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Abstract. Neutrosophic hypersoft set is the combination of neutrosophic set and hypersoft set. It resolves the
limitations of intuitionistic fuzzy sets and soft sets for the consideration of the degree of indeterminacy and
multi-argument approximate function respectively. In this research article, a novel framework i.e. neutrosophic
hypersoft graph, is formulated for handling neutrosophic hypersoft information by combining the concept of
neutrosophic hypersoft sets with graph theory. Firstly, some of essential and fundamental notions of neutro-
sophic hypersoft graph are characterized with the help of numerical examples and graphical representation.
Secondly, some set theoretic operations i.e. union, intersection and complement, are investigated with illustra-

tive examples and pictorial depiction.
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1. Introduction

In different mathematical disciplines, fuzzy sets theory (FS-Theory) [1] and intuitionistic
fuzzy set theory (IFS-Theory) [2] are considered apt mathematical modes to tackle several in-
tricate problems involving various uncertainties. The former emphasizes on a certain object’s
degree of true belongingness from the initial sample space, while the latter emphasizes degree
of true membership and degree of non-membership with the state of their interdependence.
These theories portray some kind of inadequacy in terms of providing due status to a degree of
indeterminacy. The implementation of neutrosophic set theory (NS-Theory) [3,/4] overcomes

this impediment by taking into account not only the proper status of degree of indeterminacy
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but also the state of dependence. This theory is more adaptable and suitable for dealing with
inconsistent data. Wang et el [5] conceptualized single-valued neutrosophic set in which truth
membership degree, indeterminacy degree and falsity degree are restricted within unit closed
interval. Many researchers [6]- |[14] have been drawn to NS-Theory for further application in
statistics, topological spaces, and the construction of some neutrosophic-like blended struc-
tures with other existing models for useful applications in decision making. Edalatpanah [15]
studied a system of neutrosophic linear equations (SNLE) based on the embedding approach.
He used (a, 8, )-cut for transformation of SNLE into a crisp linear system. Kumar et al. [16]
exhibited a novel linear programming approach for finding the neutrosophic shortest path
problem (NSSPP) considering Gaussian valued neutrosophic number.

FS-Theory, IFS-Theory and NS-Theory have some kind of complexities which restrain them
to solve problem involving uncertainty professionally. The reason for these hurdles is, possibly,
the inadequacy of the parametrization tool. It demands a mathematical tool free of all such
impediments to tackle such issues. This scantiness is resolved with the development of soft
set theory (SS-Theory) |17] which is a new parameterized family of subsets of the universe
of discourse. The researchers [18]- [27] studied and investigated some elementary properties,
operations, laws and hybrids of SS-Theory with applications in decision making. The gluing
concept of NS-Theory and SS-Theory, is studied in [28] to make the NS-Theory adequate with
parameterized tool. In many real life situations, distinct attributes are further partitioned in
disjoint attribute-valued sets but existing SS-Theory is insufficient for dealing with such kind
of attribute-valued sets. Hypersoft set theory (HS-Theory) [29] is developed to make the SST
in line with attribute-valued sets to tackle real life scenarios. HS-Theory is an extension of SS-
Theory as it transforms the single argument function into a multi-argument function. Certain
elementary properties, aggregation operations, laws, relations and functions of HS-Theory, are
investigated by [30]- [32] for proper understanding and further utilization in different fields.
The applications of HS-Theory in decision making is studied by [33]- [37] and the intermingling
study of HS-Theory with complex sets, convex and concave sets is studied by [38,39]. Deli [40]
characterized hybrid set structures under uncertainly parameterized hypersoft sets with theory
and applications. Gayen et al. [41] analyzed some essential aspects of plithogenic hypersoft
algebraic structures. They also investigated the notions and basic properties of plithogenic
hypersoft subgroups ie plithogenic fuzzy hypersoft subgroup, plithogenic intuitionistic fuzzy
hypersoft subgroup, plithogenic neutrosophic hypersoft subgroup. Saeed et al. [42,43] discussed
decision making techniques for neutrosophic hypersoft mapping and complex multi-fuzzy hy-
persoft set. Rahman et al. [44H46] studied decision making applications based on neutrosophic
parameterized hypersoft Set, fuzzy parameterized hypersoft set and rough hypersoft set. Thsan

et al. [47] investigated hypersoft expert set with application in decision making for the best
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selection of product. The gluing concept of graph theory with uncertain environments like
fuzzy, intuitionistic fuzzy, neutrosophic, fuzzy soft, intuitionistic fuzzy soft and neutrosophic
soft set, is discussed and characterized by the authors [48]- [54]. Inspiring from above litera-
ture in general, and from [55], [56] in specific, new notions of neutrosophic hypersoft graph are
conceptualized along with some elementary types, essential properties, aggregation operations
and generalized typical results. The rest of the paper is organized as:

In section 2, some basic definitions and terminologies are presented. In section 3, the elemen-
tary notions of neutrosophic hypersoft graphs are discussed with properties and results. In
section 4, some set theoretic operations of neutrosophic hypersoft graphs are presented with

examples. In section 5, paper is summarized with future directions.

2. Preliminaries

Here some essential terms and definitions are recalled from existing literature.

Definition 2.1. [3]

A neutrosophic set K defined as K = {(k,< Mxg(k),Zx(k),Nk(k) >)|k € Z} such that
Mg (k) : Z2 =710,1[T, Ik (k) : Z —7]0,1[" and Nk (k) : Z —7]0,1[" where Mg (k) stands
for membership, N (k) stands for non-membership and Zx (k) stands for indeterminacy under
condition 0 < Mg (k) + Zx (k) + Nk (k) < 3*.

Definition 2.2. [17]
A pair (¥ps, W) is said to be soft set over Z (universe of discourse), where ¥y : W — P(2)
and W is a subset of set of attributes X.

For more detail on soft set, see [18,19].

Definition 2.3. [29]
A pair ({7, R) is said to be hypersoft set over Z, where {7 : R — P(Z) and R = Ry X
Ra X Rz X ... X Ry, R; are disjoint attribute-valued sets corresponding to distinct attributes

r; respectively for 1 <i <n.

Definition 2.4. [29]
A pair ((y,U) is said to be neutrosophic hypersoft set over Z if (x : U — P(Z), where P(2)
is a collection of all neutrosophic subsets and U = Uy X Uy X Us X ... X Uy, U; are disjoint

attribute-valued sets corresponding to distinct attributes u; respectively for 1 < i < n.
For more definitions and operations of hypersoft set, see [30-32].

Definition 2.5. [56]
Let Q and 8* = (V,€) be a set of parameters and a simple graph respectively with V as set
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of vertices and & as set of edges. Let N (V) be the set of all neutrosophic set in V. By a
neutrosophic soft graph (NS-Graph), we mean a 4-tuple & = (&*, Q,F G) where F : Q —
NOV),G:Q — N(V x V) given by

F(0) = Fo = {{v, Tr, (v), Zr, (v), Fr, (v)) , v € V}
and

G<9) =Gy = {<(V7U)vﬁe(uvu)sze(Vvﬂ)vae(VuM)>7(”7:“') €V X V}

are neutrosophic sets over V and V x V respectively with
Tr, (Vs 1) < min {7, (v), Tr, (1) }

I]Fe (V’ :u) < min {IFG (V)aIFe (:u)}

.7:15*9(1/, 1) > max{fFe(”)afFe(“)}

for all (v,u) € (VW x V) and 0 € Q.

3. Neutrosophic Hypersoft Graphs
In this section, notions of neutrosophic hypersoft graph are characterized with some prop-

erties and examples.

Definition 3.1. Let &* = (V,€) be a simple graph with V as set of vertices and £ as set
of edges and Q1, 9o, Os, ..., 9, are disjoint attribute-valued sets corresponding to distinct
attributes a1, ag, ag, ..., with @ = Q1 X Qg X Q3 X ... x Q,. Let N (V) be the set of all
neutrosophic set in V. By a neutrosophic hypersoft graph (NHS-Graph), we mean a 4-tuple
6 = (6*,9,F,G) where F: Q - N(V),G: Q - N(V x V) given by

]F'(G) =Fy = {<V77%9(V)?IF9(V)7*F]F(9(V)> V€ V}

and
G<9) =Gy = {<(Va U)?ﬁe(yvu)aI]Fe(%ﬂ)vae(ya N)> ) (l/nu') €V X V}

are neutrosophic sets over V and V x V with
Try (v, 1) < min {Tg, (v), T, (1)}

Te, (v, 1) > min {Ts, (v), Tr, (1)}

Fieg (Vs 1) = max { Fr, (v), Firy (1) }

for all (v,u) € (VW x V) and 0 € Q.
Note: The collection of all neutrosophic hypersoft graphs is denoted by Qnmsa-
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TABLE 1. Tabular Representation of NHS-Graph & = (&*, Q,F, G)

F 21 123 V3

0, (0.2,0.4,0.7) (0.3,0.6,0.3) (0,0,1)

0 (0.1,0.4,0.3) (0.3,0.4,0.5) (0,0,1)

6 (0.1,0.5,0.6) (0.3,0.3,0.8) (0.3,0.2,0.5)
0 (0.4,0.2,0.6) (0.3,0.6,0.5) (0.4,0.3,0.6)
G (v1,v2) (v2,v3) (11, 3)

0, (0,0, 1) (0,0, 1) (0,0, 1)

6, (0.1,0.3,0.2) (0,0,1) (0,0,1)

0, (0.1,0.5,0.4) (0.2,0.4,0.3) (0,0, 1)

0, (0.2,0.3,0.4) (0.2,0.5,0.3) (0.4,0.2,0.7)

FIGURE 1. Graphical Representation of TABLE [I| with (a) N(61), (b) N(62),
(¢) N(03) and (d) N (64)

k25
vy vy v 101,03,02) :

10.2,04,0.7) (0.3,0.6,0.3) (0.1,04,0.3) (0.3,04,05)

(a)

(b)

vy vy L] v3

(0.2,0.3,04)

(0.1,05,06) (0.3,0.2,05)

(0.4,0.2,0.5) (0.4,0.3,0.6)

0.1.0.5.0.4) 10.2.0.4.0.3) 0.2.0.3.041 {0.4,0.2,0.7)

L vy

(0.3,03,08) (03,06,05)

Example 3.2. Let &* = (V,€) be a simple graph with V = {v1,v9,v3} and Qq, Q2, O3
are disjoint attribute-valued sets corresponding to distinct attributes aq, ao, a3 where Q1 =
{a11, 012}, Q2 = {@21,a22} and Q3 = {as1}. Q = Q1 x Q2 x Q3 = {01,02,03,04} where
each 6; is a 3-tuple element of Q and Tg,(v;,v;) = 0,Zg,(vs,v;) = 0, Fg,(vi,v;) = 1 for
all (v,v5) € V x V\{(v1, 1), (v2,v3), (v1,v3)}. The tabular and graphical representation of
NHS-Graph & = (&*, Q,F,G) are given in TABLE [1] and FIGURE [1] respectively.

Definition 3.3. A neutrosophic hypersoft graph & = (QS*, ol Ft, Gl) is called a neutrosophic
hypersoft subgraph of & = (&*, A, F,G) if
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TABLE 2. Tabular Representation of NHS-subgraph & = (05*, o F!, Gl)

F 2 Vo V3

61 (0.2,0.3,0.7) (0.3,0.3,0.4) (0,0,1)

2 (0.1,0.4,0.3) (0.3,0.2,0.8) (0,0,1)

03 (0.1,0.5,0.6) (0.2,0.3,0.8) (0.2,0.2,0.5)
G (v1,1v9) (v, v3) (v1,v3)

01 (0,0,1) (0,0,1) (0,0,1)

05 (010303) (0,0,1) (001)

03 (0.1,0.5,0.4) (0.2,0.3,0.3) (0,0,1)

FIGURE 2. Graphical Representation of TABLE [2| with (a) AV(61), (b) N(62)
and (c) N (63)

L1

L]

vy V3

(0.2,0.3,07) (0.3,0.3,04) (0.1,05,0.6) (0.2,0.2,05)

(a)

(0.1,05,04) (0.2,0.3,03)

k2 Vz
vy 101,03,03) z
(0.2,0.3,0.8)

(0.1,04,03) (0.3,0.2,0.8)

(b) ()

(1) @'cQ
(2) Fj C f which means Ty (v) < Try (v), Ly (v) < I, (v), Fr (v) = Fr, (v).
(3) G € g which means Tgi1 (v) < T, (v), Zgy (v) < T, (v), F (v) = Fig, (v)-
for all € Q' and Q' = Q x Qs X ... X Q,, where Oy, Qo, ..., Q,, are disjoint attribute-valued

sets corresponding to distinct attributes aq, ao, ..., au, respectively.

Example 3.4. Let & = (V,E) be a simple graph with V = {v1,15,v3} and Qi, Q2, O3
are disjoint attribute-valued sets corresponding to disjoint attributes aq, ao, @3 where Q1 =
{a11, 12}, Q2 = {21} and Q3 = {as1}. Q = Q1 x Qo x Q3 = {61,02,03} where each 0;
is a 3-tuple element of Q. The tabular and graphical representation of NHS-subgraph & =
(@*, Q' F, Gl) are given in TABLEand FIGURErespectively. In this graph, Tg, (vi, vj) =
0,Zg,(vi,vj) = 0, Fg, (v, vj) =1 for all (v;,v;) € V x V\ {(v1,12), (v2,v3), (11,v3)} and for all
0ecQ.
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Definition 3.5. A neutrosophic hypersoft subgraph & = (6*, Q' F!, Gl) is called a neutro-
sophic hypersoft spanning subgraph of & = (6*,Q,F,G) if Fj(v) = F(v) for all v € V,e € Q
where Q' = Q1 x Q9 X ... X Q,, and Qy, Qs, ..., Q,, are disjoint attribute-valued sets corre-

sponding to disjoint attributes ay, g, ..., o, respectively.

Definition 3.6. A strong neutrosophic hypersoft subgraph & = (&*, Q,F, G) is a neutrosophic
hypersoft subgraph with condition that Gg(v, u) = Fo(v) NFg(u) for z,y € V and e € Q such
that @ = Q1 X Qs... X @, and Qy, O, ..., Q, are disjoint attribute-valued sets corresponding

to disjoint attributes aq, as, ..., oy, respectively.

4. Set Theoretic Operations of NHS-Graphs

In this section, some theoretic operations (i.e. union, intersection and complement) of neu-

trosophic hypersoft graph (NHS-Graphs) are investigated with suitable examples and results.

Definition 4.1. The union of two NHS-Graphs &, = ( QLT Gl), By = ( 5, Q% F?, GQ),
denoted by &1 U®,, is a NHS-Graph & = (&*, Q,F,G) such that Q = Q' U Q?. In this graph,

the neutrosophic components for F are given as follows:

iffe Ql — Q%2andv € V; — Vyor
7%2)(1/) if0e Q' —Q%andv € ViNnVyor
L if0 e Q'NnQ%andv € Vi — Vs

ifec Q?>—Qlandv € Vo — Vyor

Teol¥) = Trz(v) { if0 € @~ Qlandv € VaNVior
ifoe QlﬂQ2andV€V2—V1
mas { Ty (0). Tea () } {1 0 € Q' N Q2 andw € Vi NV
L 0, otherwise
and
ifeQl —Q%andv e Vi — Vyor
IJF},(V) if0eQl —Q%?andv e VinVyor
ifde o'NnQ?andv € Vi — Vs
ifec Q®>—Qlandv € Vo — Vyor
IIFQ(V) =

IIFS(I/) if e Q?—Qlandv € VanVyor
if0e Q' NQ%andv e Vo -V,
max {IFg(V)aIFg(V)} {ifo e Q' NnQ*andv e ViNW,

0, otherwise

\
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and

\

iffe Ql — Q%2andv € V; — Vyor

fFé(V) if0 e Ql — Q?andv € Vi N Vyor
ifc Q'NQ%andv eV, — Vs
ifde Q%2 — OQlandv € Vo — Vyor

]:Fg(u) if0€ Q®>— Qlandv € VanVor

if0e Q' NQ%andv e Vo — Wy

min {f]Fé(l/),ng(U)} {Zf0 c Ql N Q2 andv € V1 NVy

0, otherwise

Also the neutrosophic components for G are given as follows:

and

and

\

Tey(v)

Tes (v)

iffeQl—Q%and (v,u) € (V1 x V1) — (Va2 x Va) or
iff € Qt — Q%and (v,pn) € (V1 x V1) N (Va2 x Va) or
if0 € QN Q%and (v, u) € (V1 x V1) — (V2 x Vo)
if0 e Q®— Qland(v,p) € (Vo x Vo) — (V1 x V1) or
if0 e Q*— Qland (v,u) € (V2 x Vo) N (V1 X V1) or
if0€ Q' N Q%and (v, p) € (Vo x Vo) — (V1 x V)

mas { Ty (). Teg () } {1 0 € Q11 Q2 and (v, 1) € (Vi x V1) 1 (Vi x Vi)

I (v)

[4

Zg2(v)

0

0, otherwise

iffeQl —Q%and (v,u) € (V1 x V1) — (Va2 x Va) or
if0e Q' — Q%and (v,p) € (V1 x V1) N (Vo x Vo) or
if e Q'nNQ%and (v,u) € (V1 x V1) — (V2 x Va)
if0c Q*— Qland (v, pu) € (Vo x Vo) — (V1 x V1) or
if0€ Q®— Qland(v,p) € (Vo x Vo) N (V1 x V) or
if0€ Q' N Q%and (v, p) € (Vo x Vo) — (V1 x V)

max {IGé(V),IG?)(V)} {ifo e Q'nQ*and (v,n) € V1 x V1) N (V2 x Va)

Fei(v)

0

Foz(v)

0, otherwise

iff e Qt — Q%and (v,pn) € V1 x V1) — (Vo x Va) or
if e Ql —Q%and (v, ) € (V1 x V1) N (Va2 x Va) or
if0 € QN Q%and(v,p) € (V1 x Vi) — (Vo x Vo)
if0€ Q®— Qland (v,p) € (Vo x Vo) — (V1 x V) or
if0 e Q?— Qland (v, u) € (V2 x Vo) N (V1 x V4) or
if0 € QN Q%and (v, u) € (Vo x Vo) — (V1 x V1)

min {IG})(V)vIGg(V)} {ifo e Q' nQ%and (v,u) € V1 x Vi) N (Va2 x Vs)

0, otherwise

Theorem 4.2. If 1,85 € Qnpgsa then &1 U Gy € Qnpgsa.
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Proof. Consider two NHS-Graphs &1 = ( ¥, QL FY Gl) and By = ( 5, 0% F?, G2) as defined
in Let & = (&*, Q,F,G) be the union of NHS-Graphs ®; and &5 where Q = Q' U Q2.
Now let § € Q' — Q2% and (v,u) € (V1 x V1) — (V2 X Va), then

Teso (v, 1) = Ty (v ) < min { Ty (), Ty ()}
= min {,EFQ (V)7 ’EF& (M)}

Te (v, 1) < min {7, (v), To, ()} -
Also
Ty (v, 1) = Ty (v, 1) < min { Ty (v), Ty (1) |
= min {Zs, (v), Tr, (1)}
T, (v, 1) < min{Zp,(v), Ir, (1) } -
Now
Foy v, ) = Fop (v 1) > max { Fiy (v), Figy ()}
= max {Fs, (v), Fr, (1)}

F (v, 1) = max {Fr, (), Fr, (1)} -
Similar results are obtained when 6 € Q' — Q2 and (v, ) € (V1 x V1) N (V2 x Vo)
or 0 € Q' N Q? and (v, ) € (V1 x V1) — (Vo x Va).
Now if # € @' N Q% and (v, i) € (V1 x V1) N (V2 x Va) then

Tesy (v, ) = max { Ty (v, 1), Tz (v, ) |
< max {min {75y (v), T3 () b min { Ty (), Toa () } }
< min {max { Tey (), Toy ()}, max { Toa (v), Tz ()} }
= min {7, (v), To, ()} -
Also
Ty (v, ) = max { Ty (v, 1), Tz (v, ) |
< max {min {IF; (), Zpy (u)} , min {prg V), Zpz (1) }}
< min {max { Ty (v), Ty ()}, max { Tya (v), T () } }
= min {Zs, (v), Ts, ()} -
In the same way

Fy (v, i) = min {f«;g)(l/, 1), Fez (v, u)}
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TABLE 3. Tabular Representation of NHS-Graph &; = ( I Ql,Fl,Gl) ac

cording to Example

F V1 Vs V3
01 (0.2,0.3,0.4) (0.3,0.6,0.8) (0.3,0.4,0.5)
0o (0.2,0.4,0.8) (0.2,0.3,0.4) (0.5,0.7,0.8)
05 (0.6,0.7,0.8) (0.4,0.5,0.7) (0.7,0.9,0.9)
G (11, 2) (v2,73) (v1,3)
0, (0.2,0.3,0.6) (0.2,0.4,0.9) (0.2,0.3,0.8)
05 (0.2,0.3,0.9) (0.2,0.2,0.9) (0.2,0.3,0.8)
05 (0,0,1) (0.3,0.4,0.9) (0.2,0.4,0.9)
> min {max { Fy (v), Fiy () b, max { Fe(v), Fya () } }
> max {min { Fy (v), Fey (1) b min { Fos (), Fia (1) } }

= max {f]Fe(l/)? ]:Fe (M)} .
Hence the union 6 = &; U &4 is NHS-Graphs.

Example 4.3. Let &, = ( T Ql,Fl,Gl) be a neutrosophic hypersoft graph where &7 =
(V1, &) with Vi = {11, 19,3} and Q1, Qa, Qs are disjoint attribute-valued sets corresponding
to distinct attributes aq, g, a3 where Q1 = {a11}, Q2 = {ag1} and Qs = {31, a2, ass}.
Ol = Q1 x Q3 x Q3 = {01,0,,03} where each 6; is a 3-tuple element of Q' and Te, (vi,vj) =
0,Zg,(vi,v;) = 0,Fg,(vi,vj) = 1 for all (v3,v5) € Vi x Vi\{(v1,12), (v2,13), (v1,v3)}. Its
tabular representation is given in TABLE Also let Gy = ( 5 QZ,IFQ,GQ) be a neutro-
sophic hypersoft graph where &3 = (V,,&2) with Vo = {v3,v4, 5} and Qs, Q4, Q5 are disjoint
attribute-valued sets corresponding to distinct attributes asg, g, a5 where Q3 = {31, asa},
Qs = {au}, Q5 = {as}. Q* = Q3 x Q4 x Q5 = {0,04} where each 0; is a 3-
tuple element of Q2 and Tg,(vi,v;) = 0,Zg,(vi,vj) = 0,Fg,(vi,vj) = 1 for all (v;,v;) €
Vo x Vo\ {(v3,14), (va,v5), (v3,v5)}. Its tabular representation is given in TABLE

Now Let & = (6% Q,F,G) be the union of two neutrosophic hypersoft graphs
& = (61,Q F.G') and & = (63 0%°FG?) whee Q@ = Q' U Q7
and Tg,(vi,v;) = 0,Zg,(vi,v;) = 0,Fg,(vi,vj) = 1 for all (v,v;)) € V x

W\ {(v1,12), (v1,v3), (v2,v3), (v3,v4), (V3,15), (Va,v5)}. Tts (union of these two graphs) tabu-

lar representation is given in TABLE

Definition 4.4. The intersection of two NHS-Graphs ®&; = ( ’{,Ql,IFl,Gl), By =
(83, 9% F?,G?), denoted by &; N By, is a NHS-Graph & = (6*, Q,F,G) such that Q =
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FIGURE 3. Graphical Representation of TABLE |3| with (a) N (61), (b) N (62)
and (c) N(03)

10.2.03.08)

¥y V3

(0.2,0.3,04) (0.3,04,0.5)

10.2.03.0.61 (0.2,04,09)

vy
L
(0.6,0.7,0.8)
(0.3,0.6,0.8)

(0.2.04.09]

v3

(0.7,09,0.9)

¥y

(0.2,0.3,0.8)

(0.2,04,0.8)

10.2.0.3.0.81

vz

(0.4,05,0.7)

0.3,04,09)

TABLE 4. Tabular Representation of NHS-Graph &9 = (

cording to Example

vz

(0.2,0.3,04)

v3

(05,07,

0.2,0.2,09)

57 QQ,FQa GQ) ac

F

0.8)

V3 Vy Vs

0 (0.3,0.4,0.5) (0.2,0.3,0.5) (0.5,0.7,0.8)

04 (0.6,0.8,0.9) (0.4,0.7,0.9) (0.4,0.5,0.6)

G (v3,14) (va, v5) (vs,v5)

0. (0.2,0.3,0.9) (0.3,0.4,0.9) (0,0,1)

0.4 (0.2,0.2,0.9) (0.3,0.3,0.9) (030409)

TABLE 5. Tabular Representation of & = &1 U &

F 1z Vs V3 Vg Vs
0, (0.2,0.3,04)  (0.3,0.4,0.5)  (0.3,0.6,0.8)  (0,0,1) (0,0,1)
0 (0.2,0.4,0.8)  (0.2,0.3,0.4)  (0.3,0.5,0.5)  (0.2,0.3,0.4)  (0.5,0.7,0.8)
0 (0.6,0.7,0.8)  (0.4,0.5,0.7)  (0.7,0.9,0.9)  (0,0,1) (0,0,1)
04 (0,0,1) (0,0,1) (0.6,0.8,0.9)  (0.4,0.7,0.9)  (0.4,0.5,0.6)
G (v1,12) (v1,v3) (v2,v3) (vs,v4) (v3,v5) (v4,v5)
01 (0.2,0.3,0.8) (0.2,0.3,0.9) (0.2,0.4,0.9) (0,0,1) (0,0,1) (0,0,1)
0 (0.2,0.3,0.8)  (0.2,0.3,0.9)  (0.2,0.2,0.9)  (0.2,0.3,0.9)  (0.3,0.4,0.9)  (0,0,1)
0 (0.2,0.4,0.9)  (0,0,1) (0.3,0.4,0.9)  (0,0,1) (0,0,1) (0,0,1)
04 (0,0,1) (0,0,1) (0,0,1) (0.2,0.2,0.9)  (0.3,0.3,0.9)  (0.3,0.4,0.9)
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1

FIGURE 4.

v vs

(0.3,0.4,0.5) (0.5,0.7,0.8)

(0.2,0.3,09) (0.3,04,09)

Vs

{0.2,0.3,0.5)

(a)

FIGURE 5.

1 v3

(0.2.0.3.091

(0.2,0.3,04) (0.3,0.6,0.8)

(0.2,0.3,0.8) (0.2.04.09)

v

(0.3,0.4,05)

(a)

Graphical Representation of TABLE 4| with (a) A'(f2) and (b) A (6s4)

v vy

(0.3.04.09)

(0.6,0.8,09) (0.4,05,0.6)

(0.2,02,089) (0.3,03,009)

)

(0.4,0.7,0.9)

(b)

Graphical Representation of TABLE [5| with (a) A'(01) and (b) A (62)

L4 L]

(0.2,0.3,0.8)

(0.2,04,08) (0.2,0.3,04)

0.2,0.2,0.9)
(0.2,0.3,09)

v3

(0.3,0.5,0.5)

(0.2.0.3.0.9!
(0.3,0.4,08)

vy Vs

(0.2,0.3,04) (0.5,0.7,0.8)

(b)

Q' N Q% V =V, N Vs. In this graph, the neutrosophic components for F are given as follows:

T, (v)if 6 € Q' — Q?

Tr, = Té(v)ifoe Q*— Q! ,
| min {7 0), T2 (1)} if 0 € Q1N Q*
and
i, (v)if g € Q' — Q2
Ir, = Ig,(v)if 0 € Q2 — QF ,

min {I]%e(z/),I%B (1/)} ifdeolnQ?
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FIGURE 6. Graphical Representation of TABLE [5 with (¢) N(63) and (d) N (64)

L4 L] L] L

(02.04.09) (0.2.0.2.09]

(0.6,0.7,0.8) (0.4,0.5,0.7)

(0.6,0.8,0.9) (0.4,07,09)

(0.3,0.3.09)

(0.3.04.09] (0.3.04.09)

L] v

(0.7,09,09)

(0.4,0.5,0.6)

and
.

e (w)ifo e Q- Q2
Fry = FR,(w)if6e Q- Q!
max {fﬁg(u),fﬁe(u)} if0ecQlnQ?

The neutrosophic components for G are given as follows:

78, if0 € Q' - Q7
Tc, = TE,(v)if0 € Q> - Q! ,
\ min {7&9(1/),780(1/)} ifoeQlnQ?
and
Iég(y) ifeQl —Q?
Tg, = T%,(v)if 6 € Q* — Q! ,
min {I((l;e (I/),Iée (1/)} ifoe QlnQ?
and

FL(v)ifoe Q- Q2
Fe, = F2(v)ifoe Q- Q!
max {]—“ée(y),fée(y)} if0ec Q' nQ?

Theorem 4.5. If &1,89 € Qnpsa then &1 NGy € Qnpsa-

Proof. Consider two NHS-Graphs & = ( T, QL F, Gl) and By = ( 5, Q% F2, Gz) as defined
in Let & = (&*, Q,F,G) be the intersection of NHS-Graphs ®; and &5 where Q = Q'UQ?
and V=V, NVs,. Let 0 € Q' — Q2 then

Ty (v.1) = Ty (v, )

< min { Ty (v), Toy () }

= min {Tr, (v), Tr, (1) }
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TG, (v, 1) < min{Tr, (v), Tr, (1) }
Also
Lgy (v, 1) = Lgy (vs 1)
< min {Zey (v), Ty () |
= min {Zr, (v), Zr, (1) }
Zg, (v, 1) < min{Zg, (v), Ir, (1) }
Now
Fo (v, 1) = Fe (v, 1)
2 max {furé(V)a]:]F;(M)}
= max { Fr, (), Fr, (1)}

Ty (Vs 1) = max {Fr, (v), Firy (1) }

Similar results are obtained when 0 € Q% — Q!

Now if 8 € Q' N Q? then

Teso (v, 1) = min { Ty (v, 1), Toa (v, 1)}
< min {min { Tey (v), Toy (1) b min { Tea (), Teg ()} }
< min {min { Tey (v), Teg () b min { Tey (), Teg ()} }

= min {Tr, (v), Tr, (1) }
Also

T, (v, ) = min { Tey (v, 1), T (v, ) |
< min {min {IIF}) (V),IFé (/L)} , min {IFS (I/),Z]Fg (,u)}}

< min {min {IIF}) (V),IFg (u)} , min {IFé (V),I]Fg (M)}}

= min{Zp, (v), Ir, (1)}

In the same way

Fg, (v, 1) = max {fGé(V, 1), .7-"@3(1/, u)}
> max {max {}—F; (v), Ty (,U,)} ,max {fmg (v), T2 (u)}}

> max {max {]:Fé (v), .Fng (,u)} ,max {fmé (v), ]:Fg (H)}}

= max {Fr, (v), Fr, (1) }
Hence the intersection & = & N &, is NHS-Graphs.
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TABLE 6. Tabular Representation of NHS-Graph &; = ( I Ql,Fl,Gl) ac
cording to Example

F 2 Vo V3

0, (0.2,0.3,0.4) (0.3,0.5,0.6) (0.2,0.6,0.8)
0 (0.3,0.4,0.8) (0.5,0.7,0.8) (0.4,0.5,0.7)
G (v1,12) (v2,v3) (v1,v3)

0, (0.2,0.2,0.7) (0.2,0.4,0.9) (0.2,0.2,0.9)
by (0.3,0.4,0.8) (0.4,0.5,0.9) (0.3,0.4,0.8)

TABLE 7. Tabular Representation of NHS-Graph &4

cording to Example

57 QQ,an Gz) ac

F Vo V3 vy

0 (0.4,0.6,0.7) (0.5,0.6,0.9) (0.3,0.5,0.7)
03 (0.3,0.5,0.6) (0.2,0.6,0.8) (0.2,0.3,0.7)
G (v2,v5) (v3,v4) (v2,v4)
05 (0.2,0.2,0.7) (0.2,0.4,0.9) (0.2,0.2,0.9)
03 (0.3,0.4,0.8) (0.4,0.5,0.9) (0.3,0.4,0.8)

Example 4.6. Let &; = (

T Ql,Fl,Gl) be a neutrosophic hypersoft graph where &7 =

(V1,&1) with Vi = {v1, 19,13} and Q1, Qo, Qs are disjoint attribute-valued sets correspond-
ing to distinct attributes ay, ag, a3 where Q1 = {11}, Q2 = {a21} and Q3 = {as1,as2}.
Ol = Q1 x Q9 x Q3 = {61,602} where each 6; is a 3-tuple element of Q' and Te, (Vi vj) =
0,Zg,(vi,v;) = 0,Fg,(vi,vj) = 1 for all (v3,v5) € Vi x Vi\{(v1,12), (v2,13), (v1,v3)}. Its
tabular and graphical representation are given in TABLE [6] and FIGURE [7] respectively.
Also let &y = ( §,Q2,]F2,G2) be a neutrosophic hypersoft graph where &5 = (Vs,&2)
with Vo = {wo,v3,v4} and Qa, O3, Q4 are disjoint attribute-valued sets corresponding to
distinct attributes s, as,aq where Qs = {as1}, Q3 = {asi, a3}, Q1 = {an}. Q% =
Qs x Q3 x Q4 = {02,603} where each 6; is a 3-tuple element of Q2 and Tg,(v;,v;) =
0,Zg,(vi,v;) = 0,Fg,(vi,vj) = 1 for all (v3,v5) € Vo x Vo\ {(v2,13), (v3,v4), (v2,va)}. Its
tabular and graphical representation are given in TABLE [7] and FIGURE [§| respectively.

Now Let & = (&*,Q,F,G) be the intersection of two neutrosophic hypersoft graphs &; =
( T Ql,Fl,Gl) and G = ( 3 QZ,IF2,G2) where Q = Q' N Q2.Its (intersection of these two
NHS-graphs) tabular and graphical representation are given in TABLE [§] and FIGURE [9

respectively.

Definition 4.7. The compliment & = (@, Q.F, @) of strong neutrosophic hypersoft subgraph
& = (&%, Q,F,G) with Gy(v, u) = Fg(v) NFg(p) where
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FIGURE 7. Graphical Representation of TABLE |§|with (

a) N(01) and (b) N (62)

ke r3

(02,02,089) vy

v

(0.3,0.4,08)

(0.2,0.3,0.4) (0.2,0.6,0.8)

(0.3,04,08) (0.4,05,0.7)

(0.2.02.071

(0.2,04,09) 0.3.04.0.8) (0.4,05,09)

v

(0.3,05,0.6) (0.5,0.7,0.8)

FIGURE 8. Graphical Representation of TABLE Elwith (

a) N(@g) and (b) N(@g)

Vs

v3

(0.2,04,09) vy vy

(0.4,05,09)

(0.3,0.5,0.7)

(0.5,0.6,0.9)

(0.2,0.3,0.7) (0.2,0.6,0.8)

(02.0.2.09]

(0.2,02,07) (0.3.04.081 (0.3,04,0.8)

@ . (b)
vz
(0.4,0.6,0.7) (0.3,05,0.6)

TABLE 8. Tabular Representation of NHS-Graph & = &1 N &,

F

V2 V3
01 (0.3,0.5,0.6) (0.2,0.6,0.8)
02 (0.4,0.6,0.8) (0.4,0.5,0.9)
03 (0.3,0.5,0.6) (0.2,0.6,0.8)
G (va,v3)
01 (0.2,0.4,0.9)
0 (0.3,0.5,0.9)
03 (0.2,0.5,0.9)
(1) @=29
(2) m = 7%9(1/)7@ = IFG(”)?'FIFQ(V) = ]:Fe(y) for all v € V
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FIGURE 9. Graphical Representation of TABLE |8 with (a) N (61), (b) N (62)
and (c) N(03)

vz

vy

(0.2.04.089)

(0.3,0.5,0.6)

(0.2,0.6,08)

(a)

vz v3

(0.3.0.5.0.9]

(0.4,06,08) {0.4,05,08)

(b)
vz 10.2.05.08 v3
(0.3,0.5,0.6) (0.2,0.6,0.8)
(c)
— min {7, (), Tr, (1) } if T, (v, ) =0
(3) Try (v, 1) = ’ ’ e
0 otherwise
— min {Zp, (v), I, (1) } if L, (v, ) =0
IFQ (Vv N) = ’ ’ 0 .
0 otherwise
—_— max {Fr, (v), Fr, (1)} if Fe, (v, ) =0
]:]FQ (V7 ,U) = ’ ’ ’ .
0 otherwise

5. Conclusions

In this study, a gluing concept of neutrosophic hypersoft set and graph theory is charac-
terized. Some of elementary properties, types, operations and results are generalized under
neutrosophic hypersoft set environment. Future work may include the extension of this study

for the following structures and fields:

e Interval valued neutrosophic hypersoft set
e Neutrosophic parameterized hypersoft set
e m-polar neutrosophic hypersoft set

e Decision making problems

e New kinds of graphs

e Energies of graph
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