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1. Introduction

Many investigators in business, science, economy and a variety of other branches deal with
modeling unknown data on a regular basis. For these ambiguous and uncertainties, traditional
techniques are not always successful. Lotfi A. Zadeh [16] instigated the idea of membership
or truth value to the elements of collection of well-defined objects called, sets. These systems
can handle a variety of inputs, including ambiguous, distorted, or inaccurate data. The idea of
fuzzy topology was initially developed by Chang [2] in 1967. Many topological structures and
generalizations have developed in time utilizing fuzzy sets. In addition to the degree of truth
membership, Atanassov [1] paired non-membership value called false membership, which was
the generalization of fuzzy sets, called intuitionistic fuzzy sets. In 1997, intuitionistic fuzzy
topology was found by Coker [4]. Along with the two membership values, Smarandache |11]
introduced the idea of indeterminacy membership function in 1999. Neutrosophic sets play
an important part in many aspects like, decision making, medical diagnosis, etc., Wang and

Smarandache [13] introduced the notion of interval valued neutrosophic sets.

Qualitative attributes can be easily expressed in linguistic terms, which was developed by
Zadeh [17]. The idea of linguistic variables was applied in decision making by Herrara etc.,al [9]
in 2000 and Herrara-Viedma, Vergegay [8] in 1996. Su [12] used linguistic preference informa-
tion in group decision making. Chen, Liu, etc.,al [3] introduced linguistic intuitionistic fuzzy
number(LIFN) in 2015. As LIFN lacks indeterminacy, Ye [15] in 2015, proposed the notion of
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single valued neutrosophic linguistic numbers and developed an extended TOPSIS model for
MAGDM approach utilizing SVNLNs. An extended COPRAS model for MAGDM based on
SVN 2-tuple neutrosophic environment was developed by Wei, Wu, etc.,al [14]. Fang, Zebo
etc.,al [6] found linguistic neutrosophic numbers in 2017, with a concrete definition.This paper
is categorized as follows: Section 2 deals with the basic definitions of LNNs. In Section 3, the
idea of linguistic neutrosophic topology is introduced and some properties are discussed. Lin-
guistic neutrosophic derived set is discussed in section 4. In last section, the notion of linguistic
neutrosophic continuity and linguistic neutrosophic dense sets are defined and discussed with

suitable examples.

2. Preambles

Definition 2.1. [11] Let S be a space of points (objects), with a generic element in x denoted
by S. A neutrosophic set A in S is characterized by a truth-membership function 74, an
indeterminacy membership function I4 and a falsity-membership function Fy. Ta(z), 14(x)
and Fa(x) are real standard or non-standard subsets of |0~,17[. That is

Ta:S —]0=, 17 Ia: S —=]0~, 17 Fa: S —]0~, 17

There is no restriction on the sum of T4 (), I4(z) and Fa(x), so 0~ < sup Ta(z)+ sup Ia(z)+
sup Fa(z) < 37.

Definition 2.2. [11] Let S be a space of points (objects), with a generic element in x denoted
by S. A single valued neutrosophic set (SVNS) A in S is characterized by truth-membership
function T4, indeterminacy-membership function I4 and falsity-membership function F4. For
each point S in S, Ta(x), Ia(z), Fa(z) € [0, 1].

When S is continuous, a SVNS A can be written as A = [(T'(x), I(z), F(x))/z € S.

When S is discrete, a SVNS A can be written as A = > (T'(x;), I(x;), F(x;))/x; € S.

Definition 2.3. [6] Let S = {sg|0 = 0,1,2,.....,7} be a finite and totally ordered discrete
term set, where 7 is the even value and sy represents a possible value for a linguistic variable.
For example, when 7 = 6, S can be expressed as, S = {very bad, bad, fair, very fair, good,

very good}.

Su [12] extended the discrete linguistic term set S into a continuous term set S = {sp|0 €
[0,q]}, where, if sy € S, then we call sy the original term, otherwise it is called as a virtual

term.

Definition 2.4. [6] Let Q = {so, 1, 52, ..., St} be a linguistic term set (LTS) with odd cardi-
nality t+1 and Q = {s5/s0 < sp < s¢,h € [0,¢]}. Then, a linguistic single valued neutrosophic
set A is defined by,
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A = {{z, s0(), sy(2), s5(x))|z € S}, where sg(z), sy(2), so(z) € Q represent the linguistic
truth, linguistic indeterminacy and linguistic falsity degrees of S to A, respectively, with con-
dition 0 < 6+v+0 < 3t. This triplet (sg, sy, 55) is called a linguistic single valued neutrosophic

number.

Definition 2.5. [6] Let a = (s9,5¢,50),a1 = (501, 5y, S01), @2 = (502, Sy9, So2) be three
LSVNNSs, then

(1) a® = (55,5y,50);
(2) a1 Uag = (max(61,02), min(y1,12), min(o1,02));
(3) a1 Nag = (min(01,02), max(i1,v2), maz (o1, 09));
(4)

4) a1 = ag iff 01 = O,91 = 12,01 = 09;

Definition 2.6. Let a = (lp,ly,ls) be a LSVNN. The set of all labels is, L = {lo, 11,12, ....., I }.
Then the unit linguistic neutrosophic set (1zy) is defined as 1rxy = (It,lo, lo), which is the
truth membership,and the zero linguistic neutrosophic set (0 ) is defined as Opn = (lo, l¢, lt),

which is the falsehood membership.

Example 2.7. For the linguistic neutrosophic set, L = {very bad, bad, fair, very fair, good,
very good}, the set of all labels be, L = {lo,l1,l2,13,14,15}.
Then the unit LNs is defined as 1pn = (I5,1p,lp), and the zero LNs is defined as Oy =

(lo, 15, 15).

3. Linguistic Neutrosophic Topology

In this chapter, we introduce the concepts of linguistic neutrosophic topological spaces.

Definition 3.1. For a linguistic neutrosophic topology m, the collection of linguistic neutro-
sophic sets should obey,

(1) 0LN7 1LN e

(2) K1\ K2 €7 for any K1, Ks €7

B) UK, enm,V{K;:ieJ}Cn

We call, the pair (Spn,7mrn), a linguistic neutrosophic topological space.

Remark 3.2. Let (Spn,mrn) be a linguistic neutrosophic topological space (LNTS). Then,
(Spn, 7)€ is the dual LN topology, whose elements are K¢y for Kpn € (Spn,7on). Any
open set in 77y is known as linguistic neutrosophic open set(LNOsS). Any closed set in 7y is
known as linguistic neutrosophic closed set(LNCS) iff it’s complement is linguistic neutrosophic

open set.
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Example 3.3. Let Ury be the universe of discourse Uy = {u,v,w,z} and Spy = {u,v}
and the linguistic term set be, L = { very poor, poor, very bad, bad, fair, good, very good}
Then L can be taken as, L = {lo,l1,l2,13,14,15,l6}.

Let Ky = {(u, (I5,13,14)), (v, (l4,12,13)) },

That is, the element u’s degree of appurtenance to the set Ky is good(ls)

the element u’s degree of indeterminate-appurtenance to the set Ky is bad(l3)

the element u’s degree of non-appurtenance to the set Ky is fair(ly).

And the element v’s degree of appurtenance to the set Ky is fair(ly)

the element v’s degree of indeterminate-appurtenance to the set Ky is very bad(ls)
the element v’s degree of non-appurtenance to the set Ky is bad(ls3).

Let, Hry = {(u, (ls, l2, 12)), (v, (I, 11, 10)) }

That is, the element u’s degree of appurtenance to the set Hyy is very good(ls)

the element u’s degree of indeterminate-appurtenance to the set Hyy is very bad(ls)
the element u’s degree of non-appurtenance to the set Hyy is very bad(lz).

And the element v’s degree of appurtenance to the set Hyy is very good(lg)

the element v’s degree of indeterminate-appurtenance to the set Hyy is poor(l)

the element v’s degree of non-appurtenance to the set Hpy is very poor(lp).
Similarly, let Mpn = {(u, (Is,13,12)), (v, (Is,l2,10)) }

That is, the element u’s degree of appurtenance to the set My is very good(lg)

the element u’s degree of indeterminate-appurtenance to the set My is bad(ls)

the element u’s degree of non-appurtenance to the set My is very bad(l3).

And the element v’s degree of appurtenance to the set My is very good(lg)

the element v’s degree of indeterminate-appurtenance to the set My is very bad(lz)

the element v’s degree of non-appurtenance to the set My is very poor(lp).

Then the collection 7rn = {0rn, Krn, Hon, My, Koy V Hpn, 1 n} forms a LN topology

on (SN, TLN)-

Definition 3.4. The linguistic neutrosophic closure and linguistic neutrosophic interior are

given by,

(i) LNint(KLN) = U{OLN/OLN is a LNOSinSyy where Opny C KLN} and it is the
largest LN open subset of Ky n.
(ii) LNc(Hrny) = (W{Jon/Jrn isa LNCSinSpy where Hry C Jrn} and it is the smallest

LN closed set containing Hy y.
Example 3.5. In example 3.3, LNint(Kry) = Ny and LNcl(Kpy) = 1N

Theorem 3.6. Let (SLN,WLN) be a LNTS and KLN7HLN S SLN- Then
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(i) Ky € LNc(KLN)

(i) Kpn s LN closed if and only if Ky = LNcl(Kpn)
(iii) LNcl(¢rn) = ¢y and LNcl(Spny) = Sin-

(iv) Ky C Hpy = LNcl(Kpn) € LNcl(Hrn)

(v) LNel(Kpy U Hpy) = LNel(Kpy) U LNcl(Hpy)
(vi) LNcl(Kpy N Hpy) € LNel(Kpn) N LNcl(Hpn)
(vii) LNcl(LNel(Kpn)) = LNcl(Kpn)

(i) From the definition, K;n € LNcl(KLN)

(ii) If Krn is LN closed, then Ky is the smallest LN closed set containing Kry. So,
Kiny = LNCcl(Kpn).
Conversely, if Kpny = LNcl(Kpy), then Ky is the smallest LN closed set containing

KN and hence Ky is LN closed.

(iii) If Kpn is LN closed, then Ky = LNcl(Kpy). As ¢rny and Spy are LN closed,
LNcl(¢rn) = ¢y and LNcl(Spny) = Spw-

(iv) When Ky C Hpn, since Hry € LNcl(Hpy) and Kpy € LNcl(Hry). That is,
LNcl(Hry) is a LN closed set that contains K. But LNcl(Kry) is the smallest LN
closed set contains K. Thus, LNcl(Kyy) € LNcl(Hpn)

(v) As Kpn C KinNHyy and Hpy € KiyNHyy, LNcl(Kpy) € LNel(KyNHyy) and
LNcl(Hpy) € LNel(Kyy N Hry). Thus, LNel(Kpy) N LNel(Hyy) € LNel(Kpy N
Hiy). Since, KiyUHy € LNcl(Kpn)NLNcl(Hry), and since LNcl(KyUHLyN) is
the smallest LN closed set containing Ky UHpn, LNcl(KpyUHpn) C LNcl(Kpy)U
LNcl(Hpy).

Thus, LNcl(Kyn U Hry) = LNcl(Kry) U LNcl(Hpy).

(vi) Since (Kpy N Hry) € Kpny and (Kpy N Hpy) € Hpn,LNcl(Kpny N Hpy) C
LNecl(Hiy) C LNcl(Hy).

(vii) AS LNcl(Krn) is a LN closed set, LNcl(LNcl(Krn)) = LNcl(Kpn).

Remark 3.7. If LNint(Kpn) is LNcl(Kry) is a LNCS, then we have,

(i) LNint(KLN) = KLN if and only if KLN is LNOS in (SLN,T('LN).
(ii) LNCZ(KLN) = KLN if and only if KLN is LNCS in (SLN77TLN)-

Theorem 3.8. Let (Spn,7mrn) be a LNTS and Kpn € Spn. Then

(i) S — LNint(Kpy) = LNint(Spy — Kpn)
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(ii) S — LNCZ(KLN) = LNCZ(SLN — KLN)

Proof: (i): Let S € Spy—LNint(Krn) = S ¢ LNint(Kry). Thus, G € KNV LN open set G
containing S, (i.e) CoyN(S—Kpn) =# ¢rn,V LN open set G. Hence, S € LNcl(Spy — Kpn)
and Spy — LNint(Krn) € LNcl(Spy — Kin).

Conversely, if S € LNcl(Siy — Krn), then Gy N (Spy — Krn) # ¢y for every LN open
set containing S, (i.e) G Z AV LN open set G containing S. That is, S ¢ LNint(A) = S €
S—LNint(A). Then, LNcl(Spy — Krn) C Spy— LNint(Kpy). Thus, Sy — LNint(Kpy) =
LNint(Spy — Kpy)

(ii) Proof is similar to (i).

Remark 3.9. On taking complements on both sides of Spny — LNint(Kry) = LNint(Spn —
KLN) and SLN — LNCZ(KLN) = LNCZ(SLN — KLN), we have,
LN’i?’Lt(KLN) = SN — LNCZ(SLN - KLN) and LNCZ(KLN) = SN — LNint(SLN — KLN)

Theorem 3.10. Let (Spn,mrn) be a LNTS and Ky, Hrn € Spn. Then
(i) LNint(Krn) = Krn if and only if Kpn is LN open.
(ii) LNint(¢rn) = ¢y and LNint(Spy) = SN -
(i) Kpn C Hry = LNint(Kyy) C LNint(Hpy)
(iv) LNint(K1n) U LNint(Hyy) € LNint(Kpy U Hyy)
(iv) LNint(Kpy N Hyy) = LNint(Kpy) 0 LNint(Hpy)
(vi) LNint(LNint(Krn)) = LNint(Krn)

Proof: (i): Kry is LN open if and only if Spy — Krn is LN closed, if and only if,
LNcl(Spy—Kipn) = Spn— K, if and only if, Sy — LNcl(Kpy) = Kpn iff LNint(Kpy) =
Ky bT remark.

(ii): Since ¢rn and Spy are LN open, LNint(¢rn) = ¢y and LNint(Sry) = Srn

(ii): Kry € Hpy = Sin — Hiy € Spy — Kpn.  Thus, LNc(Spy — Hrn) C
LNcl(Spy — Kpn), (i.e)Spy — LNcl(Spy — Kpn) € Spy — LNcl(Spy — Hpn). Therefore,
LNint(Kry) € LNint(Hpy).

Definition 3.11. Let Spy be a non-void set and Ky = {(S, [Tk, n, Ik, n, FKr,n])} and
HLN = {<S, [THLN7IHLN7FHLN]>} are LNSs in LNTS.
(I) Ky U Hpn can be defined as

(a) KinUHLN = {<S’ [TKLN N THLN7IKLN N IHLN7 FKLN v FHLN]>}
(II) Ky N Hry can be defined as

(a) KinNHpy = {<Sv [TKLN A THLN"[KLN A IHLN7 FKLN \ FHLN]>}
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(IIT) The complement of K1n = {(S, [Tk, -k, n: FK,n])} is defined as,
(a) Kpn®={(S,[1 = Fr,n: Ik n, L = Trpn])}
(b) (Kn®)° = KLn
(¢) (Ken MHLN)® = KLN®U HLN®
(d) (KpeyUHLN)® = KLy NHLy®

Theorem 3.12. Let (SLN77TLN) be a LNTS. S € LNCZ(KLN) iffULNNKLN # ¢rn for every

LN open set Urn containing S, where Krn C Sy .

Proof:

If Urny isa LN openset and if S € LNcl(Kpn), thenSpy—Ury is LN closed. If KpyNUpy =
¢rN, then Kiny € Spv — UpLn.
That is, Sy — Upn is LN closed set containing K. Therefore, LNcl(Krn) € Spny — Urn,
which is a contradiction, since S € LNcl(Kpy) but S ¢ Spny—Urn. Hence, KinNULn # ¢LN,
for every LN open set Uy containing S.
Conversely, if Kyny N Uy # ¢rn, for every LN open set Upy containing S and if S ¢
LNcl(Kpn),S € Sy — LNcl(K ) which is LN open.
Hence, (Spny — LNCcl(Krn)) N Ky # ¢rn. But Kpy € LNcl(Kpy) and hence Spy —
LNcl(Krn) C Sy — Kpn, that implies (Spy — LNcl(Kny)) N Ky C (Siv — Kon) N K.
Thus, (Spy — Kn) N Kpn # ¢rn, which is a contradiction. Hence, S € LNcl(Kpy).

Definition 3.13. Let (Spn,mn) be a LNTS and 7y = {0,Srn}. Then, 7 is called the LN

indiscrete topology over S.

Definition 3.14. Let 7 be the collection of all LN sets that can be defined over S . Then,
(Spn,mrN) is the called the LN discrete topology over Sin.

Theorem 3.15. Let (SLN,WlLN) and (SLN,7r2LN) be two LNTSs, then (SLN,Wl ﬂﬂ'zLN) 18
a LNTS on Sin.

Proof:

(1) clearly, Orny and 1pn € N NN

(2) Let F; € 771LN ﬁ7T2LN. Then, F; € 7T1LN and F; € 7T2LNVi el
Therefore, U;c 1 F; € 7T1LN and U;cr F; € 7T2LN- Thus, Uie[ F; e 7TlLN ﬁ’JTQLN.

(3) Let Kpy and Hpy € 7T1LNO7T2LN, which implies, Kpy,Hry € 'y and
Kin,Hpn € TI'QLN. Since, K yNHpy € TFILN and KpyNHpy € 7T2LN; KiyNHpy €

1 N 2

T LN NTLN

Thus, (SLN,ﬂ'lLNﬂﬂ'QLN) is a LNTS on SLN-'

Remark 3.16. Union of two LNTSs may not be a LN topology over Si ..
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Example 3.17. Let the universe of discourse be U = {a,b,c} and S = {a}. The set of all
linguistic term is, L = { very salt(ly), salt(l1), very sour(l2), sour(l3), bitter(ly), sweet(ls), very
sweet(lg)}.

And 7ty = {Opn, 1on, Kpn} where Kpn = {(a, (Is,3,13))}, where the element a’s degree
of appurtenance to the set Ky is very sweet(lg), the element a’s degree of indeterminate-
appurtenance to the set Ky is sour(ls), the element a’s degree of non-appurtenance to the
set K is bitter(ly).

Let m2;n = {0rn, 1oy, Hon} where Hpy = {{a,(l4,15,12))}, where the element a’s de-
gree of appurtenance to the set Hpy is bitter(ly), the element a’s degree of indeterminate-
appurtenance to the set Hpy is sweet(l5), the element a’s degree of non-appurtenance to the
set Hpn is very sour(ly).

Let 7';n and 7275 be two LN topologies on Sy y.

Then, 7'y Uiy = {0n, 1w, Koy, Hon} = {Orn, 1o, {{a, (Is,13,13))}, {{a, (s, 5, 12)) } }.
Now, Ky U Hry = {{a, (lg,15,12))} ¢ 7ty Um? L.

Ky N Hpy = {{a, (I4,13,13))} & 7oy U2 LN,

Therefore, union of any two linguistic neutrosophic topologies need not be a linguistic neutro-

sophic topology.

Definition 3.18. Let (Spn,mrn) be a LNTS and Upn be a LN set over Sz .. Then any point
S is a LN interior point of Uy, if there exists a LN open set Vi n such that S € Ury C Vin.

Definition 3.19. Let (Spn,mrn) be a LNTS and Uy be a LN set over Spn.. Then, Vi is
called a LN neighborhood if there exists a LN open set Vi such that S € Urny C Vin.

Theorem 3.20. Let (Spn,mrn) be a LNTS, then

(1) each s € S has a neighborhood.

(2) If Uy and Vin are LN neighborhoods of some x € Spn, then Upny NVpy is also a
LN neighborhood of s.

(3) If Urn is a LN neighborhood of S and Uy NV, then Vi is also a LN neighborhood
of s € Spn.

Proof:

(1) : (2): Let Uy and Vi are LN neighborhoods of some s € S, then there exists Ul y and
Viin € 7 such that S € U'ry C Urn and

SeVliyCViy

Now, S € Uy and S € Vpy implies that S € Ulyn N Vigy and Ulpn NV € 7. So w
have S e Ui py N Viry C Uy N V.

Thus, Urn () Vzw is a LN neighborhood of s.

(3): Let Urn is a LN neighborhood of s and Uy () Vy. By definition, there exists a LN open

N. Gayathri, M. Helen, Linguistic Neutrosophic topology



Neutrosophic Sets and Systems, Vol. 46, 2021

set Ulry such that s € Uy C Uy € Vin.
Then, s € Uy C ViN.
Therefore, Vi is also a LN neighborhood of s € S.

Theorem 3.21. Let (Spn,mrn) be a LNTS. For any LN open set Kpn over S, Kpn is a LN
neighborhood of each point of NijcrA;.

Proof:
Let Kpn € mrn. For any S € N;er Krn;, we have S € A;Vi € I. Thus,
S € Krn and hence Ky is a LN neighborhood of S.

4. Linguistic neutrosophic derived sets

Definition 4.1. Let (Spn,mrn) be a LNTS and Ky C Spn. Let s € Spn. s is called as a
LN limit point of Kpy if Ery N (Kry — {s}) # ¢ for every LN open set Ery containing s.
The collection of all LN limit points of Ky is the LN derived set (LND(Kpn))ofKrn.

Theorem 4.2. LNCZ(KLN) =Ky U LND(KLN) where Ky C Spn

Proof:

If s € Kpyn ULND(Kpy), then s € Kpy or S € LND(Kpy). If s € Ky, then s €
LNcl(Kpy). Therefore, let s ¢ Kpn. That is, s € LND(Kpy). Then, V LN open set Epy
containing s, Ery N (Kpny — s) # ¢. Since s ¢ Ky, ELn N Ky ¢ ¢. Thus, s € LNcl(Kpn).
Hence, Kiy U LND(Kry) C LNcl(Kry). If s € LNc(Kry) and s € Ky, then s €
KinULND(Kpy). If s € LNcl(Kpy) but s ¢ Ky, then Epny N Kpn ¢ ¢ for every LN
open set Fpy containing s and hence Erny N (Kpn — s) ¢ ¢. Therefore, s € LND(Kpy), (i.€)
s€ KipNULND(Kpy). Thus, LNcl(Krn) € Ky U LND(Kry). Therefore, LNcl(Kry) =
Kin ULND(KLy).

Theorem 4.3. If the derived set of Kpn is a subset of Kpn, then Kpn is LN closed.

Proof:
KLN is LN closed if and only if LNCZ(KLN) = KLN7 iff KLN @] LND(KLN) == KLN, iff
LND(Kpy) C Kpn.

Theorem 4.4. If Ky is a singleton subset of Sy, then LND(Kpy) = LNcl(Kpn)— Ky -

Proof:

If s€ LND(KLn), then for every LN open set Ery containing , ELyN(Krny—s) # ¢. Then
s ¢ Kpn. Suppose if s € Ky, then Kpn = {s}, and Ery N (Kpny — s) = ¢. It is true that,
LND(Krn) € LNcl(Kpy). Then, s € LNcl(Kry) but s ¢ Kry, when s € LND(Kpy).
Thus, LND(Kpy) C LNcl(Kiy) — Kin. Thus, s € LNcl(Kry) — Ky, s € LNcl(KLy)
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but s ¢ Kry. Thus, Ery N Ky # ¢ for every LN open set Ery containing s, (i.e)
Ern N (Kpy — s) # ¢ for every LN open set Fpy containing s. Thus, s € LND(Kpy).
Thus, LNCZ(KLN) _KLN - LND(KLN). Hence, LND(KLN) = LNCZ(KLN) — KLNa if KLN

is a singleton set.

Definition 4.5. (1) Linguistic Neutrosophic semi-closed set if LNint(LNcl(Kry)) C
Krn

(2) Linguistic Neutrosophic semi-open set if K;ny C LNcl(LNint(Krn))

(3) Linguistic Neutrosophic semi-pre closed if LNint(LNcl(LNint(Krin))c KLy

(4) Linguistic Neutrosophic semi-pre open if Kyn C LNcl(LNint(LNcl(Krn)))
(5) Linguistic Neutrosophic pre-closed if LNcl(LNint(Kyn) C Krn -doubt
(6) Linguistic Neutrosophic pre-open if Kjny C LNint(LNcl(Kpn))
(7) Linguistic Neutrosophic regular closed if K;ny = LNint(LNcl(KLy))
(8) Linguistic Neutrosophic regular open if Ky = LNcl(LNint(KLn))

5. Linguistic Neutrosophic continuity

Definition 5.1. Define the image and pre-image of linguistic neutrosophic sets. Let Sz and

Trn be two non-void sets and f : Sy — Trn be a function, then

(i) If Erny = {(S, [Te, 5 (S), IE, 5 (S), FE n(S)])} is a LN set in Ty, then the pre image
of Ern under f is denoted by, f~!(ELy) is defined by,
FHELN) = (S [ (TEpn (9)) f T TEn (9)), 7 (Fen ()}

(ii) If Frv = {(S, [Tr, 5 (S), Ir x (S), F, yF(S)]); S € S} is a LN set in Spy, then the
image of I under f is denoted bT,
JELN) = (T [f(Tr, 5 (1)), fLpyn (T)), f(Fpp o (T)]); T € Ton}

Definition 5.2. A function f : Spny — Tpn is called a linguistic neutrosophic continuous func-
tion if the inverse image of every linguistic neutrosophic open set Fp  is linguistic neutrosophic

open in Sy N.

Example 5.3. Let the universe of discourse be Ury = {a,b,c,d, x,y, z,w} and S; = {a,b, c}
and S = {z,y, z}. The set of all linguistic term is, L = { very salt(ly), salt(l1), very sour(lz),
sour(ls), bitter(ly), sweet(l5), very sweet(lg)}. Define linguistic neutrosophic sets Ky and
Hiy as Ky = {s1, (a, (lo,ls,10)), (b, (l4,l0,12)), (¢, (l2,13,11)) }, where the element a’s degree
of appurtenance to the set Ky is very sweet(ly), the element a’s degree of indeterminate-
appurtenance to the set Ky is very sweet(lg), the element a’s degree of non-appurtenance to

the set Ky is very salt(lp).
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Similarly, b’s degree of appurtenance to the set K is bitter(l4), b’s degree of indeterminate-
appurtenance to the set Ky is very salt(lp), b’s degree of non-appurtenance to the set Ky
is very sour(ly).

And, ¢’s degree of appurtenance to the set Ky is very sour(ly), ¢’s degree of indeterminate-
appurtenance to the set Ky is sour(ls), ¢’s degree of non-appurtenance to the set Ky is
very salt(ly).

Also, let Hry = {so,(x, (ls,l0,00)), (y, (lo,1a,12)), (2, (I3,12,11))}. Then, wry =
{0zn, 1N, Ky} and ny = {Orn, 1w, Hrn } are linguistic neutrosophic topologies on St, So
respectively. Let g : (S1,7rn) — (S2,7n) be defined by g(a) = b, g(b) = a,g(c) = ¢. Then, g

is linguistic neutrosophic continuous function.

Theorem 5.4. A function f : Spy — Ty is linguistic neutrosophic continuous if and only
if the pre image of every linguistic neutrosophic closed set in Tpn is linguistic neutrosophic

closed in St,n.

Proof:

Let f be a LN continuous function and Erx be a LN closed set in Try, (i.e) Toy — Ern is
LN open in T . f_l(TLN — Ern) is a LN open set in Spy, as f is LN continuous function.
Thus, Spy — f~H(ELn) is LN open set in Spy. That is, f~1(Ery) is LN closed set in Sy .
Conversely, let the inverse image of each LN closed set be LN closed. Let Frn be a LN open
set in Try, (i.e) Ty — Fry is LN closed. Then, Sy — f~1(Fry) is LN closed set in Sy,

which implies, f~!(Fry) is LN open set in Spy. Thus, f is LN continuous function on Sy .

Theorem 5.5. A function f: Sy — Ty is LN continuous if and only if f(LNcl(Krn)) C
LNcl(f(Krn)) for each subset Kpn of Spn-

Proof:

Let f be LN continuous function. If Kypn C Spy, then f(Krn) C Trn. Asfis LN continuous
and LNcl(f(Kpy)) is LN closed in Try, f~H(LNcl(f(Krn))) is LN closed set in Spy. Since,
f(Krn) © LNel(f(Kin)), Kpn € f7H(LNel(f(KLn))), which implies, f~"(LNecl(f(Krn)))
is the smallest LN closed set that contains K. But, LNcl(Ky) is the smallest LN closed
set that contains K. Hence, LNcl(Kry) C f~YLNc(f(KLn))), (i.e) fF(LNcl(Kry)) C
LNcl(f(Krn)). Conversely, let f(LNcl(Hpy)) € LNcl(f(Hpn)). If Hpy is LN closed in
Trn, f(LNel(f~Y(Hpn))) € LNcl(Hpy). Thus, LNcl(f~Y(Hry)) € f~Y((LNcl(Hpy))) =
S (How). But, fH((Hx)) € LNA(F~H((Hyw))), that implies, LNel(f~ ((Hyy))) =
Y (Hrn)) = f~Y(Hry)) is LN closed set in Sy for each LN closed set Hpy in Tpy.

Therefore, f is LN continuous.

Example 5.6. In example(5.3), g is a linguistic neutrosophic continuous function. Let

Krn = {s1,(a, (lo,ls,l0)), (b, (I, 10, 12)), (¢, (I2,13,11))} € (S1,7rn). Then, g(LNcl(Krn)) =
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{81, (a, (lﬁ, lﬁ, l6)>, <b, (l(), l4, lg)), <C, (lg, l5, l4)>}
But, LNCZ(Q(KLN)) = LNCZ(HLN) = B¢ 7é {51,<(I, (l6,lﬁ,l6)>,<b, (lo,l4,l2)>,<c, (lg,l5,l4)>},

even though g is linguistic neutrosophic continuous function. Thus, equality is not necessarily

holds when g is linguistic neutrosophic continuous function.

Theorem 5.7. A function f : Spn — Ty is LN continuous if and only if LNcl(f~Y(ELn)) C
fYLNcl(ELN)) for each subset Epyn of Try-

Proof:

If f is LN continuous and Erny C Try, then LNcl(Ery) is LN closed in T1y and hence
fYLNcl(ELy)) is LN closed in Syy. Thus, LNcl(f~Y(LNcl(ELn))) = fYLNcl(ELN)).
Since, Erny € LNcl(Ery), f~YELy) € f~Y(LNcl(ELy)). Therefore, LNcl(f~Y(ELn)) C
LNcl(f~Y(LNcl(ErN))) = f~YLNc(ELy)), (i.e) LNel(f~Y(Ern)) € f~YLNc(ELy)).
Conversely, let LNcl(f~ (Ern))f Y (LNcl(Ery)) for all Epy of Try. If Epy is LN
closed, then LNcl(Ery) = Ery. By assumption, LNcl(f~Y(Ern)) € f~YLNcl(ELy)).

ThllS7 LNCl(fil(ELN)) C fﬁl(ELN). But, fﬁl(ELN) C LNCl(fil(ELN». Thus,

LNcl(f~YErn)) = f~YELN), (i.e) f~H(ELy) is LN closed in Sy for every LN closed set

FErn in T n. Hence, f is LN continuous.

Theorem 5.8. A function f : Spy — Ty is LN continuous if and only if
fYLNint(Ern)) € LNint(f~Y(ELN)) for each subset Epn of Trn.

Proof:

Let f be LN continuous function and E C Tyy. Then, f~1(LNint(ELy)) is LN open in
Srn. That means, f~'(LNint(Ery)) = LNint(f~Y(LNint(Ery))). As LNint(Epy) C
Ery, implies f~Y(LNint(Ery)) € f~Y(Ern). Thus, LNint(f~'(LNint(Eryn))) C
LNint(f~Y(Ern)). Therefore,f L{(LNint(Ery)) C LNint(f~Y(ELy)). Conversely, let
fYLNint(Ern)) € LNint(f~Y(Ern)), for each subset Epy of Try. If Epy is LN
open, then f~Y(Ery) C LNint(f~'(Ern)). But, LNint(f Y (Ern)) € f~Y(Ery). Thus,
Y Ern) = LNint(f~'(Ery)). Hence, f is LN continuous.

Example 5.9. In example(5.3), Hry = {s2,(z, (s,lo,00)), (y, (lo,l4,12)), (2, (I3,12,11))}.
Then, ¢~ Y(LNcl(Hpy)) = g '(Hin®) = {s2,(z (lo,ls,10)), (y, (I, 14,16)), (2, (I2,15,13))}.
And LNcl(g7'(Hpy)) = Krn© Thus, g ' (LNcl(Ery)) € LNcl(g7 ' (ELy)). Similarly,
g Y LNint(Ery)) € LNint(g~*(Ern)). Even if g is LN continuous, equality does not hold
in theorems (5.7) and (5.8).

Definition 5.10. Any subset of a LN topological space (Spn,7mrn) is a LN dense set if
LNCZ(KLN) = SLN)-
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Theorem 5.11. Let f : Spny — Ty be an onto function and linguistic neutrosophic contin-

uous function. If Uy is LN dense in Spn, then f(Urn) is LN dense in Ty .

Proof:

As Upn is LN dense in Spy, f(LNcl(Urn)) = f(Stn) = Ton, since f is onto. Also,
f(LNcl(Ury)) € LNcl(Ury), as fis LN continuous. Thus, Trny = LNcl(f(Ury)). But
LNcl(f(Urn)) € Trn. Hence,LNcl(f(Urn)) = Trn, which implies, f(Ury) is LN dense set.

Conclusion

We have introduced a new type of topology called linguistic neutrosophic topology and it
was established with apt examples. Moreover, the basic properties of linguistic neutrosophic
were discussed. In addition to this, the ideas of linguistic neutrosophic continuity and linguistic
neutrosophic neighborhood were introduced and established. Linguistic neutrosophic derived

sets and linguistic neutrosophic dense sets were talked through.
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