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1. Introduction

The concept of neutrosophic set, as a generalization of fuzzy set [18] and intuitionistic fuzzy

set [5] was introduced by smarandache [16,17]. Since 2005, the notion of the neutrosophic set

received by attantion and have many applications [1–3]. The concept of neutrosophic normed

space is a natural generalization of fuzzy normed space and intuitionistic fuzzy normed space.

However, many different types of fuzzy normed spaces were introduced in [10,11,13]. In [6] Bag

and Samanta introduced a new concept of fuzzy norm its more natural to the usual norm, they

studied the properties of bounded sets and compact set in finite dimensional fuzzy normed

linear spaces. Also, in [7] Bag and Samanta introduced types of continuous and bounded of

linear operators. In [4] Abdulgawad et al present the notion of fuzzy strongly continuous,

sequentially continuous, and continuous mappings. As well as they discussed the bounded and

isometry of the fuzzy linear operator between fuzzy normed.
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Recently, the concept of neutrosophic normed space, as a generalization of fuzzy normed

spaces and the intuitionistic fuzzy normed space was introduced in [9], they studied the prop-

erties of convergence, completeness of such spaces.

In this paper, we extend the definitions of continuous and bounded operators in neutrosophic

normed spaces. Moreover, we establish the main properties of bounded linear operators and

continuous linear operators. We obtain a generalized version of boundedness and continuity

of intuitionistic fuzzy norms, while will play an important role in study neutrosophic analysis.

Furthermore, we introduce the notion of neutrosophic Lipsechitzian mapping and neutrosophic

Banach space.

The paper is divided into the following sections:

Section 2 includes some basic results. In section 3, we introduce and study some types

of continuous linear operators in neutrosophic normed spaces and neutrosophic Lipschitzian

mapping. In section 4, we define and study some types of bounded and isometry linear

operators in neutrosophic normed spaces. In section 5, we draw some conclusions.

2. Basic concepts

In this section, we remember the basic concepts and results that are required for the present

work.

Definition 2.1. [12] A continuous t-norm is a binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] with

the following axioms:

(i) ∗ is commutative and associative.

(ii) ∗ is continuous.

(iii) ` ∗ 1 = `, , ∀ ` ∈ [0, 1].

(iv) x ∗ y ≤ u ∗ v , y ≤ v, x ≤ u and x, y, u, v ∈ [0, 1].

Definition 2.2. [14,15] A continuous t-co-norm is a binary operation � : [0, 1]× [0, 1]→ [0, 1]

with the following axioms:

(i) � is commutative and associative.

(ii) � is continuous.

(iii) ` � 0 = `, ∀ ` ∈ [0, 1].

(iv) x � y ≤ u � v , y ≤ v, x ≤ u and x, y, u, v ∈ [0, 1].

Definition 2.3. [17] Let N be the universe set. A neutrosophic set N on N (NS N ) is defined

as:

N = {< a, ρ(a), ξ(a), η(a) > |a ∈ N} .

where ρ, ξ, η : N → [0, 1].
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Definition 2.4. [15] Let U be a linear space over R and ∗, � be a continuous t-norm, a

continuous t-co-norm, respectively, then a neutrosophic subset N :< ρ, ξ, η > on V × R be a

neutrosophic norm on U if for a, b× U and c, t, s ∈ R, if the following conditions hold.

(1) 0 ≤ ρ(a, t), ξ(a, t), η(a, t) ≤ 1.

(2) 0 ≤ ρ(a, t) + ξ(a, t) + η(a, t) ≤ 3.

(3) ρ(a, t) = 0 with t ≤ 0.

(4) ρ(a, t) = 1 with t > 0 iff x = 0.

(5) ρ(ca, t) = ρ(x,
t

| c |
) ∀c 6= 0, t > 0.

(6) ρ(a, s) ∗ ρ(b, t) ≤ ρ(a+ b, s+ t) ∀s, t ∈ R.
(7) ρ(a, .) is continuous non-decreasing function for t > 0, limt→∞ ρ(a, t) = 1.

(8) ξ(a, t) = 1 with t ≤ 0.

(9) ξ(a, t) = 0 with t > 0 iff x = 0.

(10) ξ(ca, t) = ξ(x,
t

| c |
) ∀c 6= 0, t > 0.

(11) ξ(a, s) � ξ(b, t) ≥ ξ(a+ b, s+ t).

(12) ξ(a, .) is continuous non-increasing function for t > 0, limt→∞ ξ(a, t) = 0.

(13) η(a, t) = 1 with t ≤ 0.

(14) η(a, t) = 0 and t > 0 if and only if x = 0.

(15) η(ca, t) = ξ(a,
t

| c |
) ∀c 6= 0, t > 0.

(16) η(a, s) � η(b, t) ≥ η(a+ b, s+ t).

(17) η(a, .) is continuous non-increasing function for t > 0, limt→∞ η(a, t) = 0.

Further (V,N , ∗, �) is neutrosophic normed linear space (NNLS).

Definition 2.5. [14, 15] Let (an) be a sequence of points in an NNLS (U,N , ∗, �), then the

sequence converges to a point a ∈ U if and only if for given 0 < e < 1, t > 0 ∃ n0 ∈ N such

that,

ρ(an − a, t) > 1− e, ξ(an − a, t) < e, η(an − a, t) < e ∀ n ≥ n0.

lim
n→∞

ρ(an − a, t) = 1, lim
n→∞

ξ(an − a, t) = 0, lim
n→∞

η(an − a, t) = 0.

Then the sequence (an) is called a convergent sequence in the NNLS (U,N , ∗, �).

Definition 2.6. [15] Let (an) be a sequence in an NNLS (U,N , ∗, �), is said to be bounded

for 0 < e < 1, t > 0 if the following hold,

ρ(an, t) > 1− e, ξ(an, t) < e, η(an, t) < e ∀n ∈ N.

Definition 2.7. [15] A sequence (an) of points in an NNLS (U,N , ∗, �), is called a Cauchy

sequence if for given 0 < e < 1, t > 0 ∃ n0 ∈ N such that,

ρ(an − am, t) > 1− e, ξ(an − am, t) < e, η(an − am, t) < e ∀ n,m ≥ n0.
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lim
n,m→∞

ρ(an − am, t) = 1, lim
n,m→∞

ξ(an − am, t) = 0, lim
n,m→∞

η(an − am, t) = 0.

3. Continuous mappings

In this section, we introduce the concept of continuous, sequentially continuous, and strongly

continuous mappings neutrosophic normed spaces. Also, we study the relationships between

continuous, sequentially continuous, strongly continuous mappings. Moreover, this study is

enhanced with an application

Definition 3.1. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) is said to be continuous at x0 ∈ U if for all x ∈ U,
for each 0 < ε < 1 and t > 0, there exists 0 < δ < 1 and s > 0, such that

ρV (T (x)− T (x0), t) > (1− ε),

ξV (T (x)− T (x0), t) < ε,

ηV (T (x)− T (x0), t) < ε,

whenever

ρU (x− x0, s) > (1− δ),

ξU (x− x0, s) < δ,

ηU (x− x0, s) < δ,

respectively. In other words:

ρU (x− x0, s) > (1− δ)⇒ ρV (T (x)− T (x0), t) > (1− ε),

ξU (x− x0, s) < δ ⇒ ξV (T (x)− T (x0), t) < ε,

ηU (x− x0, s) < δ ⇒ ηV (T (x)− T (x0), t) < ε,

(1)

T is continuous on U if it is continuous at every point in U .

Definition 3.2. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) is called sequentially continuous at x0 ∈ U , any

sequence (xn) in U satisfying xn → x0 leads to T (xn)→ T (x0). In other words:

lim
n→∞

ρU (xn − x0, t) = 1⇒ lim
n→∞

ρV (T (xn)− T (x0), t) = 1,

lim
n→∞

ξU (xn − x0, t) = 0⇒ lim
n→∞

ξV (T (xn)− T (x0), t) = 0,

lim
n→∞

ηU (xn − x0, t) = 0⇒ lim
n→∞

ηV (T (xn)− T (x0), t) = 0,

(2)

where t > 0. We call T is sequentially continuous on U when T is sequentially continuous at

each point of U
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Definition 3.3. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) is called strongly continuous at x0 ∈ U if for each

t > 0. ∃ s > 0 such that ∀ x ∈ U ,

ρU (x− x0, s) ≤ ρV (T (x)− T (x0), t),

ξU (x− x0, s) ≥ ξV (T (x)− T (x0), t),

ηU (x− x0, s) ≥ ηV (T (x)− T (x0), t),

(3)

we say T is strongly continuous on U when it is strongly continuous at every point in U .

Theorem 3.4. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) be continuous at x0 ∈ U if and only if T is sequen-

tially continuous at x0 ∈ U .

Proof. Assume that T is continuous at x0 ∈ U , (xn) ⊂ U if for all x ∈ U, for each 0 < ε < 1

and t > 0 ∃ 0 < δ < 1 and s > 0, such that

ρU (x− x0, s) > (1− δ)⇒ ρV (T (x)− T (x0), t) > (1− ε),

ξU (x− x0, s) < δ ⇒ ξV (T (x)− T (x0), t) < ε,

ηU (x− x0, s) < δ ⇒ ηV (T (x)− T (x0), t) < ε,

Since xn → x0, then there exists n0 ∈ N such that

ρU (xn − x0, s) > (1− δ),

ξU (xn − x0, s) < δ,

ηU (xn − x0, s) < δ.

Hence

ρV (T (xn)− T (x0), t) > (1− ε),

ξV (T (xn)− T (x0), t) < ε,

ηV (T (xn)− T (x0), t) < ε,

as 0 < ε < 1 arbitrary; so T (xn)→ T (x0). Thus, T is sequentially continuous at x0 ∈ U .

Another direction, we suppose that T is sequentially continuous at x0 ∈ U and T is not

continuous at x0. Then there exists 0 < ε < 1 and t > 0, such that for any 0 < δ < 1 and

s > 0, there exists x ∈ U , such that

ρU (x− x0, s) > (1− δ) but ρV (T (x)− T (x0), t) ≤ (1− ε),

ξU (x− x0, s) < δ but ξV (T (x)− T (x0), t) ≥ ε,

ηU (x− x0, s) < δ but ηV (T (x)− T (x0), t) ≥ ε.

(4)
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So, for δ = 1− 1

n+ 1
, s =

1

n+ 1
, n ∈ N ∃ xn such that

ρU (xn − x0,
1

n+ 1
) > (

1

n+ 1
) but ρV (T (xn)− T (x0), t) ≤ (1− ε),

ξU (xn − x0,
1

n+ 1
) < 1− 1

n+ 1
but ξV (T (xn)− T (x0), t) ≥ ε,

ηU (xn − x0,
1

n+ 1
) < 1− 1

n+ 1
but ηV (T (xn)− T (x0), t) ≥ ε.

Taking s > 0, there exists n0, such that
1

n+ 1
< s for all n ≥ n0 then

ρU (xn − x0, s) > (
1

n+ 1
),

ξU (xn − x0, s) < 1− 1

n+ 1
,

ηU (xn − x0, s) < 1− 1

n+ 1
,

hence

lim
n→∞

ρU (xn − x0, s) = 1,

lim
n→∞

ξU (xn − x0, s) = 0,

lim
n→∞

ηU (xn − x0, s) = 0,

this lead to xn → x0. However by (4),

ρV (T (xn)− T (x0), t) ≤ (1− ε),

ξV (T (xn)− T (x0), t) ≥ ε,

ηV (T (xn)− T (x0), t) ≥ ε.

Thus, T (xn) does not converges to T (x0) but xn → x0, which gives contradiction. Therefor,

the mapping T is continuous at x0 ∈ U .

Theorem 3.5. Let (U,NU , ∗, �), (V,NV , ∗, �) be two neutrosophic normed spaces and T :

(U,NU , ∗, �) → (V,NV , ∗, �). If T is a strongly continuous, then T is sequentially continuous

at x0 ∈ U .

Proof. Suppose that T is strongly continuous at x0, then for each t > 0, there exists s > 0

such that for all x ∈ U sequence (xn) in U satisfying (3). Suppose that (xn) is a sequence such

that xn → x0. If we put x = xn in (3), then we have

ρU (xn − x0, s) ≤ ρV (T (xn)− T (x0), t),

ξU (xn − x0, s) ≥ ξV (T (xn)− T (x0), t),

ηU (xn − x0, s) ≥ ηV (T (xn)− T (x0), t).
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This implies that

lim
n→∞

ρU (xn − x0, s) ≤ lim
n→∞

ρV (T (xn)− T (x0), t),

lim
n→∞

ξU (xn − x0, s) ≥ lim
n→∞

ξV (T (xn)− T (x0), t),

lim
n→∞

ηU (xn − x0, s) ≥ lim
n→∞

ηV (T (xn)− T (x0), t).

Therefore,

lim
n→∞

ρV (T (xn)− T (x0), t) = 1,

lim
n→∞

ξV (T (xn)− T (x0), t) = 0,

lim
n→∞

ηV (T (xn)− T (x0), t) = 0.

Since t > 0 is arbitrary, we obtain that T (xn)→ T (x0). Thus, T is sequentially continuous.

Remark 3.6. The converse of the above Theorem 3.5 is not true, i.e., the sequentially conti-

nuity does not imply the strongly continuity.

Now, we give an example that illustrates the above remark.

Example 3.7. Let (U = R, ‖ x ‖) be a normed linear space, where ‖ x ‖=| x | ∀x ∈ U, and

a ∗ b = min {a, b} , a � b = max {a, b} ∀a, b ∈ [0, 1]. Define ρ1, ρ2, ξ1, ξ2, η1, η2 : U ×R+ → [0, 1]

by

ρ1(x, t) =
t

t+ | x |
, ρ2(x, t) =

t

t+ c | x |
, c > 0,

ξ1(x, t) =
| x |

t+ | x |
, ξ2(x, t) =

c | x |
t+ c | x |

, c > 0,

η1(x, t) =
| x |
t
, η2(x, t) =

c | x |
t

, c > 0.

It is easy to see that (U,N1, ∗, �) and (U,N2, ∗, �) are NNLS. Let us now define, f :

(U,N1, ∗, �) → (U,N2, ∗, �), f(x) =
x4

1 + x2
for all x ∈ U . Let x0 ∈ U and (xn) be a se-

quence in U such that xn → x0 in (U,N1, ∗, �), that is, for all t > 0,

lim
n→∞

ρ1(xn − x0, t) = lim
n→∞

t

t+ | xn − x0 |
= 1,

lim
n→∞

ξ1(xn − x0, t) = lim
n→∞

c | xn − x0 |
t+ | xn − x0 |

= 0,

lim
n→∞

η1(xn − x0, t) = lim
n→∞

| xn − x0 |
t

= 0.
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In other hand,

ρ2(f(xn)− f(x0), t) =
t

t+ c | f(xn)− f(x0) |

=
t

t+ c | x4n
1 + x2n

− x40
1 + x20

|

=
t(1 + x2n)(1 + x20)

t(1 + x2n)(1 + x20) + c | x4n(1 + x20)− x40(1 + x2n) |

=
t(1 + x2n)(1 + x20)

t(1 + x2n)(1 + x20) + c | (x2n + x20)(x
2
n − x20 + x2nx

2
0(x

2
n − x20)) |

=
t(1 + x2n)(1 + x20)

t(1 + x2n)(1 + x20) + c | (xn − x0)(xn + x0)(x2n + x20 + x2nx
2
0) |

.

So

lim
n→∞

ρ2(xn − x0, t) = 1.

ξ2(f(xn)− f(x0), t) =
c | f(xn)− f(x0) |

t+ c | f(xn)− f(x0) |

=
c | (xn − x0)(xn + x0)(x

2
n + x20 + x2nx

2
0) |

t(1 + x2n)(1 + x20) + c | (xn − x0)(xn + x0)(x2n + x20 + x2nx
2
0) |

.

So

lim
n→∞

ξ2(xn − x0, t) = 0.

Finally,

η2(f(xn)− f(x0), t) =
c | f(xn)− f(x0) |

t

=
c | (xn − x0)(xn + x0)(x

2
n + x20 + x2nx

2
0) |

t | (1 + x2n)(1 + x20) |
,

and this lead to

lim
n→∞

η2(xn − x0, t) = 0.

Thus, we see that f is sequentially continuous on U .

Now, we will explain that f is not strongly continuous by a contradiction. Let f be strongly

continuous, then it holds that for all x0 ∈ U and for each t > 0 there exist s > 0 such that for

all x0 ∈ U ,

ρ1(x− x0, s) ≤ ρ2(f(x)− f(x0), t),

ξ1(x− x0, s) ≥ ξ2(f(x)− f(x0), t),

η1(x− x0, s) ≥ η2(f(x)− f(x0), t).

Saleh Omran and A. Elrawy, Continuous and bounded operators on neutrosophic normed spaces

Neutrosophic Sets and Systems, Vol. 46, 2021                                                                               283



Firstly, from the calculation of example [7, 8] and

c | (x− x0)(x+ x0)(x
2 + x20 + x2x20) |

t | (1 + x2)(1 + x20) |
≤ | x− x0 |

s

t | (1 + x2)(1 + x20) |
| (x+ x0)(x2 + x20 + x2x20) |

≥ c

t
s.

Then it holds that

Infx∈U

{
t | (1 + x2)(1 + x20) |

| (x+ x0)(x2 + x20 + x2x20) |

}
≥ c

t
s.

Thus,
c

t
s = 0. Since k, t > 0 then it holds that s = 0. This gives a contradiction with the fact

that s > 0. So f is not strongly continuous.

3.1. Application

Definition 3.8. A mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) is said to be neutrosophic Lips-

chitzian on U if ∃ c > 0 such that

ρV (T (x)− T (y), t) ≥ ρU (x− y, t
c
),

ξV (T (x)− T (y), t) ≤ ξU (x− y, t
c
),

ηV (T (x)− T (y), t) ≤ ηU (x− y, t
c
),

∀t > 0, ∀x, y ∈ U. If c < 1, we say that T is a neutrosophic contraction.

Remark 3.9. If T is a neutrosophic Lipschitzian mapping, then T is a neutrosophic contin-

uous.

Definition 3.10. A neutrosophic Banach space is a complete neutrosophic normed linear

space.

Theorem 3.11. Let (U,NU , ∗, �) be a neutrosophic Banach space and T : (U,NU , ∗, �) →
(U,NU , ∗, �) be a neutrosophic contraction, then T has a unique fixed point.

Proof. Let x be arbitary point in U , then {T n(x)} is a Cauchy sequence. In fact, for t > 0

and m ∈ N− {0}, we get

ρ(T n+m(x)− T n(x), t) ≥ ρ(T n+m−1(x)− T n−1(x),
t

c
) ≥ ... ≥ ρ(T m(x)− x, t

cn
),

ξ(T n+m(x)− T n(x), t) ≤ ξ(T n+m−1(x)− T n−1(x),
t

c
) ≤ ... ≤ ξ(T m(x)− x, t

cn
),

η(T n+m(x)− T n(x), t) ≤ η(T n+m−1(x)− T n−1(x),
t

c
) ≤ ... ≤ η(T m(x)− x, t

cn
).
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As 0 < c < 1, we have that limn→∞
t

cn
=∞. So

lim
n→∞

ρ(T m(x)− x, t
cn

) = 1,

lim
n→∞

ξ(T m(x)− x, t
cn

) = 0,

lim
n→∞

η(T m(x)− x, t
cn

) = 0.

Thus,

lim
n→∞

ρ(T n+m(x)− T n(x), t) = 1,

lim
n→∞

ξ(T n+m(x)− T n(x), t) = 0,

lim
n→∞

η(T n+m(x)− T n(x), t) = 0.

Since U is complete, we have that {T n(x)} is a convergent sequence. So there exists u ∈ U
such that limn→∞ T n(x) = u. We find that

u = lim
n→∞

T n+1(x) = lim
n→∞

T (T n(x)) = T (u).

Now, we exhibit the uniqueness. Assume that ∃u, v ∈ U with u 6= v and u = T (u), v = T (v).

As u 6= v, ∃s > 0 such that

ρ(u− v, s) = a < 1,

ξ(u− v, s) = b > 0,

η(u− v, s) = c > 0,

then, for all n ∈ N∗ we obtain

a = ρ(v − u, s) = ρ(T n(v)− T n(u), s) ≥ ρ(v − u, s
cn

)→ 1,

b = ξ(v − u, s) = ξ(T n(v)− T n(u), s) ≤ ξ(v − u, s
cn

)→ 0,

c = η(v − u, s) = η(T n(v)− T n(u), s) ≤ η(v − u, s
cn

)→ 0,

thus, a = 1, b = 0, c = 0, which gives contradiction, hence the claims of theorem.

4. Neutrosophic bounded

In this section, we introduce the concept of boundedness and isometry of mappings neutro-

sophic linear operators between neutrosophic normed spaces. Also, we study the relationships

between bounded and weakly bounded linear operators.
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Definition 4.1. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. A

mapping T : U → V is called neutrosophic isometry if for each x ∈ U , t > 0 such that for all

x ∈ D,

ρV (T (x), t) = ρU (x, t),

ξV (T (x), t) = ξU (x, t),

ηV (T (x), t) = ηU (x, t).

(5)

Definition 4.2. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces and

T : U → V be a linear operator. The operator T is called neutrosophic bounded if there exist

a constant k ∈ R− {0} such that for each x ∈ U and t > 0,

ρV (T (x), t) ≥ ρU (kx, t),

ξV (T (x), t) ≤ ξU (kx, t),

ηV (T (x), t) ≤ ηU (kx, t).

(6)

Definition 4.3. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces and

T : U → V be a linear operator. The operator T is called weakly neutrosophic bounded if for

all 0 < r < 1 there exist a constant k ∈ R− {0} such that for each x ∈ U and t > 0,

ρU (kx, t) ≥ 1− r ⇒ ρV (T (x), t) ≥ 1− r,

ξU (kx, t) ≤ r ⇒ ξV (T (x), t) ≤ r,

ηU (kx, t) ≤ r ⇒ ηV (T (x), t) ≤ r.

(7)

Theorem 4.4. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

linear operator T : (U,NU , ∗, �) → (V,NV , ∗, �) be neutrosophic bounded if T is weakly neu-

trosophic bounded.

Proof. Suppose that T is a neutrosophic bounded operator. Then there exist a constant

k ∈ R − {0} such that for each x ∈ U , t > 0, and satisfied (6). Using the fact that

ρU (kx, t), ξU (kx, t), ηU (kx, t) ∈ [0, 1], we obtain that for any 0 < r < 1 there exist a kr

depends on k such that

ρU (kx, t) ≥ ρU (krx, t) ≥ 1− r,

ρU (kx, t) ≤ ρU (krx, t) ≤ r,

ρU (kx, t) ≤ ρU (krx, t) ≤ r.

Since (6) it holds that

ρV (T (x), t) ≥ 1− r,

ξV (T (x), t) ≤ r,

ηV (T (x), t) ≤ r.
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Thus, T is weakly neutrosophic bounded

Theorem 4.5. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

linear operator T : (U,NU , ∗, �)→ (V,NV , ∗, �) is continuous iff it is neutrosophic bounded.

Proof. The first direction, let T be continuous on (U,NU , ∗, �), then it is continuous at 0 ∈ U .

Thus, for all x ∈ U, for each 0 < ε < 1 and t > 0, there exists 0 < δ < 1 and s > 0, such that

if

ρU (x− 0, s) > (1− δ)⇒ ρV (T (x)− T (0), t) > (1− ε),

ξU (x− 0, s) < δ ⇒ ξV (T (x)− T (0), t) < ε,

ηU (x− 0, s) < δ ⇒ ηV (T (x)− T (0), t) < ε.

Now, any way there exists 0 < δ < 1 such that

ρU (kx, t) > (1− δ),

ξU (kx, t) < δ,

ηU (kx, t) < δ.

So

ρU (x,
t

| k |
) = ρU (x, t) > (1− δ),

ξU (x,
t

| k |
) = ξU (kx, t) < δ,

ηU (x,
t

| k |
) = ηU (kx, t) < δ.

By putting s =
t

| k |
we obtain that

ρU (x, s) > (1− δ)⇒ ρV (T (x), t) > (1− ε),

ξU (x, s) < δ ⇒ ξV (T (x), t) < ε,

ηU (x, s) < δ ⇒ ηV (T (x), t) < ε.

Hence

ρV (T (x), t) ≥ ρU (kx, t),

ξV (T (x), t) ≤ ξU (kx, t),

ηV (T (x), t) ≤ ηU (kx, t).

Therefore, T is neutrosophic bounded.

For the other direction, suppose that T is neutrosophic bounded, then there exist a constant
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k ∈ R− {0} such that for each x ∈ U , t > 0, and satisfied (6). We have

ρV (T (x), t) ≥ ρU (kx, t) = ρU (x,
t

| k |
) = ρU (x, s),

ξV (T (x), t) ≤ ξ(kx, t) = ξU (x,
t

| k |
) = ξU (x, s),

ηV (T (x), t) ≤ ηU (kx, t) = ηU (x,
t

| k |
) = ηU (x, s).

(8)

Let x0 ∈ U, 0 < ε < 1, t > 0, put δ = ε and s =
t

| k |
> 0. Suppose that

ρU (x− x0) ≥ (1− δ),

ξU (x− x0) ≤ δ,

ηU (x− x0) ≤ δ.

Since (8) it holds that

ρV (T (x)− T (x0)) > (1− δ),

ξV (T (x)− T (x0)) < δ,

ηV (T (x)− T (x0)) < δ.

Thus, T is continuous.

5. Conclusions

In this paper, we have extended the definitions of continuous and bounded operators in

neutrosophic normed spaces. Also, we have introduced a type of continuous and bounded

operators in neutrosophic normed spaces. Moreover, we have studied some interesting rela-

tionships. These are illustrated by examples that are appropriate.
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