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Abstract. Smarandache implemented the idea of neutrosophic set theory as a method for dealing undetermined

data. Neutrosophic set theory is commonly used in various algebric structures, such as groups, rings and

BCK/BCI-algebras. At present, there exist no results on doubt neutrosophic ideals of BCK/BCI-algebras

using t-conorm and t-norm. First, the notions of (S, T )- normed doubt neutrosophic subalgebras and ideals of

BCK/BCI-algebras are introduced and the characteristic properties are described. Then, images and preimages

of (S, T )- normed doubt neutrosophic ideals under homomorphism are considered. Moreover, the direct product

and (S, T )- product of (S, T )- normed doubt neutrosophic ideals of BCK/BCI-algebras are also discussed.

Keywords: BCK/BCI-algebra; doubt neutrosophic subalgebra (ideal); (S, T )-normed doubt neutrosophic

subalgebra (ideal).

—————————————————————————————————————————-

1. Introduction

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [1],

and were applied to various mathematical fields, such as group theory, topology, functional

analysis and probability theory, etc. In the same way, the concept of a BCI-algebra, which is

a generalization of a BCK-algebra, was proposed by Iséki [2]. Zadeh [3] introduced the idea of

fuzzy set theory in 1965, where the degree of membership is discussed, and Xi [4] introduced

fuzzy subalgebras and ideals in BCK/BCI-algebras in 1991. Later on, fuzzy sets have been

generalized to intuitionistic fuzzy sets [5] by adding a non-membership function by Atanassov

in 1986 and this concept has been applied to BCK/BCI-algebras by Jun and Kim [6].

As anew idea and based on the concept defined by Xi [4], Jun [7] in 1994 introduced the

notions of doubt fuzzy subalgebras and ideals in BCK/BCI-algebras. Bej and Pal [8] intro-

duced the concepts of doubt intuitionistic fuzzy subalgebras and ideals in BCK/BCI-algebras.
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Al-Masarwah and Ahmad [9] introduced the concepts of doubt bipolar fuzzy subalgebras and

ideals in BCK/BCI-algebras. After that, many other researchers used these ideas and pub-

lished numerous articles in different branches of algebraic structures [10–14].

Triangular norms were formulated by Schweizer and Sklar [15] to model the distances in

probabilistic metric spaces. Triangular norms play an important role in many fields of mathe-

matics, statistics, cooperative games, decision making and artificial intelligence [16]. In partic-

ular, in fuzzy set theory, t-conorm (S) and t-norm (T ) have been widely used for fuzzy logic,

fuzzy relation equations and fuzzy operations. In algebraic structures, Senapati [17] proposed

the idea of (imaginable) T -fuzzy subalgebras and (imaginable) T -fuzzy closed ideals of BG-

algebras. Kim [18] presented the intuitionistic (S, T )-normed fuzzy subalgebras in BCK/BCI-

algebras using triangular norms. Also, Kutukcu and Tuna [19], presented a new classification

of intuitionistic fuzzy subalgebras, ideals and implicative ideals in BCK/BCI-algebras.

Neutrosophy, [20, 21] a new branch of science that deals with indeterminacy, was launched

by Smarandache in 1998. This concept is a generalization of the classical set, fuzzy set and

intuitionistic fuzzy set. Neutrosophic set theory has been applied to several fields of mathe-

matics including decision making [22–24], pattern recognition and medical diagnosis [25] and

others [26–31]. In the aspect of algebraic structures, the papers [32–38] address neutrosophic

algebraic structures in BCK/BCI-algebras.

As no studies have been reported so far to generalize the above mentioned concepts, so the

aim of this present article is:

(1) To propose the concept of (S, T )-normed doubt neutrosophic subalgebras and (S, T )-

normed doubt neutrosophic ideals of BCK/BCI-algebras as a generalization of (S, T )-normed

intutionistic fuzzy subalgebras and ideals of BCK/BCI-algebras.

(2) To consider images and preimages of (S, T )- normed doubt neutrosophic ideals under

homomorphism.

(3) To define and discuss the direct product and (S, T )- product of (S, T )- normed doubt

neutrosophic ideals of BCK/BCI-algebras.

To do so, the rest of the article is structured as follows: In Section 2, we review some basic

notions. In Section 3, we introduce the notions of (S, T )- normed doubt neutrosophic subalge-

bras and ideals of BCK/BCI-algebras and then describe some of the characteristic properties.

Furthermore, we consider images and preimages of (S, T )- normed doubt neutrosophic ideals

under homomorphism. In Section 4, we discuss the direct product and (S, T )- product of

(S, T )- normed doubt neutrosophic ideals of BCK/BCI-algebras. Finally, in Section 5, we

present the conclusion and future works of the study.
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2. Preliminaries

In the current section, we remember some of the basic notions of BCK/BCI-algebras which

will be very helpful in further study of the paper. Let X be a BCK/BCI-algebra in what

follows, unless otherwise stated.

By a BCI-algebra, we mean a set X with a special element 0 and a binary operation ∗, for

all p, q, s ∈ X, that satisfies the following axioms:

(I) [(p ∗ q) ∗ (p ∗ s)] ∗ (s ∗ q) = 0,

(II) [p ∗ (p ∗ q)] ∗ q = 0,

(III) p ∗ p = 0,

(IV) p ∗ q = 0 and q ∗ p = 0 imply p = q.

If a BCI-algebra X satisfies 0 ∗ p = 0, then X is called a BCK-algebra. In a BCK/BCI-

algebra, p ∗ 0 = p holds. A partial ordering ≤ on a BCK/BCI-algebra X can be defined by

p ≤ q if and only if p ∗ q = 0. A non-empty subset K of a BCK/BCI-algebra X is called a

subalgebra of X if p ∗ q ∈ K,∀p, q ∈ X, and an ideal of X if ∀p, q ∈ X,

(1) 0 ∈ K,
(2) p ∗ q ∈ K and q ∈ K imply p ∈ K.

Definition 2.1. A neutrosophic set in a non-empty set X (see [14]) is a structure of the form:

B = {〈p;BT (p), BI(p), BF (p)〉|p ∈ X},

where BT , BI , BF : X → [0, 1]. We shall use the symbol B = (BT , BI , BF ), for the neutrosophic

set B = {〈p;BT (p), BI(p), BF (p)〉|p ∈ X}.

If B = (BT , BI , BF ) is a neutrosophic set in X, then �B = (BT , BI , B
c
T ) and ♦B =

(Bc
F , BI , BF ) are also neutrosophic sets in X.

Definition 2.2 ( [15]). A function T : [0, 1] × [0, 1] → [0, 1] is called a triangular norm, if it

satisfies the following conditions: ∀p, q.s ∈ [0, 1],

(1) T (0, 0) = 0, T (1, 1) = 1,

(2) T (p, T (q, s)) = T (T (p, q), s),

(3) T (p, q) = T (q, p),

(4) T (p, q) ≤ T (p, s) if q ≤ s.

If T (p, 0) = p and T (p, 1) = p for all p ∈ [0, 1], then T is called a t-conorm and a t-norm,

respectively. Throughout this paper, denote S and T as a t-conorm and a t-norm, respectively.

Some examples of t-conorms and t-norms are:

(1) SM (p, q) = max{p, q} and TM (p, q) = min{p, q}.
(2) SL(p, q) = min{p+ q, 1} and TL(p, q) = max{p+ q − 1, 0}.
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(3) SP (p, q) = p+ q − pq and TP (p, q) = pq.

A t-conorm S and a t-norm T are associated [39], i.e., S(p, q) = 1−T (1−p, 1−q),∀p, q ∈ [0, 1].

Lemma 2.3 ( [40]). For any p, q ∈ [0, 1], we have 0 ≤ max{p, q} ≤ S(p, q) ≤ 1 and 0 ≤
T (p, q) ≤ min{p, q} ≤ 1.

Definition 2.4 ( [7]). A fuzzy set λ of X is called a doubt fuzzy subalgebra of X if λ(p ∗ q) ≤
max{λ(p), λ(q)} ∀p, q ∈ X, and a doubt fuzzy ideal of X if λ(0) ≤ λ(p) ≤ max{λ(p ∗ q), λ(q)}
∀p, q ∈ X.

Definition 2.5 ( [41]). A neutrosophic set B = (BT , BI , BF ) of X is called a neutrosophic

subalgebra of X if for all p, q ∈ X,

(1) BT (p ∗ q) ≥ min{BT (p), BT (q)},
(2) BI(p ∗ q) ≥ min{BI(p), BI(q)},
(3) BF (p ∗ q) ≤ max{BF (p), BF (q)}.

Definition 2.6 ( [41]). A neutrosophic set B = (BT , BI , BF ) of X is called a neutrosophic

ideal of X if for all p, q ∈ X,

(1) BT (0) ≥ BT (p) ≥ min{BT (p ∗ q), BT (q)},
(2) BI(0) ≥ BI(p) ≥ min{BI(p ∗ q), BI(q)},
(3) BF (0) ≤ BF (p) ≤ max{BF (p ∗ q), BF (q)}.

3. (S, T )-Normed doubt neutrosophic ideals

Definition 3.1. A neutrosophic set B = (BT , BI , BF ) of X is called a doubt neutrosophic

subalgebra of X if for all p, q ∈ X,

(1) BT (p ∗ q) ≤ max{BT (p), BT (q)},
(2) BI(p ∗ q) ≤ max{BI(p), BI(q)},
(3) BF (p ∗ q) ≥ min{BF (p), BF (q)}.

Definition 3.2. A neutrosophic set B = (BT , BI , BF ) of X is called a doubt neutrosophic

subalgebra of X with respect to a t-conorm S and a t-norm T (or simply, an (S, T )-normed

doubt neutrosophic subalgebra of X) if for all p, q ∈ X,

(1) BT (p ∗ q) ≤ S(BT (p), BT (q)),

(2) BI(p ∗ q) ≤ S(BI(p), BI(q)),

(3) BF (p ∗ q) ≥ T (BF (p), BF (q)).

Definition 3.3. A neutrosophic set B = (BT , BI , BF ) of X is called a doubt neutrosophic

ideal of X if for all p, q ∈ X,

(1) BT (0) ≤ BT (p) ≤ max{BT (p ∗ q), BT (q)},
Al-Masarwah and Ahmad, Structures on Doubt Neutrosophic Ideals of BCK/BCI-Algebras
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(2) BI(0) ≤ BI(p) ≤ max{BI(p ∗ q), BI(q)},
(3) BF (0) ≥ BF (p) ≥ min{BF (p ∗ q), BF (q)}.

Definition 3.4. A neutrosophic set B = (BT , BI , BF ) of X is called a doubt neutrosophic

ideal of X with respect to a t-conorm S and a t-norm T (or simply, an (S, T )-normed doubt

neutrosophic ideal of X) if for all p, q ∈ X,

(1) BT (0) ≤ BT (p) ≤ S(BT (p ∗ q), BT (q)),

(2) BI(0) ≤ BI(p) ≤ S(BI(p ∗ q), BI(q)),

(3) BF (0) ≥ BF (p) ≥ T (BF (p ∗ q), BF (q)).

Example 3.5. Consider a given BCK-algebra X = {0, k, l,m} in Table 1:

Table 1. Tabular representation of a BCK-algebra X = {0, k, l,m}.

∗ 0 k l m

0 0 0 0 0

k k 0 0 k

l l k 0 l

m m m m 0

Define a neutrosophic set B = (BT , BI , BF ) of X by Table 2:

Table 2. Neutrosophic set B = (BT , BI , BF ).

X BT (p) BI(p) BF (p)

0 0 0 1

k 0.50 0.40 0.33

l 0.50 0.40 0.33

m 1 0.90 0

Clearly, BT (0) ≤ BT (p) ≤ SM (BT (p ∗ q), BT (q)), BI(0) ≤ BI(p) ≤ SM (BI(p ∗ q), BI(q)) and

BF (0) ≥ BF (p) ≥ TL(BF (p ∗ q), BF (q)) for all p, q ∈ X. Hence, B = (BT , BI , BF ) is an

(SM , TL)-normed doubt neutrosophic ideal of X. Also, note that a t-conorm SM and a t-norm

TL are not associated.

Remark 3.6. Example 3.5 holds even with the t-conorm SM and t-norm TM . Hence, B =

(BT , BI , BF ) is an (SM , TM )-normed doubt neutrosophic ideal of X.

Remark 3.7. Every doubt neutrosophic ideal of X is an (S, T )-normed doubt neutrosophic

ideal of X, but the converse is not true.

Al-Masarwah and Ahmad, Structures on Doubt Neutrosophic Ideals of BCK/BCI-Algebras
under (S, T )-Norms



Neutrosophic Sets and Systems, Vol. 33, 2020 280 of 289

Example 3.8. Consider a given BCK-algebra X = {0, 1, 2, 3, 4} in Table 3:

Table 3. Tabular representation of a BCK-algebra X = {0, 1, 2, 3, 4}.

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 2 1 0 0

4 4 4 4 4 0

Define a neutrosophic set B = (BT , BI , BF ) of X by Table 4:

Table 4. Neutrosophic set B = (BT , BI , BF ).

X BT (p) BI(p) BF (p)

0 0.50 0.50 0.33

1 0.50 0.50 0.33

2 0.50 0.50 0.33

3 0.75 0.75 0.25

4 0.75 0.75 0.25

Clearly, BT (0) ≤ BT (p) ≤ SL(BT (p ∗ q), BT (q)), BI(0) ≤ BI(p) ≤ SL(BI(p ∗ q), BI(q)) and

BF (0) ≥ BF (p) ≥ TP (BF (p ∗ q), BF (q)) for all p, q ∈ X. Hence, B = (BT , BI , BF ) is an

(SL, TP )-normed doubt neutrosophic ideal of X, but it is not a doubt neutrosophic ideal of X.

Lemma 3.9. If B = (BT , BI , BF ) is an (S, T )-normed doubt neutrosophic ideal of X, then so

is �B = (BT , BI , B
c
T ), where a t-conorm S and a t-norm T are associated.

Proof. Let B = (BT , BI , BF ) be an (S, T )-normed doubt neutrosophic ideal of X. Then,

BT (0) ≤ BT (p)∀p ∈ X and so 1 − Bc
T (0) ≤ 1 − Bc

T (p). Hence, Bc
T (0) ≥ Bc

T (p). Also, for all

p, q ∈ X, we have BT (p) ≤ S(BT (p ∗ q), BT (q)) and so 1−Bc
T (p) ≤ S(1−Bc

T (p ∗ q), 1−Bc
T (q))

which implies Bc
T (p) ≥ 1 − S(1 − Bc

T (p ∗ q), 1 − Bc
T (q)). Since S and T are associated, we

have Bc
T (p) ≥ T (Bc

T (p ∗ q), Bc
T (q)). Thus, �B = (BT , BI , B

c
T ) is an (S, T )-normed doubt

neutrosophic ideal of X.

Lemma 3.10. If B = (BT , BI , BF ) is an (S, T )-normed doubt neutrosophic ideal of X, then

so is ♦B = (Bc
F , BI , BF ), where a t-conorm S and a t-norm T are associated.

Proof. The proof is similar to the proof of Lemma 3.9.
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Combining Lemmas 3.9 and 3.10, we deduce that:

Theorem 3.11. A neutrosophic set B = (BT , BI , BF ) is an (S, T )-normed doubt neutrosophic

ideal of X if and only if �B and ♦B are (S, T )-normed doubt neutrosophic ideals of X, where

a t-conorm S and a t-norm T are associated.

Lemma 3.12. Every (S, T )-normed doubt neutrosophic ideal B = (BT , BI , BF ) of X satisfies:

for all p, q ∈ X,

p ≤ q ⇒ BT (p) ≤ BT (q), BI(p) ≤ BI(q) and BF (q) ≥ BF (p).

Proof. Let p, q ∈ X be such that p ≤ q. Then, p ∗ q = 0 and so

BT (p) ≤ S(BT (p ∗ q), BT (q)) = S(BT (0), BT (q)) ≤ BT (q),

BI(p) ≤ S(BI(p ∗ q), BI(q)) = S(BI(0), BI(q)) ≤ BI(q),

and

BF (p) ≥ T (BF (p ∗ q), BF (q)) = T (BF (0), BF (q)) ≥ BF (q).

This completes the proof.

Theorem 3.13. Every (S, T )-normed doubt neutrosophic ideal of X is an (S, T )-normed doubt

neutrosophic subalgebra of X.

Proof. LetB = (BT , BI , BF ) be an (S, T )-normed doubt neutrosophic ideal ofX. Since p∗q ≤ p
∀p, q ∈ X, it follows from Lemma 3.12 that BT (p ∗ q)) ≤ BT (p), BI(p ∗ q)) ≤ BI(p) and

BF (p ∗ q)) ≥ BF (p). Then,

BT (p ∗ q)) ≤ BT (p) ≤ S(BT (p ∗ q), BT (q)) ≤ S(BT (p), BT (q)),

BI(p ∗ q)) ≤ BI(p) ≤ S(BI(p ∗ q), BI(q)) ≤ S(BI(p), BI(q)),

and

BF (p ∗ q)) ≥ BF (p) ≥ T (BF (p ∗ q), BF (q)) ≥ T (BF (p), BF (q)).

Hence, B = (BT , BI , BF ) is an (S, T )-normed doubt neutrosophic subalgebra of X.

Remark 3.14. The converse of Theorem 3.13 is not hold in general.

Example 3.15. Reconsider the BCK-algebra X given in Example 3.5. Define a neutrosophic

set B = (BT , BI , BF ) of X by Table 5:
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Table 5. Neutrosophic set B = (BT , BI , BF ).

X BT (p) BI(p) BF (p)

0 0 0 1

k 0.50 0.50 0.33

l 1 1 0

m 1 1 0

Clearly, B = (BT , BI , BF ) is an (SM , TM )-normed doubt neutrosophic subalgebra of X, but

it is not (SM , TM )-normed doubt neutrosophic ideal of X, since

BT (l) = 1 > max{BT (l ∗ k), BT (k)},

BI(l) = 1 > max{BI(l ∗ k), BI(k)},

and

BF (l) = 0 < min{BF (l ∗ k), BF (k)}.

Definition 3.16. A mapping θ : X → Y of BCK/BCI-algebras is said to be a homomorphism

if θ(p ∗ q) = θ(p) ∗ θ(q)∀p, q ∈ X. If θ : X → Y is a homomorphism, then θ(0) = 0.

Let θ : X → Y be a homomorphism of BCK/BCI-algebras. For any neutrosophic set

B = (BT , BI , BF ) in Y, we define a new neutrosophic set B[θ] = (BT [θ], BI [θ], BF [θ]) such

that for all p ∈ X,

BT [θ] : X → [0, 1], BT [θ](p) = BT (θ(p)),

BI [θ] : X → [0, 1], BI [θ](p) = BI(θ(p)),

BF [θ] : X → [0, 1], BF [θ](p) = BF (θ(p)).

Theorem 3.17. Let θ : X → Y be a homomorphism of BCK/BCI-algebras. If

B = (BT , BI , BF ) is an (S, T )-normed doubt neutrosophic ideal of Y, then B[θ] =

(BT [θ], BI [θ], BF [θ]) is an (S, T )-normed doubt neutrosophic ideal of X.

Proof. We first have

BT [θ](0) = BT (θ(0)) = BT (0) ≤ BT (θ(p)) = BT [θ](p),

BI [θ](0) = BI(θ(0)) = BI(0) ≤ BI(θ(p)) = BI [θ](p),

BF [θ](0) = BF (θ(0)) = BF (0) ≥ BF (θ(p)) = BF [θ](p)
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for all p, q ∈ X. Let p, q ∈ X. Then,

BT [θ](p) = BT (θ(p)) ≤ S(BT (θ(p) ∗ θ(q)), BT (θ(q)))

= S(BT (θ(p ∗ q)), BT (θ(q)))

= S(BT [θ](p ∗ q), BT [θ](q)),

BI [θ](p) = BI(θ(p)) ≤ S(BI(θ(p) ∗ θ(q)), BI(θ(q)))

= S(BI(θ(p ∗ q)), BI(θ(q)))

= S(BI [θ](p ∗ q), BI [θ](q))

and

BF [θ](p) = BF (θ(p)) ≥ T (BF (θ(p) ∗ θ(q)), BF (θ(q)))

= T (BF (θ(p ∗ q)), BF (θ(q)))

= T (BF [θ](p ∗ q), BF [θ](q)).

Therefore, B[θ] = (BT [θ], BI [θ], BF [θ]) is an (S, T )-normed doubt neutrosophic ideal of X.

Theorem 3.18. Let θ : X → Y be an onto homomorphism of BCK/BCI-algebras and let

B = (BT , BI , BF ) be a neutrosophic set of Y. If B[θ] = (BT [θ], BI [θ], BF [θ]) is an (S, T )-

normed doubt neutrosophic ideal of X, then B = (BT , BI , BF ) is an (S, T )-normed doubt

neutrosophic ideal of Y.

Proof. For any b ∈ Y, there exists a ∈ X such that θ(a) = b. Then,

BT (0) = BT (θ(0)) = BT [θ](0) ≤ BT [θ](a) = BT (θ(a)) = BT (b),

BI(0) = BI(θ(0)) = BI [θ](0) ≤ BI [θ](a) = BI(θ(a)) = BI(b),

BF (0) = BF (θ(0)) = BF [θ](0) ≥ BF [θ](a) = BF (θ(a)) = BF (b).

Let p, q ∈ Y. Then, θ(a) = p and θ(b) = q for some a, b ∈ X. It follows that

BT (p) = BT (θ(a)) = BT [θ](a)

≤ S(BT [θ](a ∗ b), BT [θ](b))

= S(BT (θ(a ∗ b)), BT (θ(b)))

= S(BT (θ(a) ∗ θ(b)), BT (θ(b)))

= S(BT (p ∗ q), BT (q)),
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BI(p) = BI(θ(a)) = BI [θ](a)

≤ S(BI [θ](a ∗ b), BI [θ](b))

= S(BI(θ(a ∗ b)), BI(θ(b)))

= S(BI(θ(a) ∗ θ(b)), BI(θ(b)))

= S(BI(p ∗ q), BI(q))

and

BF (p) = BF (θ(a)) = BF [θ](a)

≥ T (BF [θ](a ∗ b), BF [θ](b))

= T (BF (θ(a ∗ b)), BF (θ(b)))

= T (BF (θ(a) ∗ θ(b)), BF (θ(b)))

= T (BF (p ∗ q), BF (q)),

Therefore, B = (BT , BI , BF ) is an (S, T )-normed doubt neutrosophic ideal of Y.

4. Product of (S, T )-normed doubt neutrosophic ideals

In this section, we discuss the direct product and (S, T )- product of (S, T )- normed doubt

neutrosophic ideals of BCK/BCI-algebras.

Lemma 4.1 ( [16]). Let S and T be a t-conorm and t-norm, respectively. Then,

S(S(p, q), S(a, b)) = S(S(p, a), S(q, b)),

T (T (p, q), T (a, b)) = T (T (p, a), T (q, b))

for all p, q, a, b ∈ [0, 1].

Theorem 4.2. Let X = P1×P2 be the direct product BCK/BCI-algebra of two BCK/BCI-

algebras P1 and P2. If B = (BT , BI , BF ) (resp., C = (CT , CI , CF )) is an (S, T )-normed

doubt neutrosophic ideal of P1 (resp., P2), then D = (DT , DI , DF ) is an (S, T )-normed doubt

neutrosophic ideal of X defined by DT = BT × CT , DI = BI × CI , and DF = BF × CF such

that

DT (p1, p2) = (BT × CT )(p1, p2) = S(BT (p1), CT (p2)),

DI(p1, p2) = (BI × CI)(p1, p2) = S(BI(p1), CI(p2)),

DF (p1, p2) = (BF × CF )(p1, p2) = T (BF (p1), CF (p2))

for all (p1, p2) ∈ X.
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Proof. Let (p1, p2), (q1, q2) ∈ P1 × P2. Since X = P1 × P2 is a BCK/BCI-algebra, we have

DT (0, 0) = (BT × CT )(0, 0) = S(BT (0), CT (0))

≤ S(BT (p1), CT (p2))

= S((BT × CT )(p1, p2))

= DT (p1, p2),

DI(0, 0) = (BI × CI)(0, 0) = S(BI(0), CI(0))

≤ S(BI(p1), CI(p2))

= S((BI × CI)(p1, p2))

= DI(p1, p2),

and

DF (0, 0) = (BF × CF )(0, 0) = T (BF (0), CF (0))

≥ T (BF (p1), CF (p2))

= T ((BF × CF )(p1, p2))

= DF (p1, p2).

Also,

DT (p1, p2) = (BT × CT )(p1, p2) = S(BT (p1), CT (p2))

≤ S
(
S(BT (p1 ∗ q1), BT (q1)), S(CT (p2 ∗ q2), CT (q2))

)
= S

(
S(BT (p1 ∗ q1), CT (p2 ∗ q2)), S(BT (q1), CT (q2))

)
= S

(
(BT × CT )(p1 ∗ q1, p2 ∗ q2), (BT × CT )(q1, q2)

)
= S

(
(BT × CT )((p1, p2) ∗ (q1, q2)), (BT × CT )(q1, q2)

)
= S

(
DT ((p1, p2) ∗ (q1, q2)), DT (q1, q2)

)
,

DI(p1, p2) = (BI × CI)(p1, p2) = S(BI(p1), CI(p2))

≤ S
(
S(BI(p1 ∗ q1), BI(q1)), S(CI(p2 ∗ q2), CI(q2))

)
= S

(
S(BI(p1 ∗ q1), CI(p2 ∗ q2)), S(BI(q1), CI(q2))

)
= S

(
(BI × CI)(p1 ∗ q1, p2 ∗ q2), (BI × CI)(q1, q2)

)
= S

(
(BI × CI)((p1, p2) ∗ (q1, q2)), (BI × CI)(q1, q2)

)
= S

(
DI((p1, p2) ∗ (q1, q2)), DI(q1, q2)

)
,
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and

DF (p1, p2) = (BF × CF )(p1, p2) = T (BF (p1), CF (p2))

≥ T
(
T (BF (p1 ∗ q1), BF (q1)), T (CF (p2 ∗ q2), CF (q2))

)
= T

(
T (BF (p1 ∗ q1), CF (p2 ∗ q2)), T (BF (q1), CF (q2))

)
= T

(
(BF × CT )(p1 ∗ q1, p2 ∗ q2), (BF × CF )(q1, q2)

)
= T

(
(BF × CF )((p1, p2) ∗ (q1, q2)), (BF × CF )(q1, q2)

)
= T

(
DF ((p1, p2) ∗ (q1, q2)), DF (q1, q2)

)
.

This completes the proof.

Definition 4.3. Let B = (BT , BI , BF ) and C = (CT , CI , CF )) be two neutrosophic sets of a

BCK/BCI-algebra X. Then, (S, T )- product of B and C, written as [B.C](S,T ), are defined

by

[B.C](S,T ) = ([BT .CT ]S , [BI .CI ]S , [BF .CF ]T ),

where

[BT .CT ]S(p) = S(BT (p), CT (p)),

[BI .CI ]S(p) = S(BI(p), CI(p))

and

[BF .CF ]T (p) = T (BF (p), CF (p))

for all p ∈ X.

Theorem 4.4. Let S and T be a t-conorm and s-norm, respectively. Let B = (BT , BI , BF )

and C = (CT , CI , CF )) be two (S, T )- normed doubt neutrosophic ideals of X. If S1 is a

t-conorm which dominates S, i.e.,

S1(S(p, q), S(a, b)) ≤ S(S1(p, a), S1(q, b))

and T1 is a t-norm which dominates T, i.e.,

T1(T (p, q), T (a, b)) ≥ T (T1(p, a), T1(q, b))

for all p, q, a, b ∈ [0, 1], then ([BT .CT ]S1 , [BI .CI ]S1 , [BF .CF ]T1) is an (S, T )-normed doubt neu-

trosophic ideal of X.
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Proof. For any p ∈ X, we have

[BT .CT ]S1(0) = S1(BT (0), CT (0)) ≤ S1(BT (p), CT (p)) = [BT .CT ]S1(p),

[BI .CI ]S1(0) = S1(BI(0), CI(0)) ≤ S1(BI(p), CI(p)) = [BI .CI ]S1(p),

[BF .CF ]T1(0) = T1(BF (0), CF (0)) ≥ T1(BF (p), CF (p)) = [BF .CF ]T1(p).

Also, for all p, q ∈ X, we have

[BT .CT ]S1(p) = S1(BT (p), CT (p))

≤ S1
(
S(BT (p ∗ q), BT (q)), S(BT (p ∗ q), BT (q))

)
≤ S

(
S1(BT (p ∗ q), BT (p ∗ q)), S1(BT (q), BT (q))

)
= S

(
[BT .CT ]S1(p ∗ q), [BT .CT ]S1(q)

)
,

[BI .CI ]S1(p) = S1(BI(p), CI(p))

≤ S1
(
S(BI(p ∗ q), BI(q)), S(BI(p ∗ q), BI(q))

)
≤ S

(
S1(BI(p ∗ q), BI(p ∗ q)), S1(BI(q), BI(q))

)
= S

(
[BI .CI ]S1(p ∗ q), [BI .CI ]S1(q)

)
,

and

[BF .CF ]T1(p) = T1(BF (p), CF (p))

≥ T1
(
T (BF (p ∗ q), BF (q)), T (BT (p ∗ q), BF (q))

)
≥ T

(
T1(BF (p ∗ q), BF (p ∗ q)), T1(BF (q), BF (q))

)
= T

(
[BF .CF ]T1(p ∗ q), [BF .CF ]T1(q)

)
.

This completes the proof.

5. Conclusions

In this paper, we have introduced the notions of (S, T )- normed doubt neutrosophic subal-

gebras and ideals of BCK/BCI-algebras and described the characteristic properties. Then,

we have considered images and preimages of (S, T )- normed doubt neutrosophic ideals under

homomorphism. Moreover, we have discussed the direct product and (S, T )- product of (S, T )-

normed doubt neutrosophic ideals of BCK/BCI-algebras. We aim to extend our notions to

(1) (S, T )- normed doubt generalized neutrosophic positive implicative ideals of BCK-

algebras.

(2) (S, T )- normed doubt generalized neutrosophic ideals of BCK/BCI-algebras.
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(3) (S, T )- normed doubt cubic neutrosophic ideals of BCK/BCI-algebras.
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