) is the smallest LN

closed set contains K. Thus, LNcl(KLN ) ⊆ LNcl(HLN )

(v) As KLN ⊆ KLN∩HLN and HLN ⊆ KLN∩HLN , LNcl(KLN ) ⊆ LNcl(KLN∩HLN ) and

LNcl(HLN ) ⊆ LNcl(KLN ∩HLN ). Thus, LNcl(KLN ) ∩ LNcl(HLN ) ⊆ LNcl(KLN ∩
HLN ). Since, KLN∪HLN ⊆ LNcl(KLN )∩LNcl(HLN ), and since LNcl(KLN∪HLN ) is

the smallest LN closed set containing KLN ∪HLN , LNcl(KLN ∪HLN ) ⊆ LNcl(KLN )∪
LNcl(HLN ).

Thus, LNcl(KLN ∪HLN ) = LNcl(KLN ) ∪ LNcl(HLN ).

(vi) Since (KLN ∩ HLN ) ⊆ KLN and (KLN ∩ HLN ) ⊆ HLN , LNcl(KLN ∩ HLN ) ⊆
LNcl(HLN ) ⊆ LNcl(HLN ).

(vii) AS LNcl(KLN ) is a LN closed set, LNcl(LNcl(KLN )) = LNcl(KLN ).

Remark 3.7. If LNint(KLN ) is LNcl(KLN ) is a LNCS, then we have,

(i) LNint(KLN ) = KLN if and only if KLN is LNOS in (SLN , πLN ).

(ii) LNcl(KLN ) = KLN if and only if KLN is LNCS in (SLN , πLN ).

Theorem 3.8. Let (SLN , πLN ) be a LNTS and KLN ∈ SLN . Then

(i) S − LNint(KLN ) = LNint(SLN −KLN )
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(ii) S − LNcl(KLN ) = LNcl(SLN −KLN )

Proof: (i): Let S ∈ SLN−LNint(KLN )⇒ S /∈ LNint(KLN ). Thus, G 6⊆ KLN∀ LN open set G

containing S, (i.e) CLN ∩(S−KLN ) =6= φLN , ∀ LN open set G. Hence, S ∈ LNcl(SLN −KLN )

and SLN − LNint(KLN ) ⊆ LNcl(SLN −KLN ).

Conversely, if S ∈ LNcl(SLN −KLN ), then GLN ∩ (SLN −KLN ) 6= φLN for every LN open

set containing S, (i.e) G 6⊆ A∀ LN open set G containing S. That is, S /∈ LNint(A) ⇒ S ∈
S−LNint(A). Then, LNcl(SLN−KLN ) ⊆ SLN−LNint(KLN ). Thus, SLN−LNint(KLN ) =

LNint(SLN −KLN )

(ii) Proof is similar to (i).

Remark 3.9. On taking complements on both sides of SLN −LNint(KLN ) = LNint(SLN −
KLN ) and SLN − LNcl(KLN ) = LNcl(SLN −KLN ), we have,

LNint(KLN ) = SLN − LNcl(SLN −KLN ) and LNcl(KLN ) = SLN − LNint(SLN −KLN )

Theorem 3.10. Let (SLN , πLN ) be a LNTS and KLN , HLN ∈ SLN . Then

(i) LNint(KLN ) = KLN if and only if KLN is LN open.

(ii) LNint(φLN ) = φLN and LNint(SLN ) = SLN .

(iii) KLN ⊆ HLN ⇒ LNint(KLN ) ⊆ LNint(HLN )

(iv) LNint(KLN ) ∪ LNint(HLN ) ⊆ LNint(KLN ∪HLN )

(iv) LNint(KLN ∩HLN ) = LNint(KLN ) ∩ LNint(HLN )

(vi) LNint(LNint(KLN )) = LNint(KLN )

Proof: (i): KLN is LN open if and only if SLN − KLN is LN closed, if and only if,

LNcl(SLN−KLN ) = SLN−KLN , if and only if, SLN−LNcl(KLN ) = KLN iff LNint(KLN ) =

KLN bT remark.

(ii): Since φLN and SLN are LN open, LNint(φLN ) = φLN and LNint(SLN ) = SLN

(iii): KLN ⊆ HLN ⇒ SLN − HLN ⊆ SLN − KLN . Thus, LNcl(SLN − HLN ) ⊆
LNcl(SLN − KLN ), (i.e)SLN − LNcl(SLN − KLN ) ⊆ SLN − LNcl(SLN − HLN ). Therefore,

LNint(KLN ) ⊆ LNint(HLN ).

Definition 3.11. Let SLN be a non-void set and KLN = {〈S, [TKLN
, IKLN

, FKLN
]〉} and

HLN = {〈S, [THLN
, IHLN

, FHLN
]〉} are LNSs in LNTS.

(I) KLN ∪HLN can be defined as

(a) KLN ∪HLN = {〈S, [TKLN
∧ THLN

, IKLN
∧ IHLN

, FKLN
∨ FHLN

]〉}
(II) KLN ∩HLN can be defined as

(a) KLN ∩HLN = {〈S, [TKLN
∧ THLN

, IKLN
∧ IHLN

, FKLN
∨ FHLN

]〉}
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(III) The complement of KLN = {〈S, [TKLN
, IKLN

, FKLN
]〉} is defined as,

(a) KLN
c = {〈S, [1− FKLN

, IKLN
, 1− TKLN

]〉}
(b) (KLN

c)c = KLN

(c) (KLN ∩HLN )c = KLN
c ∪HLN

c

(d) (KLN ∪HLN )c = KLN
c ∩HLN

c

Theorem 3.12. Let (SLN , πLN ) be a LNTS. S ∈ LNcl(KLN ) iff ULN ∩KLN 6= φLN for every

LN open set ULN containing S, where KLN ⊆ SLN .

Proof:

If ULN is a LN open set and if S ∈ LNcl(KLN ), thenSLN−ULN is LN closed. IfKLN∩ULN =

φLN , then KLN ⊆ SLN − ULN .

That is, SLN − ULN is LN closed set containing KLN . Therefore, LNcl(KLN ) ⊆ SLN − ULN ,

which is a contradiction, since S ∈ LNcl(KLN ) but S /∈ SLN−ULN . Hence, KLN∩ULN 6= φLN ,

for every LN open set ULN containing S.

Conversely, if KLN ∩ ULN 6= φLN , for every LN open set ULN containing S and if S /∈
LNcl(KLN ), S ∈ SLN − LNcl(KLN ) which is LN open.

Hence, (SLN − LNcl(KLN )) ∩ KLN 6= φLN . But KLN ⊆ LNcl(KLN ) and hence SLN −
LNcl(KLN ) ⊆ SLN −KLN , that implies (SLN −LNcl(KLN ))∩KLN ⊆ (SLN −KLN )∩KLN .

Thus, (SLN −KLN ) ∩KLN 6= φLN , which is a contradiction. Hence, S ∈ LNcl(KLN ).

Definition 3.13. Let (SLN , πLN ) be a LNTS and πLN = {0, SLN}. Then, π is called the LN

indiscrete topology over S.

Definition 3.14. Let π be the collection of all LN sets that can be defined over SLN . Then,

(SLN , πLN ) is the called the LN discrete topology over SLN .

Theorem 3.15. Let (SLN , π
1
LN ) and (SLN , π

2
LN ) be two LNTSs, then (SLN , π

1 ∩ π2LN ) is

a LNTS on SLN .

Proof:

(1) clearly, 0LN and 1LN ∈ π1LN ∩ π2LN
(2) Let Fi ∈ π1LN ∩ π2LN . Then, Fi ∈ π1LN and Fi ∈ π2LN∀i ∈ I.

Therefore, ∪i∈IFi ∈ π1LN and ∪i∈IFi ∈ π2LN . Thus,
⋃
i∈I Fi ∈ π1LN ∩ π2LN .

(3) Let KLN and HLN ∈ π1LN ∩ π2LN , which implies, KLN , HLN ∈ π1LN and

KLN , HLN ∈ π2LN . Since, KLN∩HLN ∈ π1LN and KLN∩HLN ∈ π2LN , KLN∩HLN ∈
π1LN ∩ π2LN

Thus, (SLN , π
1
LN

⋂
π2LN ) is a LNTS on SLN ..

Remark 3.16. Union of two LNTSs may not be a LN topology over SLN ..
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Example 3.17. Let the universe of discourse be U = {a, b, c} and S = {a}. The set of all

linguistic term is, L = { very salt(l0), salt(l1), very sour(l2), sour(l3), bitter(l4), sweet(l5), very

sweet(l6)}.
And π1LN = {0LN , 1LN ,KLN} where KLN = {〈a, (l6, l3, l3)〉}, where the element a’s degree

of appurtenance to the set KLN is very sweet(l6), the element a’s degree of indeterminate-

appurtenance to the set KLN is sour(l3), the element a’s degree of non-appurtenance to the

set KLN is bitter(l4).

Let π2LN = {0LN , 1LN , HLN} where HLN = {〈a, (l4, l5, l2)〉}, where the element a’s de-

gree of appurtenance to the set HLN is bitter(l4), the element a’s degree of indeterminate-

appurtenance to the set HLN is sweet(l5), the element a’s degree of non-appurtenance to the

set HLN is very sour(l2).

Let π1LN and π2LN be two LN topologies on SLN .

Then, π1LN ∪ π2LN = {0LN , 1LN ,KLN , HLN} = {0LN , 1LN , {〈a, (l6, l3, l3)〉}, {〈a, (l6, l5, l2)〉}}.
Now, KLN ∪HLN = {〈a, (l6, l5, l2)〉} /∈ π1LN ∪ π2LN .
KLN ∩HLN = {〈a, (l4, l3, l3)〉} /∈ π1LN ∪ π2LN .

Therefore, union of any two linguistic neutrosophic topologies need not be a linguistic neutro-

sophic topology.

Definition 3.18. Let (SLN , πLN ) be a LNTS and ULN be a LN set over SLN .. Then any point

S is a LN interior point of ULN , if there exists a LN open set VLN such that S ∈ ULN ⊆ VLN .

Definition 3.19. Let (SLN , πLN ) be a LNTS and ULN be a LN set over SLN .. Then, VLN is

called a LN neighborhood if there exists a LN open set VLN such that S ∈ ULN ⊆ VLN .

Theorem 3.20. Let (SLN , πLN ) be a LNTS, then

(1) each s ∈ S has a neighborhood.

(2) If ULN and VLN are LN neighborhoods of some x ∈ SLN , then ULN ∩ VLN is also a

LN neighborhood of s.

(3) If ULN is a LN neighborhood of S and ULN ∩VLN , then VLN is also a LN neighborhood

of s ∈ SLN .

Proof:

(1) : (2): Let ULN and VLN are LN neighborhoods of some s ∈ S, then there exists U1
LN and

V 1
LN ∈ τ such that S ∈ U1

LN ⊆ ULN and

S ∈ V 1
LN ⊆ VLN

Now, S ∈ ULN and S ∈ VLN implies that S ∈ U1
LN ∩ V 1

LN and U1
LN ∩ V 1

LN ∈ τ . So w

have S ∈ U1LN ∩ V1LN ⊆ ULN ∩ VLN .

Thus, ULN
⋂
VLN is a LN neighborhood of s.

(3): Let ULN is a LN neighborhood of s and ULN
⋂
VLN . By definition, there exists a LN open
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set U1
LN such that s ∈ U1

LN ⊆ ULN ⊆ VLN .

Then, s ∈ ULN ⊆ VLN .

Therefore, VLN is also a LN neighborhood of s ∈ S.

Theorem 3.21. Let (SLN , πLN ) be a LNTS. For any LN open set KLN over S, KLN is a LN

neighborhood of each point of ∩i∈IAi.

Proof:

Let KLN ∈ πLN . For any S ∈ ∩i∈IKLNi, we have S ∈ Ai∀i ∈ I. Thus,

S ∈ KLN and hence KLN is a LN neighborhood of S.

4. Linguistic neutrosophic derived sets

Definition 4.1. Let (SLN , πLN ) be a LNTS and KLN ⊆ SLN . Let s ∈ SLN . s is called as a

LN limit point of KLN if ELN ∩ (KLN − {s}) 6= φ for every LN open set ELN containing s.

The collection of all LN limit points of KLN is the LN derived set (LND(KLN ))ofKLN .

Theorem 4.2. LNcl(KLN ) = KLN ∪ LND(KLN ) where KLN ⊆ SLN

Proof:

If s ∈ KLN ∪ LND(KLN ), then s ∈ KLN or S ∈ LND(KLN ). If s ∈ KLN , then s ∈
LNcl(KLN ). Therefore, let s /∈ KLN . That is, s ∈ LND(KLN ). Then, ∀ LN open set ELN

containing s, ELN ∩ (KLN − s) 6= φ. Since s /∈ KLN , ELN ∩KLN /∈ φ. Thus, s ∈ LNcl(KLN ).

Hence, KLN ∪ LND(KLN ) ⊆ LNcl(KLN ). If s ∈ LNcl(KLN ) and s ∈ KLN , then s ∈
KLN ∪ LND(KLN ). If s ∈ LNcl(KLN ) but s /∈ KLN , then ELN ∩ KLN /∈ φ for every LN

open set ELN containing s and hence ELN ∩ (KLN − s) /∈ φ. Therefore, s ∈ LND(KLN ), (i.e)

s ∈ KLN ∪ LND(KLN ). Thus, LNcl(KLN ) ⊆ KLN ∪ LND(KLN ). Therefore, LNcl(KLN ) =

KLN ∪ LND(KLN ).

Theorem 4.3. If the derived set of KLN is a subset of KLN , then KLN is LN closed.

Proof:

KLN is LN closed if and only if LNcl(KLN ) = KLN , iff KLN ∪ LND(KLN ) = KLN , iff

LND(KLN ) ⊆ KLN .

Theorem 4.4. If KLN is a singleton subset of SLN , then LND(KLN ) = LNcl(KLN )−KLN .

Proof:

If s ∈ LND(KLN ), then for every LN open set ELN containing , ELN∩(KLN−s) 6= φ. Then

s /∈ KLN . Suppose if s ∈ KLN , then KLN = {s}, and ELN ∩ (KLN − s) = φ. It is true that,

LND(KLN ) ⊆ LNcl(KLN ). Then, s ∈ LNcl(KLN ) but s /∈ KLN , when s ∈ LND(KLN ).

Thus, LND(KLN ) ⊆ LNcl(KLN ) − KLN . Thus, s ∈ LNcl(KLN ) − KLN , s ∈ LNcl(KLN )
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but s /∈ KLN . Thus, ELN ∩ KLN 6= φ for every LN open set ELN containing s, (i.e)

ELN ∩ (KLN − s) 6= φ for every LN open set ELN containing s. Thus, s ∈ LND(KLN ).

Thus, LNcl(KLN )−KLN ⊆ LND(KLN ). Hence, LND(KLN ) = LNcl(KLN )−KLN , if KLN

is a singleton set.

Definition 4.5. (1) Linguistic Neutrosophic semi-closed set if LNint(LNcl(KLN )) ⊆
KLN

(2) Linguistic Neutrosophic semi-open set if KLN ⊆ LNcl(LNint(KLN ))

(3) Linguistic Neutrosophic semi-pre closed if LNint(LNcl(LNint(KLN ))⊆KLN

(4) Linguistic Neutrosophic semi-pre open if KLN ⊆ LNcl(LNint(LNcl(KLN )))

(5) Linguistic Neutrosophic pre-closed if LNcl(LNint(KLN ) ⊆ KLN -doubt

(6) Linguistic Neutrosophic pre-open if KLN ⊆ LNint(LNcl(KLN ))

(7) Linguistic Neutrosophic regular closed if KLN = LNint(LNcl(KLN ))

(8) Linguistic Neutrosophic regular open if KLN = LNcl(LNint(KLN ))

5. Linguistic Neutrosophic continuity

Definition 5.1. Define the image and pre-image of linguistic neutrosophic sets. Let SLN and

TLN be two non-void sets and f : SLN → TLN be a function, then

(i) If ELN = {〈S, [TELN
(S), IELN

(S), FELN
(S)]〉} is a LN set in TLN , then the pre image

of ELN under f is denoted by, f−1(ELN ) is defined by,

f−1(ELN ) = {〈S, [f−1(TELN
(S)), f−1(IELN

(S)), f−1(FELN
(S))]〉}

(ii) If FLN = {〈S, [TFLN
(S), IFLN

(S), FLNF (S)]〉;S ∈ SLN} is a LN set in SLN , then the

image of FLN under f is denoted bT,

f(FLN ) = {〈T, [f(TFLN
(T )), f(IFLN

(T )), f(FFLN
(T ))]〉;T ∈ TLN}

Definition 5.2. A function f : SLN → TLN is called a linguistic neutrosophic continuous func-

tion if the inverse image of every linguistic neutrosophic open set FLN is linguistic neutrosophic

open in SLN .

Example 5.3. Let the universe of discourse be ULN = {a, b, c, d, x, y, z, w} and S1 = {a, b, c}
and S2 = {x, y, z}. The set of all linguistic term is, L = { very salt(l0), salt(l1), very sour(l2),

sour(l3), bitter(l4), sweet(l5), very sweet(l6)}. Define linguistic neutrosophic sets KLN and

HLN as KLN = {s1, (a, 〈l0, l6, l0〉), (b, 〈l4, l0, l2〉), (c, 〈l2, l3, l1〉)}, where the element a’s degree

of appurtenance to the set KLN is very sweet(l0), the element a’s degree of indeterminate-

appurtenance to the set KLN is very sweet(l6), the element a’s degree of non-appurtenance to

the set KLN is very salt(l0).
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Similarly, b’s degree of appurtenance to the set KLN is bitter(l4), b’s degree of indeterminate-

appurtenance to the set KLN is very salt(l0), b’s degree of non-appurtenance to the set KLN

is very sour(l2).

And, c’s degree of appurtenance to the set KLN is very sour(l2), c’s degree of indeterminate-

appurtenance to the set KLN is sour(l3), c’s degree of non-appurtenance to the set KLN is

very salt(l1).

Also, let HLN = {s2, (x, 〈l6, l0, l0〉), (y, 〈l0, l4, l2〉), (z, 〈l3, l2, l1〉)}. Then, πLN =

{0LN , 1LN ,KLN} and ηLN = {0LN , 1LN , HLN} are linguistic neutrosophic topologies on S1, S2

respectively. Let g : (S1, πLN )→ (S2, ηLN ) be defined by g(a) = b, g(b) = a, g(c) = c. Then, g

is linguistic neutrosophic continuous function.

Theorem 5.4. A function f : SLN → TLN is linguistic neutrosophic continuous if and only

if the pre image of every linguistic neutrosophic closed set in TLN is linguistic neutrosophic

closed in SLN .

Proof:

Let f be a LN continuous function and ELN be a LN closed set in TLN , (i.e) TLN −ELN is

LN open in TLN . f−1(TLN − ELN ) is a LN open set in SLN , as f is LN continuous function.

Thus, SLN − f−1(ELN ) is LN open set in SLN . That is, f−1(ELN ) is LN closed set in SLN .

Conversely, let the inverse image of each LN closed set be LN closed. Let FLN be a LN open

set in TLN , (i.e) TLN − FLN is LN closed. Then, SLN − f−1(FLN ) is LN closed set in SLN ,

which implies, f−1(FLN ) is LN open set in SLN . Thus, f is LN continuous function on SLN .

Theorem 5.5. A function f : SLN → TLN is LN continuous if and only if f(LNcl(KLN )) ⊆
LNcl(f(KLN )) for each subset KLN of SLN .

Proof:

Let f be LN continuous function. If KLN ⊆ SLN , then f(KLN ) ⊆ TLN . As f is LN continuous

and LNcl(f(KLN )) is LN closed in TLN , f−1(LNcl(f(KLN ))) is LN closed set in SLN . Since,

f(KLN ) ⊆ LNcl(f(KLN )),KLN ⊆ f−1(LNcl(f(KLN ))), which implies, f−1(LNcl(f(KLN )))

is the smallest LN closed set that contains KLN . But, LNcl(KLN ) is the smallest LN closed

set that contains KLN . Hence, LNcl(KLN ) ⊆ f−1(LNcl(f(KLN ))), (i.e) f(LNcl(KLN )) ⊆
LNcl(f(KLN )). Conversely, let f(LNcl(HLN )) ⊆ LNcl(f(HLN )). If HLN is LN closed in

TLN , f(LNcl(f−1(HLN ))) ⊆ LNcl(HLN ). Thus, LNcl(f−1(HLN )) ⊆ f−1((LNcl(HLN ))) =

f−1((HLN )). But, f−1((HLN )) ⊆ LNcl(f−1((HLN ))), that implies, LNcl(f−1((HLN ))) =

f−1((HLN )) ⇒ f−1((HLN )) is LN closed set in SLN for each LN closed set HLN in TLN .

Therefore, f is LN continuous.

Example 5.6. In example(5.3), g is a linguistic neutrosophic continuous function. Let

KLN = {s1, 〈a, (l0, l6, l0)〉, 〈b, (l4, l0, l2)〉, 〈c, (l2, l3, l1)〉} ⊆ (S1, πLN ). Then, g(LNcl(KLN )) =
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{s1, 〈a, (l6, l6, l6)〉, 〈b, (l0, l4, l2)〉, 〈c, (l3, l5, l4)〉}.
But, LNcl(g(KLN )) = LNcl(HLN ) = Bc 6= {s1, 〈a, (l6, l6, l6)〉, 〈b, (l0, l4, l2)〉, 〈c, (l3, l5, l4)〉},
even though g is linguistic neutrosophic continuous function. Thus, equality is not necessarily

holds when g is linguistic neutrosophic continuous function.

Theorem 5.7. A function f : SLN → TLN is LN continuous if and only if LNcl(f−1(ELN )) ⊆
f−1(LNcl(ELN )) for each subset ELN of TLN .

Proof:

If f is LN continuous and ELN ⊆ TLN , then LNcl(ELN ) is LN closed in TLN and hence

f−1(LNcl(ELN )) is LN closed in SLN . Thus, LNcl(f−1(LNcl(ELN ))) = f−1(LNcl(ELN )).

Since, ELN ⊆ LNcl(ELN ), f−1(ELN ) ⊆ f−1(LNcl(ELN )). Therefore, LNcl(f−1(ELN )) ⊆
LNcl(f−1(LNcl(ELN ))) = f−1(LNcl(ELN )), (i.e) LNcl(f−1(ELN )) ⊆ f−1(LNcl(ELN )).

Conversely, let LNcl(f−1(ELN ))f−1(LNcl(ELN )) for all ELN of TLN . If ELN is LN

closed, then LNcl(ELN ) = ELN . By assumption, LNcl(f−1(ELN )) ⊆ f−1(LNcl(ELN )).

Thus, LNcl(f−1(ELN )) ⊆ f−1(ELN ). But, f−1(ELN ) ⊆ LNcl(f−1(ELN )). Thus,

LNcl(f−1(ELN )) = f−1(ELN ), (i.e) f−1(ELN ) is LN closed in SLN for every LN closed set

ELN in TLN . Hence, f is LN continuous.

Theorem 5.8. A function f : SLN → TLN is LN continuous if and only if

f−1(LNint(ELN )) ⊆ LNint(f−1(ELN )) for each subset ELN of TLN .

Proof:

Let f be LN continuous function and E ⊆ TLN . Then, f−1(LNint(ELN )) is LN open in

SLN . That means, f−1(LNint(ELN )) = LNint(f−1(LNint(ELN ))). As LNint(ELN ) ⊆
ELN , implies f−1(LNint(ELN )) ⊆ f−1(ELN ). Thus, LNint(f−1(LNint(ELN ))) ⊆
LNint(f−1(ELN )). Therefore,f−1(LNint(ELN )) ⊆ LNint(f−1(ELN )). Conversely, let

f−1(LNint(ELN )) ⊆ LNint(f−1(ELN )), for each subset ELN of TLN . If ELN is LN

open, then f−1(ELN ) ⊆ LNint(f−1(ELN )). But, LNint(f−1(ELN )) ⊆ f−1(ELN ). Thus,

f−1(ELN ) = LNint(f−1(ELN )). Hence, f is LN continuous.

Example 5.9. In example(5.3), HLN = {s2, 〈x, (l6, l0, l0)〉, 〈y, (l0, l4, l2)〉, 〈z, (l3, l2, l1)〉}.
Then, g−1(LNcl(HLN )) = g−1(HLN

c) = {s2, 〈z, (l0, l6, l0)〉, 〈y, (l4, l4, l6)〉, 〈z, (l2, l5, l3)〉}.
And LNcl(g−1(HLN )) = KLN

c. Thus, g−1(LNcl(ELN )) ⊆ LNcl(g−1(ELN )). Similarly,

g−1(LNint(ELN )) ⊆ LNint(g−1(ELN )). Even if g is LN continuous, equality does not hold

in theorems (5.7) and (5.8).

Definition 5.10. Any subset of a LN topological space (SLN , πLN ) is a LN dense set if

LNcl(KLN ) = SLN ).
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Theorem 5.11. Let f : SLN → TLN be an onto function and linguistic neutrosophic contin-

uous function. If ULN is LN dense in SLN , then f(ULN ) is LN dense in TLN .

Proof:

As ULN is LN dense in SLN , f(LNcl(ULN )) = f(SLN ) = TLN , since f is onto. Also,

f(LNcl(ULN )) ⊆ LNcl(ULN ), as f is LN continuous. Thus, TLN = LNcl(f(ULN )). But

LNcl(f(ULN )) ⊆ TLN . Hence,LNcl(f(ULN )) = TLN , which implies, f(ULN ) is LN dense set.

Conclusion

We have introduced a new type of topology called linguistic neutrosophic topology and it

was established with apt examples. Moreover, the basic properties of linguistic neutrosophic

were discussed. In addition to this, the ideas of linguistic neutrosophic continuity and linguistic

neutrosophic neighborhood were introduced and established. Linguistic neutrosophic derived

sets and linguistic neutrosophic dense sets were talked through.
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