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Abstract: A single-valued neutrosophic set, an generalization of intuitionistic fuzzy set, is a powerful model to deal with
uncertainty. In this study we present a method to solve L R-type single-valued neutrosophic linear programming prob-
lems by using unrestricted L R-type single-valued neutrosophic numbers. We propose the ranking function to transform
L R-type single-valued neutrosophic problems into crisp problems. The arithmetic operations for unrestricted L R-type
single-valued neutrosophic numbers are introduced. We propose a method to solve the fully single-valued neutrosophic
linear programming problems with equality constraints having L R-type single-valued neutrosophic numbers as right
hand sides, parameters and variables. We describe our proposed method by solving real life examples.
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1 Introduction

First time in the history, Zadeh [53] introduced the theory of fuzzy sets to handel vagueness. Fuzzy logic and fuzzy
sets have been applied to many real life applications. Atanassove [8] gave the concept of intuitionistic fuzzy sets which
is an extension of fuzzy set. In intuitionistic fuzzy set, we deal with non-membership function as well as membership
function. Intuitionistic fuzzy sets are fail to deal with complete information. Intuitionistic fuzzy sets are not able to
handle inconsistent information and indeterminate information which exist commonly in the belief system. Smarandache
[46] introduced the concept of neutrosophic set theory. Neutrosophic set is an extension of Intuitionistic fuzzy set, there
are three independent membership functions namely truth membership, falsity membership and hesitancy membership
function to deal with vague information.

Linear programming is a quantitative tool to allocate optimal allocation available sources between competing procedures.
It is among the popular techniques applied to several areas like marketing, production, advertising, finance and distri-
bution and so forth. Many problems of science and engineering are modeled in such a way that information about the
situation is vague, imprecise or incomplete. Many scientists have been worked on linear programming (LP) and fuzzy
linear programming (FLP). First time Bellman and Zadeh [10] introduced the idea of decision making in fuzzy envi-
ronment. By using multi-objective function Zimmerman [54] gave a technique to solve LP problem. Behera et al. [9]
proposed two new methods to solve FLP problems. They solved two types of problems with two different methods. Kaur
and Kumar [24] gave an introduction to fuzzy linear programming problems. Kumar et al. [28] presented a method to
solve fully fuzzy linear programming (FFLP) problems. Kaur and Kumar [25] presented a method to find exact fuzzy
optimal solution of FFLP problems by using unrestricted fuzzy variables. Najafi and Edalatpanah [38] proposed a better
technique to solve FFLP problem than Kumar et al. [28]. Kaur and Kumar [26] proposed Mehar’s method for solving
FFLP problems with LR fuzzy parameters. Najafi et al. [39] solved a nonlinear model for FFLP by using unrestricted
fuzzy numbers. Based on multi objective LP problems and lexicographic method Das et al. [17] proposed a new tech-
nique to solve FFLP problem with trapezoidal fuzzy numbers. Allahviranloo et al. [6] solved FFLP problem by using
a kind of defuzzification approach. Lotfi et al. [29] considered FFLP problems in which all parameters and variable are
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triangular fuzzy numbers. They used the concept of the symmetric triangular fuzzy number and popularized a method
to defuzzify a general fuzzy quantity. For solving FFLP problems with inequality constraints Prez-Caedo et al. [43]
suggested a revised version of a lexicographical-based method.

Later on, in 1983 Atanassove [8] introduced the concept of intuitionistic fuzzy set which is an extension of fuzzy set.
In intuitionistic fuzzy set there is a non-membership function along with membership function. Many researchers have
worked at certain techniques to solve LP problems in an intuitionistic fuzzy environment by using intuitionistic fuzzy
numbers (IFNs) or L R-type IFNs. In an intuitionistic fuzzy environment Angelov [7] has introduced a new technique to
the optimization problem. Singh and Yadav [44] introduced the product of L R-type IFNs and solved L R-type intuitionis-
tic fuzzy linear programming (IFLP) problems. Abhishekh and Nishad [2] proposed a new ranking function to obtain an
optimal solution of fully L R-intuitionistic fuzzy transportation problem by using L R-type IFNs. Dubey and Mehra [18]
solved LP problems with triangular intuitionistic fuzzy numbers (TIFNs). Nagoorgani and Ponnalagu [36] introduced
division of TIFN by using accuracy function, score function, a-cut and -cut. Edalatpanah [19] designed a model of
data envelopment analysis with TIFNs and established a strategy to solve it. Kabiraj et al. [23] solved IFLP problems
by using a method based on a method suggested by Zimmermann [54]. Malathi and Umadevi [30] IFLP problems in
an intuitionistic fuzzy environment. Prez-Caedo and Concepcin-Morales [42] proposed a method to solve L R-type fully
intuitionistic fuzzy linear programming (FIFLP) having inequality constraints in which variables and constrains are unre-
stricted L R-type IFNs. Pythagorean fuzzy linear programming is an extension of intuitionistic fuzzy linear programming.
Akram et al. [4, 5] proposed a method to solve pythagorean fuzzy linear programming problems by using pythagorean
fuzzy numbers and L R-type pythagorean fuzzy numbers.

Neutrosophic set is an extension of intuitionistic fuzzy set. In neutrosophic set there are three independent membership
functions namely truth membership, falsity membership and hesitancy membership function. Smarandache [46] intro-
duced the concept of neutrosophic set theory. Abdel-Basset et al. [1] suggested a technique to solve the fully neutrosophic
linear programming (FNLP) problems. Bera and Mahapatra [12] developed the Big-M simplex method to solve neutro-
sophic linear programming (NLP) problem. Das and Chakraborty [15] considered a pentagonal NLP problem to solve it.
Das and Dash [16] solved NLP problems with mixed constraints. Edalatpanah [20] presented a direct algorithm to solve
the linear programming problems. Khalifa et al. [27] solved NLP problem with single-valued trapezoidal neutrosophic
numbers. Recently, Ahmad et al. [3] have presented a new method to solve LPP using bipolar single-valued neutrosophic
sets.

The main contribution of this article is as follows.

1. We present the concept of L R-type SNN and arithmetic operations of L R-type SNNs by using a-cut, S-cut and
~y-cut.

2. We propose the idea of ranking function for L R-type SNNs.

3. We promote a technique to solve FSNLPP with equality constraints in which all the parameters and variables are
unrestricted L R-type SNNs.

4. We apply proposed method for solving real life problems.

This paper is arranged as follows: In Section 2, basic preliminaries and arithmetic operations are discussed. In Sections 3,
methodology for solving problems are explained. In Section 4, numerical problems are solved. In Section 5, conclusion
is given.

For more information, the readers are referred to [11, 13, 14, 21, 22, 31, 32, 33, 34, 35, 40, 41, 45, 46, 47, 48, 49, 50, 51,
52].

2 Preliminaries
Definition 1. [46] Let X be a nonempty set. A SNS Bin X is an object having the form
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where the truth membership function T,y : X — [0,1] , indeterminacy membership function / By X = [0, 1] and
the falsity membership function Fig ) : X — [0, 1].

Definition 2. [11] Let Bbea SNS in X, then its a-cut, 3-cut and y-cut are defined as B*={z e X :T(z) > a},
B ={reX:I(z)<pland BY = {x € X : F(z) <~} witha, 3,y € [0, 1].

Definition 3. A SNN B = ([b; 1,730, 7;1" ,7"]; x, 0, ) Lr is defined as an LR-type SNN, if its truth membership (Ts(x)),
Indeterminacy membership (I5(x)) and falsity membership (Fz(x)) functions are defined as:

o L(5E), a<bi>0,
TB(J:)_{ R(%=Y), 2 >b,r >0,

(), z<bl >0,
T5() {R’(‘”‘,b), x> b1 >0,

r

and

L//(b—//z), x < b, " > 0,
FE(:C) = { R//(xl;b)’ z>br" >0,

r

where | < I' <1".r < v’ <" L and R are continues, non-increasing functions on [0,00) and L', R', L" andR" are
continuous and non-decreasing functions on [0, 00) such that

1. 1(0) = R(0) = x,
2. limgyooR(x) = limy—oo L(z) = 0,
5 L(0) = R(0) =1,

4. limgoo R (x) = limy—oo L' (z) = 1,
5. L"(0) = R"(0) = ¢,

6. limy_ oo R () = limg_ oo L (x) = 1,

b is called the mean value of B, l and r are the left and right spreads of (Tz(x)), I and v’ are the left and right spreads
of (I(x)) and 1" and r" are the left and right spreads of (F(x)), respectively.

Remark
If we set L(z) = R(z) = maz{0, x — z}, L'(z) = R'(v) = min{l,n+z} and L"(z) = R"(x) = min{1,( + z} then
B = ([b;l,m;U',7";1",7"]; x,m, ¢) Lr becomes L R-type triangular single-valued neutrosophic number.

_ _ X —Z, 0 S x S X5

L(w) = R(z) = { 0, otherwise,
n+z, n<z<l1,

L/(m) - R'(x) - { 1 otherwise

" _ /! _ C‘i‘l', C S X S 17
L(w) = B (x) = { 1, otherwise,

x;1,¢ € [0,1].

Definition 4. Based on [44], An LR-type SNN B = ([b;L,r; U, 751", v"]; x,m, {) LR is non-negative, if b — I’ > 0 and
denoted as B > 0.

Definition 5. Based on [44], An LR-type SNN B = ([b; 1, r;1',r";1”,7"); x,1,¢) L is non-positive, if b + 7 < 0.
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Definition 6. Based on [44], An LR-type SNN B = ([b;1,7;1',7";1",7"); x,n,¢) LR is unrestricted, if b is any real
number.

Theorem 7. Let B = ([b; 1, i 7' 17" x,m, Q) Lr be an LR-type SNN, then its a-cut, B-cut and ~y-cut are Be =
[b—IL " Ya),b+rR )], B® = [b—UL'~YB),b+ R ~1(B)] and BY = [b—1"L""(y),b+ r"R"~(v)], with

a, B,v € [0,1].
Proof. By using the Definition 2, the theorem can be proved easily.

Definition 8. Let B = ([b;1,7;1',7';1",7"); x,n, () Lr be an LR-type SNN, then ranking of B, denoted R(B), can be
defined as
1

R(B) = é[(ofb — ZL—l(a))da+(0f b+rR™a))da+([b— l’L"l(B))d6+(fl b+ T’R'_l(ﬂ))d6+(cf1 b—1"L""(y))dy+
n n

1
([ b+r"R ().
¢
Let By and By be two LR-type SNNs,
° Bl < BQ lf?R(Bl) < ?R(Bl),

By = By if R(B1) > R(By),

° él =~ BQ lféR(Bl) = %(Bl)

2.1 Arithmetic Operations

Theorem 9. Let B, = ([bu; {1,150y, 7350, Y xa,m, G e and By = ([bo; la, 723 U, 7 14,7415 X2, 112, C2) LR be two
LR-type SNNs, then By © By = ([by + b2; 11 + 2,71 + 7251y +15, 77 + 7551 + 15,77 + 5] xa Ax2,m V2, GV @) Lr
proof. Let By = ([by; 1,150, v U vyl xa, ms G) g and By = ([ba; la, m2; 1y, 755 15, 185 x2, 2, (2) LR be two LR-type
SNNs, then their a-cut, B-cut and ~y-cut are given as;

B'll = [bl — llL_l(Oé), by + T1R_1(a)], Bg = [bQ — lgL_l(oz), by + ’I”QR_I((I)],

By = [bi = KL 71(B), by + iR Y(B)], By = [bo — L (8),ba + 4R H(B)],

By = [by — BT~ (), by + R ()} BY = [ba — 51" (7). bo + 4R (3)].

Thus,

BS 4+ B = [b1 — hL () 4+ by — Ia L7 (a), by + R (@) + by + ro R ()] (1)

By taking o = x in equation (1), we have

(By + Bg)*™X = by + by. 2)
By taking o = 0 in equation (1), we have
(B1 + B2)*=" = [by + by — 1 — lo, by + o + 71 + 73] 3)
Now
BY + By = [by — {171 (B) + by — 5L 1 (8), by + R H(B) + by + 4R (). )
By taking 3 = n in equation (4), we have
(By + B3)P=" = by + by. S)
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By taking B = 1 in equation (4), we have
(B1+ B2)P=t = [b1 + by — U} — 15, b1 + by + 7§ +15). (6)
Further,
BY + B} = (b — L'~ (3) + bo — L'~ (7), by + /R 71 (3) + ba + 4R 1 (3)]. ™
By taking v = ( in equation (7), we have
(By 4 B2)"=¢ = by + by. 8)
By taking v = 1 in equation (7), we have
(B + Bo)"= = by + by — 1 —15,b1 + by + 17 +75). 9)
By combining the equations (2),(3),(5),(6),(8), and (9), the result follows.

Theorem 10. Let Bl = ([bh l1,71; ll? 7'17 llll, //] X1,M1, Cl)LR and B2 ([bg, lg, 7’2, 1/2, Té, /2/, 7“/2/]; X2,1M2, CQ)LR be two
LR- lypeSNNs then Bl@BQ ([blfbg,ll ro, 1 — lz,ll 7“2,7"1 lé,l” 2, 1 l,] X1\ X2, \/772,(1\/C2)LR
proof. Let By = ([b1; 11, 71; 15,7 U 7); x1,m, €1 Lr and By = ([ba; Lo, 723 Uy, 7 19, 70); X2, 112, C2) LR be two LR-type
SNNs, then their a-cut, 3-cut and ~y-cut are given as;

B¢ = [by — 1L™Y(a),by + 1R~ ()], BS = [by — laL ™" (0), ba + 2R~ (a)),

BY = [by — [L'-1(8), by + TR Y(B)], BY = [bs — L1 (8), ba + 5B ~1(8)]

Bl = by — /L' (), b1 + 7R ()} BY = (oo — 1" (9), b + 4R ()],

Thus,

B — BS = [b1 — hL 7Y (a) — by — R~ Ya), by + R (a) — by + bL 71 (a)]. (10)

By taking o = x in equation (10), we have

(By — B2)*™X = by — bs. (11)
By taking o = 0 in equation (10), we have
(Br — B2)*70 = [by — by — I; — 19,b1 — by + 11 + o). (12)
Now
B} — BY = [by — ;L7 (B) — by — bR H(B), by + iR H(B) — ba + LL 1 (B)). (13)
By taking B = n in equation (13), we have
(By — B2)P=" = by — bs. (14)
By taking B = 1 in equation (13), we have
(B1 = B2)?~! = [by — by = [y =1, b1 — by + 7 + I5). (15)
Further,
By = B} = by = L™ (7) = by = 51" (9) by + (R (7) = ba + IR ()], (16)
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By taking v = ( in equation (16), we have
(By — B3)"=¢ = b, — by. (17)
By taking v = 1 in equation (16), we have
(By — Bo)"=t = [by —bo — If — 74, by — by + 7] +15]. (18)
By combining the equations (11),(12),(14),(15),(17), and (18), the result follows.
Theorem 11. Ler B = ([b;1,r;1,7'1;1”,7"]; x, 0, ¢) Lr be an LR-type SNN and c be any arbitrary real number, then

B - (cbyelyerycl er’scl”, er'), c>0,
(cb; —cr, —cly; —cr', —cl's —er”, —cl”), c<0.

Proof. Let B = ([b;1,r; I, 711" 1" ; X1, C)Lr be an LR-type SNN and c be any arbitrary real number, then
B =[b—IL7"Y(a),b+rR ()], B® = b—U'L'(B),b+ "R~ (B)), BY = [b—1"L"(y),b+ "R (7)].
Now, if ¢ > 0, then

cB* = [cb — clL™Y(a), cb 4+ crR™1(a)]. (19)

By taking o = x in equation (19), we have

cB=X = ¢}, (20)
By taking o« = 0 in equation (19), we have
cBo=0 = [¢b — cl,cb + cr]. 21
Also,
¢BP =[cb—cl'L'"Y (), cb + cr' R~1(B)). (22)
By taking B = n in equation (22), we have
cBP=" = cb. (23)
By taking B = 1 in equation (22), we have
cBf=1 = [eb—cl',cb+ cr']. (24)
Further,
¢BY = [cb—cl"L" 7 (7),cb+ er" R (7). (25)
By taking v = ( in equation (25), we have
cB7=¢ = cb. (26)
By taking v = 1 in equation (25), we have
cBY = [cb—cl”, cb + ). (27)
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By combining the equations (20),(21),(23),(24),(26), and (27), the case ¢ > 0 follows.
If ¢c;0, then

¢B* = [cb+ erR™(a), cb — LY (a)]. (28)

By taking o = x in equation (28), we have

cBY=X = ch. (29)
By taking o = 0 in equation (28), we have
cB=0 = [¢b + er, cb — cl]. (30)
Also,
¢B? =[cb+ e’ R=Y(B), cb — cl' L'~ (B)]. (31)
By taking B = n in equation (31), we have
cBB=" = cb. (32)
By taking B = 1 in equation (31), we have
Bt = [eb+ e, eb — ). (33)
Further,
¢BY = [cb+ " R (7), b — cl"L" (7). (34)
By taking v = ( in equation (34), we have
c¢B"=¢ = cb. (35)
By taking v = 1 in equation (34), we have
B = [eb+ e eb — cl"]. (36)

On combining the equations (29),(30),(32),(33),(35), and (36), the case c;0 follows. thus proof completed.

Theorem 12. Let By = ([by; 1y, r1; 1, i3 U7} xa,m, C1) Lr and By = ([ba; Lo, mo3 1y, w3 1 7] X2, 12, Co) LR be two
non-negative L R-type SNNs, then

By ® By = ([byba; bily +baly — lyly, byro + bory + 11703 byl + boly — 11y, byrh 4 borh 4 7rh; byll + bolt — 1714, byl +
bar{ +riry)s x1 A Xx2,m V2, GV G2). )

Proof. Let By = ([bi;ly,ry; 19,7051, 7 ) xa.m, C1)r and By = ([ba; 12, ro; 1y, 755 15,755 X2, 12, C2) LR be two non-
negative L R-type SNNs, their a—cut, 5—cut and y—cut are given as:

BY = [by — LL™Ya),by + R~ ()], B§ = [by — oL~ (), bs + 2R~ (a)),

By = by = 1177 (B), by + iR ()], By = [ba = hL 1 (8), ba + 5 R (B))

Bl = by —{L"7'(7),b1 + r{R" ()], By = [b2 = 5L 1 (3), b2 + 4R~ (7).

Thus,

BYBS = [(by — 1L () (b2 — oL Y (), (b1 + 1R~ (@)) (by + maR™ ()] (37)

Jamil Ahmed, LR-Type Fully Single-Valued Neutrosophic Linear Programming Problems.



Neutrosophic Sets and Systems, Vol. 46, 2021 423

By taking o« = x in equation (37), we have

(B1B2)2™X = bybs. (38)
By taking o = 0 in equation (37), we have
(B1B2)*=0 = [biby — bla — baly + lila, biby + bira + bary + rira). (39)
Now
BY By = [(br — (L1 (8))(ba = BL.LH(8)), (b + 4 R H(B) bz + R H(B))]. (40)
By taking B = n in equation (40), we have
(B1B3)=" = bybs. (41)
By taking B = 1 in equation (40), we have
(B1B2)P=! = [byby — bylh — bol) + 1)1y, bibg + byrh + bar + 7). (42)
Also
BBy = [(by = /L™ (1)) (b2 = 5L (7)), (b1 + r{ R (7)) (b2 + 75 R ()], (43)
By taking v = ( in equation (43), we have
(B1B2)"=¢ = bybo. (44)
By taking v = 1 in equation (43), we have
(B1B2)"=t = [biby — byl — byl + 1715, bybo + byrly + bor + ri1h]. (45)

By combining the equations (38),(39),(41),(42),(44), and (45), the result follows.

Theorem 13. Let By = ([by; 1y, r1; 15,75 1%, 7"]; x1,m1, C1) Lk be non-negative LR-type SNN, and By = ([ba; lo, 723 I},
rh; 15,515 X2, M2, (2) LR be non-positive LR-type SNN, then B1®By = ([b1b2; bila—bary +lar1, birg —baly — 1725 byl —
bor + lyr], birsy — bol} — 1755011y — bor + Ig7, biry — bali — 1{r3]ix1 A X2, m V 02,1V C2)LR-

Proof. Let By = ([b1; 1y, 71; U Uil xa, ms G ) Lr be non-negative LR-type SNN, and By =

([b2; la, 25 1s, 55 18 78] X2, M2, C2) LR be non-positive L R-type SNN, their a—cut, S—cut and y—cut are given as:

BY = [by — LL™Ya),by + 1R ()], B§ = [b2 — oL~ (), by + 2R~ ()],

BY = [by = WL~} (8),by + riR 1 (B)], By = [bs = L'~ (8), bz + r4R 1(B)],

Bl =[b1 = {17 (9), b1+ r{ R7H ()], BY = [ba = L (1), ba + r§ R (7).

Thus,

BYBS = [(by + r1 R () (b2 — LY (), (b — LL ™)) (by + 7R ()] (46)

By taking o = x in equation (46), we have
(B1B3)*™X = bybs. (47)

By taking o = 0 in equation (46), we have

(B1B2)a:0 = [blbg — b112 + b27’1 — lQT’l, blbg + 517’2 — bgll — l17’2]. (48)
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Now

BYBY = [(by + iR 7Y(8)) (b2 — L' 7H(B)), (b — LL'TH(B)) (b2 + 5B 1(B))). (49)

By taking B = n in equation (49), we have

(B1B5)P=" = by bs. (50)

By taking B = 1 in equation (49), we have
(B1B3)P=Y = [byby — byl + bor) — 17}, biby + biry — bol — 1h75]. (51)

Also

BYBY = [(by + /R (7)) (ba — 5L 7 (), (by = /L'~ (7)) (b2 + 5 R~ ()], (52)

By taking v = ( in equation (52), we have
(B1B3)7=¢ = byby. (53)

By taking v = 1 in equation (52), we have
(B1B2) ™! = [byby — byll + bor’l — 157 byba + byl — bal — 1], (54)

By combining the equations (47),(48),(50),(51),(53), and (54), the result follows.

Theorem 14. Let By = ([by; 11, r1; U, Uil xa, my G) Lr be non -positive LR-type SNN, and By = ([by; I, ro; 1k,
i 1, r4]; X2, 2, C2) L be non-negative LR-type SNN, then By ® By = ([blbg,bgll — byrg + lirg, —b1ly + bory —

lory; bgll — b17’2 + 117“2, b1l2 + bz?”l 1/27”1, bgl” — blT + l”T‘ —bll” + bQT” — l” ] X1 A X2,m V12, 1V )R-
Proof. Let By = ([b1; 01, 130, 3 1 7Y xa, m, €1 ) Lr be non-positive LR-type SNN, and By =

([b2; 12, a5 1y, 793 15, 55 X2, 2, CQ)LR be non-negative L R-type SNN, their a—cut, 5—cut and y—cut are given as:

Bf = [by — L™ (@),by + i R” ( ) BS = [b2 — L™ (@), b2 + r2R™ (o)),

BY = [by = LL7Y(B), by + i R H(B)), By = [by — 151 "1(B8), ba + 5 R ~1(B)),

By =[br —I{L" " (y),b1 + 7/ R"~1(v)], B} = [b2 — l’z'L”_l( ), by + i R (7)),

Thus,

B¢BS = [(by — 1L () (b2 + moR7Y()), (b1 + 11 R~ Ha))(by — I L7 ()] (55)

By taking o« = x in equation (55), we have

(B1B2)™X = by bs. (56)
By taking o« = 0 in equation (55), we have
(B1B2)*=" = [bibg — baly + bira — l172,b1by — bila + bar1 — lary]. (57)
Now
BYB; = [(by = L (8)) (b2 + 5B 1 (8)), (br + B H(8)) (b2 = LL T (B))]. (58)
By taking B = n in equation (58), we have
(B1B2)P=" = bybs. (59)
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By taking B = 1 in equation (58), we have
(B1B2)P=Y = [byby — bol) 4 byry — 11, biby — byl 4 bary — 1yr]]. (60)

Also

BB} = [(bv = L (1) (b2 + 75 R 1 (3)), (b1 + R 1 (3)) (b2 — 5L (7)) (61)

By taking v = ( in equation (61), we have
(B1B2)"=¢ = bybs. (62)

By taking v = 1 in equation (61), we have
(B1Bo) = = [bybg — boly 4 byrly — 17l bibg — byll + bor — 1577]. (63)

By combining the equations (56),(57),(59),(60),(62), and (63), the result follows.

Theorem 15. Let By = ([by; 1y, m1; 1y, 74 11,771 xa,m, Q) nr and By = ([bo; la, 723 1,

rh; 15, 515 X2, M2, (2) Lr be two non-positive LR-type SNNs, then B1 ® By = ([b1bo; —birg —bary — 1172, —b1lo — boly +

1,11

lila; —b1my — bary — 1y, —b1ly — baly + 1jl5; —biry — bary — riry, —bily — bali +I{15]; x1 A x2,m V 12, C1 V C2).
Proof. Let By = ([by;li,ri; 1, r; U 7 Tsxa,m, G) e and By = ([be;la, ro; 15, 515,755 x2, m2, (2) LR be two non-

negative L R-type SNNs, their a—cut, B—cut and y—cut are given as:
Bi? = [bl — llL_l(Oé), by + TlR_l(Oé)], B:zl = [bg — lgL_l(oz), by + T’QR_I((I)],
By = [by — [LL1(8), by + 7 R (B, By = (b — L 1(8), ba + 1R~ 1(B))
B = [by = /L~ (), b0+ r{R 1)), By = [ba — I5L~(v), b2 + 15 R (7).
Thus,
BYBS = [(b1 + 1R (a))(ba + r2R (@), (b1 — LL ™ (@) (ba — I L™ (a))].
By taking o = x in equation (64), we have
(B1B2)™X = b1by.
By taking oo = 0 in equation (64), we have
(Blgg)azo = [b1b2 + biro + bory + 7172, b1by — bils — baoli + lllg].
Now
BYB] = [(b1 + TR (8)) (b + 5B (8)), (b1 — LT (8)) (b2 — 1L.L ™1 (8))):
By taking B = n in equation (67), we have
(B1B3)"=" = bybs.
By taking B = 1 in equation (67), we have
(B1B3)P=Y = [byby + birly + bort + 71, biby — byl — boly + 1115].

Also

BYB] = [(bi +{ R () (b2 + 75 R (7)), (b — YL ' (7)) (b2 — L ' ().

(64)

(65)

(66)

(67)

(68)

(69)

(70)
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By taking v = ( in equation (70), we have

(B1B2)"=¢ = bybs. (71)
By taking v = 1 in equation (70), we have
(B1B2)"=" = [biby + byrly + borf + 7Y, biby — byly — bolf + 1{15). (72)

By combining the equations (65),(66),(68),(69),(71), and (72), the result follows.

Theorem 16. Let B, = bl,ll,rl,l U] xa,m, G Lr be an LR- type SNN in which by =1 <0,b1—=1, >0, and
17150 1

By = ([ba; la, ro; U, v 1 7415 X2, 12, Ca LRbeanunrestrlctedLR type SNN, then Bi®@Bsy = ([b; 1, U'r"; 1", v"]; x,n, O LR,
5,793 U5, 153

where b = b1by,l = b1by — min{blbg — laby — l1bg + 1112, b1by — loby + r1by — l2’r’1}, r= malE{ble + roby + 7109 +
TlT’Q,ble—i—Tgbl—lle l17“2} blbz,l = blbg min{blbg l/ b1 l/ b2+l/ l2,blbg 12()1+le2 l/ 7“/1} 7’/ = ma:c{blbg—i-
T2b1 +T1b2 +T17‘2, 1) -l—’l“2b1 —l/ by —ll’l“Z} bibg, " = b1b2 —mzn{blbg —l”bg +T b1 —l”’l“ , b1y -l—’l“ 'by —lgbl —lgTi/
and 7“// = ma.ﬁlf{ble — l”bg l”bl + l”l blbg + 7" bQ + ’I” b1 +r 7“2} — blbz

here x = x1 A x2,n=mVn2,(=C V(.

Proof. Let By = ([by; 11,7150, 715 U 7] xa, m, G1) Lr be an LR-type SNN such that by —1] < 0,b1—11 > 0,b1—11 > 0,
and By = ([by; 2, 2; U, i 18, r8]; x2, m2, C2) Lr be an unrestricted LR-type SNN, and their a—cut, B—cut and y—cut
are given as:

B = [b1 = hL™(a),b + 1R ()], BS = [by — L~ (a), by +r2R™H(a)),

By = [by — L'~ (8), by + raR’f(ﬂ)] = [bs = LL'~1(B), by + 4R =1 (B)],
B = [by = {L" 7 (), b1 + /R (7)), B} = [bo — l"L (), b+ R ()
Thus

B¢BS = [min{(by — 1LY ())(by — oL Y (), (b + 11 R~ () (b2 + 2R ()},

maz{(by + 1R (a)) (b2 + roR (), (by — L7 ())(by — I L7 ())}]. (73)

By taking o = x in equation (73), we have
(B1B3)*™X = bybs. (74)

By taking o = 0 in equation (73), we have

(BIB2)QZO = [min{ble — bily — boly + l1la, b1bo — bylo 4+ bory — lg?’l},

max{blbg + birg 4 bor1 4 1179, b1bo + biro — boly — l1’f’2}]. (75)
Now

BYBY = [min{ (b1 — L' (B))(ba — 1L "1(B)), (b1 + r{ R ~H(B)) (b2 + 4R~ (8))},

maz{(by + 1R 1 (8)) (b2 + rhR T (8)), {(br — LT (8)) (b2 — L ())}): (76)
By taking B = n in equation (76), we have

(B1B2)P=" = bybs. (77)
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By taking B = 1 in equation (76), we have

(B1B2)P=t = [min{biby — byll, — bol} + 1)1y, bibo — byl + bort — Ihr)},

max{biby + byirhy + bar| + 175, bibe + byrh — bol} — l1rh}]. (78)
Also

B Bs = [min{ (b1 = I{L" 7' (7)) (b2 + 5B (7)), (b1 + /R () (b2 = 5L (1)}

maz{{(by = L' (7)) (b2 = 5L (3)), (b1 + P/ R () (b2 + 5 R ()], (79)

By taking v = ( in equation (79), we have
(B1B2)"=¢ = bybs. (80)

By taking v = 1 in equation (79), we have

(3132)7:1 = [mm{blbg + blrg — bgl/{ — /1,7‘/2,, b1by — by /2, + bQTlll — /2,7‘/1, ,

ma${b1b2 — bllg — bgl/ll + l’lllé/, b1by + blT‘/Q/ + b27“,1/ + T/{Tg}]. 81)

By combining the equations (74),(75),(77),(78),(80), and (81), the result follows.
By using similar method as used in the above theorem the following theorems can be proved easily.

Theorem 17. Let By = ([b1; 11,15 0, 75 U Y] xa, my ) Lr be an LR-type SNN in which by -1 <0,b1—11 >0, and

By = ([ba; la, ro; Uy, 155 15, 15 x2, M2, C2) Lr be an unrestricted LR-type SNN, then B1®Ba = ([b; 1,75 U'r'; 1" . 7"]; x, 1, ) LR,
where b = b1by,l = b1by — min{blbg — laby — l1bg + 1112, b1by — loby + by — l2’l“1}, r= max{blbg + roby + 110y +
r172, blb2+7“2b1—llbz—ll’r’Q}—ble, l/ = blbg—min{ble—llle-i-T/le— /17'/2, b162+r’1b2—l’2b1—l'2r'1},7“’ = max{blbg—
lllbg —lébl +l/1l,2, b1b2 —I—T/1b2 +7"/2b1 +7"/1T/2} —blbg, "= blbg —min{b1b2 —llllbg +T/2/b1 —l'{ré’, b1b2+’l“/1/b2 —lgbl —lgTi/

and v = max{biby — by — 15by + 115, b1by + r{ba + r5by + r{ri} — b1bo.

here x = x1 A x2,m=m V12, =0V (.

Theorem 18. Let B, = ([br; b, rs 1,y U T xa, sy € Lr be an LR-type SNN in which by — 1 < 0, by > 0, and

By = ([be; la, r2; 1, 75; 15, rh]; X2, m2, (2) Lr be an unrestricted L R-type SNN, then B1®@Bo = ([b; 1,5 U'r"; 1", v"); x, 1, () LR,
where b = ble,l = blbg — min{blbg - lle + T’le - 117"2, blbg + 7“1[)2 - lle - l27‘1}, r = ma.%'{ble — llbg - lle +
l1l2, b1b2+7‘1b2+’l“2b1 +T1T2}—b1b2, l, = blbg—min{blbg—lllb2+Tl2b1—lllT‘/z, blbg—f-T/lbz—l,le—léT/l}, T‘/ = ma:L‘{ble—
l’lbz — l’le +l’11/2, ble —1—7“/1()2 —|—7"/2b1 —|—7"/17“/2} — blbz, l// = ble —min{blbg — lllle +7“’2/b1 — /1/7”5/, blbz +?”/1’172 — lé’bl — l’g’?“’ll

and r" = max{biby — by — 15by + U], b1ba + {ba + r5b1 + r{ri} — b1ba.

here x = x1 A x2,m=mVn2,¢=C V(.

Theorem 19. Let By = ([by;11,71; U, r Ul xa,m, G ) Lr be an LR-type SNN in which by < 0, by +r1 > 0, and

By = ([be; la, ro; 1, v5; 15, rh]; X2, M2, (2) LR be an unrestricted L R-type SNN, then B1®@Bo = ([b; 1,75 U'r"; 1", v"); x,n, () LR,
where b = blbg,l = blbg — min{b1b2 - llbg + 7’2b1 - llTQ, b1b2 + T’1b2 — l2b1 - lgrl}, r = max{blbg — llbg - lzbl +
lllg, b1b2+7‘1b2+7"251—|—T1T2}—b1b2, ' = b1b2—min{b1b2—l/1b2+7‘/2b1— /17‘/2, b1b2+7“/1b2—l/2b1—lé7“/1}, r = max{blbg—
lllbg — 1/251 +l/1l/2, b1bs +7‘/le —|-7’/2b1 +7’/17'/2} — blbg, " = b1bs —min{blbg — l/llbg +T/2,b1 — l/l’ré’, b1by —i—"f’lllbg — Z/Q/bl — 1/2/7’/1/}
and " = ma:E{ble — llllbg — l/2/b1 + lllllg, b1by + Tlllbg + ré’bl + ’I"Y’I"é/} — b1bs.

here x = x1 A x2,m=mVn2,( =GV (.

Theorem 20. Let By = ([by; 1, m1; 1, vt 1 7); X1, 1, G ) g be an LR-type SNN in which by +r1 < 0, by+7] > 0, and

By = ([ba; la, ro; Uy, 55 15, 515 x2, M2, C2) LR be an unrestricted LR-type SNN, then B1®Ba = ([b; 1,75 U'r'; 1" . 7"]; x, 1, ) LR,
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where b = b1ba, | = biby — min{biby — l1by + roby — l172, b1b2 + 1r2by + r1bo2 + 1172}, v = max{bibs + r1ba — lab; —
l27“1,ble—lgbl—llbz—Flllg} ble,l/ = blbg min{blbg—l’ bQ—H”/le lll’l"é,blbg-i-’l"lll)Q lébl l/gr’l} 7“/ = maa:{blbg—
l/bg—l/bl—i-l/lé,b1b2+7'1()2+7“2b1+7’17‘2} blbg,l” = blbg—mwl{blbg—l”bg-i-T’ bl—l”TQ,ble-i-T bg—lgbl—lgT’lll
and " = max{biby — lfba — 15by + U]1],b1ba + 7{ba + r5b1 + r{ri} — b1bo.

here x = x1 A X2, =m V12,¢ = CV Ca.

Theorem 21. Let B = ([bl,ll,rl,l’l,rl, Tl x1,m, C1) Lr be an LR-type SNN in which by +1 < 0, b1+7"1' > 0, and

By = ([b2; l2, 25 15, o5 15 705 X2, M2, C2) L be an unrestricted LR-type SNN, then B1®By = ([b; L, ;1" "1 x,m, Q) LR,
where b = bibo,l = b1by — mm{blbg — l1bg 4+ 1roby — lire, biby + roby + r1bo + ?”17"2}, r= mam{blbg + r1by — loby —
lgT‘l, blbg—l2b1—l1b2+lll2}—blbg, I'= blbg—min{ble—libz-f-Tébl—lllT/Z, blb2+T2b1+T1b2+TiTé}, r = max{blbg—l-
’I”/le — lébl — ZIQT‘Il, ble — lgbl — l/1b2 + llllé} — blbg, l// = b1b2 — min{blbz — l’llbg +7” bl — ll 7“2 y b1b2 —|—T/1/b2 — lé’bl IQIT’ll
andr" = max{blbg — l/{bz — lgbl + lllllg, b1by + 7’/1,1)2 + Tgbl + ri’ré’ — b1bs.

here x = x1 A x2,m=m1Vn2,( =GV (.

Theorem 22. Let B; = ([br; s U P U] xa, my G ) Lr be an LR- type SNN in which by + r{ < 0, and By =
([bo; lo, 7o Iy, 7 14, 74]; X2, M2, Co) LR be an unrestricted LR-type SNN, then By @ By = ([b;1,7;1'1"; l” " x, 1, C) LRs
where b = biba,l = byby — min{biby — l1bg + roby — l172,b1b2 + 1r2by +r1bo +1riro}, 7 = maaz{blbz +r1bg — loby —
lory, ble—lgbl—l1b2+l112}—blbg, I'= blbg—min{blbz—libg—l-rébl— /17”I2, 1)152—1—7‘/2514-7"/1524-7“/1?”&} r' = max{ble—l—
T’lbg—lébl —ll2?”,1, blbg —l2b1 —lllbg-i-l, lé} blbg, " = blbg —min{ble—l/{bQ—F?” bl —l”T‘ blbz —|-T‘ b1 +’I” b2 +Ti/7“g
and 7“// = ma.l‘{ble + 7“/1/52 - 1/2/51 - ZIQIT{, b1b2 — l2b1 - l’llbg + lll’lg — blbz.

here x = x1 A x2,m=mVn2,( =0 V(.

Theorem 23. Let By = ([bv; b U, ey 1 v xa, m, G Lr be an LR- type SNN in which by — I/ >0, and By =
([b2; 12, 723 1y, 7 14, 78); X2, 112, Co) Lk be an unrestricted LR-type SNN, then By ® By = ([b; 1, 7;1'r"; l” " xsm, Q) LRs
where b = b1by,l = b1by — min{blbg — loby — l1bg + l1lo, b1by — loby + r1by — l27’1}, r= maac{blbg 4+ 7roby + 1r1b2 +
7172, b1ba+roby —liba—lira} —b1bo, I' = biba—min{biba—15b1 —1 b +111}, biba—15b1+r ba—15r) }, ' = max{biba+
’I”ébl +’I”/1b2 +7"/17“é, blbg —|—7"/2()1 l/ bg /Té} blbg, l// = blbz —min{ble — lé’bl — l/llbz +l/1/lg, ble — l’g’bl +7" b2 — lle
and r" = max{biby + rib1 + r{ba + r{ry, biba + riby — I{by — {1} — by1ba.

here x = x1 A\ x2,m =M \/"7275 GV Ga.

3 Methodology

In this section, a new method is presented to find the single-valued neutrosophic optimal solution of FSNLP problems
with equality constraints, in which all the parameters are represented by L R-type SNNs.

n
Maximize/ Minimize Z C; ® Xj; (82)
j=1

subject to

n
Y A @X; =B, Vi=123--,m
j=1

where C}, A;j, B; and X; are L R-type SNNs.

Step 1. AssumingC ([cjvp]7QJap]7q§7p]/7q;] Xj?ﬁ]?CJ)LR7 - ([x]7y]7zj7yjaz]7yja ]] (b]?aja"ij)LR?Alj -
([a”,lj,rj,lz,r],lz’, J] &ij,Vij, Lij) LR, and B; = ([bi;s],t],s],t;,s;’,t;’] €j,€j,¢;), the FSNLP problem can be trans-
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formed as follows;

Maximize/ Minimize ( Y7, ([cj; pj, 45305, @53 05 431 X5, 13> G Lr © ([253 95, 255 Y5 255975 2715 04,05, 855 ) LR ) 5 (83)

subject to

n

Z([aij;l]7rja ]7T l;/a ]] é-l])wl]) ’LJ)LR®([ﬁjaijz‘j?ijzjaij j] qb]?e]a’y”'])
j=1
= ([bi;8]7t],Sj,tj7S;I,t3/] 6j7€j7¢j)LR7Vi = 172737” M

where ([a:j,y],zj,yj, ],yj, ]] ¢;,0;,Kj)Lr are LR-type SNN,Vj =1,2,3-
Step 2. Using product of L R-type SNNs defined in Section (2.1) and assuming

([a”,lj,r],l/ l;/) ]] 5@J7¢2J7 ZJ)LR®([$]7y]7zj7yj7zj’yj7 ]] 5,05, 55) LR
= ([a fj,l;“,r],l;k, o ] Ty ] ’Sw’ww’ )
Here
§ij Noj = &5, iy V0 =5, Iij V ok = T
The FSNLP problem (83) can be transformed as follows;
Maximize/ Minimize ( >-7_, ([¢j; pjs 455 P @53 05 471 X515, G v © ([25595, 255 Y5 255475 271 05,05, K5 LR ) 5
(84)

subject to

([ :jvl;aer;k) 7 ; ] ’ j ] gwa@%a )LR_ ([buSj7t]78]7t]>s;/>t;,] ejvgjafbj)LRav’iz 1a2737"' , M

where ([z;; v, 2j; Y}, 23: Y5 2515 ¢4, 0, k) Lr are LR-type SNN, Vj = 1,2,3--- ,n
Step 3. Using arithmetic operations defined in Section (2.1), above problem becomes:

Maximize/ Minimize ( >_7_, ([¢j; 05, 455 P} @53 05 471 X5 13> G Lr © ([25595, 255 Y 255975 271 05, 05, k) LR ) 5
(85)

subject to

/ 12
Siyal =003 U=y Y =, S U = s Sy = 0 L = S =
/\[ z]] - 637\/[%]] _Eja [‘in';] ¢j7

y]Z()?Z]ZOv yé_yjzoa 23—23207 yy—y;ZO, Z;/_Z§207vj:1727377n

and ¢j, Gj, Kj € [0, 1].

Step 4. Now We have to ﬁnd LR- type single-valued neutrosophic feasible solution

XFE = ([«F J,y], ; ,yJ 2 ,yé“”, 2 "1 ®4,9;, k) Lr. By applying ranking, the FSNLP problem can be solved

Maximize/ Minimize R ( >-7_, ([¢j; pj» 453 P} 53 P 471 X5, 13> G er @ ([25595, 253 Y5 25397 21 04,05 K5 LR ) 5
(86)
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subject to

Z] 1035 buZ—l j Sj;z_] 175 tmz] 1l; _3/ ?:17'; =t}72j 1l; _3 ?:17"; :t}/’
/\[ Z]]—EJ,\/[Q/)U]—EJ, [I‘z]] ¢j7

y]ZO,Z]ZO, y;_yjzo) 23_23207 y;/_y;ZO, 23/—2520,VJ:1,2,3,771
and ¢j,(9j,l€j € [0, 1].
Step 5. Assuming ([c;; pj, 53 P}, 455 05 4515 X35 3> G LR @ ([255 95, 253 Y50 253 Y55 2715 85, 05, K5 ) LR

= ([25:95, 2] ys'j, 28 53 ys" 5, 28" 5], 5, 05, k) LR the problem (86) can be written as:

Maximize/Minimize R ( >0, ([25; 3, 255 ys'j, 2555 y8" 5, 28" )5 65,03, K3) LR ) ; (87)

subject to

! "
Syl = b Y =, Yy =, Y 0 = s Y ) =, I =8 =t
/\[ z]] 6J7\/[¢U] = &5 [F;;] (b]’

Y > 0,25 >0, y;—y; >0, z;—2 >0, y/—y:>0, z/—2>0Vj=12.3,-,n
and ¢;,0;,k; € [0, 1].
Step 6. As ranking function is linear thus the problem (87) can be written as:

Maximize/Minimize ( Do Rz 95, 255y 5, 28 5398”5, 28”1505, 05, K3 LR ) (88)
subject to
2 =105 = bis 2 5 J_Sj’zgl 175 = 2= 1l; =852 5T = 1 2 1l; =177 =1, (89)
A[ 1]]_6]7\/[ 1]]_637 [ ] d)Ja

ngO,Z]ZO, y‘;_yJZO7 23_23207 y‘g,_y‘gzoa Z;/—%ZO?VJZLZ?’?;”
and (15]', 9]', Kj € [0, 1].
Step 7. Using the definition of ranking function defined in Section (2.1), the problem can be converted into:

1 X X
{(ij—ij Ofmj—z (a)do)+
1 1
Maximize/Minimize | (/5 — v L'~ (8)dB) + ([ =5 — 25 R'~1(8)dB) ; (90)
n n
1 1
+(cf w8 —yi L' (y)dy) + (Cf:vj — 25" R (y)d)}]

subject to

/ 1

Z] 1 Gj bzaZﬂ Sj,Z] 175 %Z] 1l; _337 ?:17“; :tg'azj 1l}k _5 ?:17‘; :t}/,
/\[ 'L]] - 6]7\/[wz]] - E]’ [F';;] ¢.77

and ¢;,0;,k; € [0, 1].

Step 8 Solve the crisp linear programming problem (90) by proposed method to find the optimal solution x;, y;, 2;, y}, z},
Y5, 2], Xj>Mj» Gj- Step 9 Find the LR-type single-valued neutrosophic optimal solution X; of the FSNLP problem by
substituting the values of x;,y;, 25, yi, 25, yj, 27, X5, n; and G in X = ([255 5, 255 Y5, 255 Y55 215 X5> M5 G LR-

Step 10 Find the L R-type single-valued neutrosophic optimal solution of the FSNLP problem (82) by substituting the
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values of X; in >, C; ® Xj;.

Theorem 24. The solution of FSNLP problem with L R-type SNNs

n n
Maximize/ Minimize »  C; ® X; subjectto » Ay ® X; = B;,Vi=1,2,3,-- ,m. 1)
=1 i=1

where C;, A;j, B; and X are LR-type SNNs, exists when the solution of the associated crisp LPP

Maximize/Minimize%( Z?Zl([ 5y, ],ys],zsj,ys "5y 28"l ¢5,0%, K3)LR );

subject to

2= @iy = 0 2 B = s Dy = s ) ll;_sl ?1 o=t 2 ll; == =1,
*
/\[ 1]] _637\/[77/}]] €5 [F’L]] ¢J7
Y 20,25 >0, y;—y; 20, z;—2 >0, y/—y;>0, z -2 >0Vj=123,-,n
and ¢j,0;,k; € [0,1], exists. Otherwise, there is no guarantee that the LR-type single-valued neutrosophic optimal

solution exists.

Proof. Straightforward. 0

4 Numerical Examples

Example 1. A Company Manufacturing Problem. A company manufactures two types of face mask: cotton face
mask and wool face mask. Each face mask has to pass through two different machines: M; and Ms. M; ma-
chine can work for ([50;26,62;38,101;49.2,192];0.7,0.6,0.5),r minutes per week and My machine can work for
([68;41,94;54,133;67.8,262]; 0.6, 0.5, 0.3) g minutes per week. Ten hundred cotton face masks required ([5; 2, 3; 3, 5;

4.7,6];0.9,0.6,0.3) L g minutes on M; machine and ([6; 1,2;2,3;5.5,5];0.8,0.3,0.2) ; p minutes on My machine. Ten
hundred wool masks required ([7; 3, 4;4, 5;6.9,7];0.6,0.1,0.2) ., g minutes and ([8; 3,4; 4, 5; 7.9, 8];0.7,0.5,0.2) 1 g min-
utes on M, and My, respectively. The profit is Rs. ([12;5,6;7,8;10,11];0.6,0.2,0.3) 1,5 per thousand for cotton face
masks and Rs. ([14;4,7;6,9;8,13];0.8,0.5,0.4) ;g per thousand for wool face masks. The company wants to maximize
the profit.

We apply the method discussed in Section (3).

Maximize([12;5,6;7,8;10,11];0.6,0.2,0.3)Lr ® X1 @ ([14;4,7;6,9;8,13];0.8,0.5,0.4) . r ® X2
subject to

(15:2,3;3,5;4.7,6]:0.9,0.6,0.3) .r ® X1 @ ([6;1,2:2,3:5.5,5]:0.8,0.3,0.2) g @ X5
= ([50;26,62;38,101;49.2,192];0.7,0.6,0.5) . &
([7:3,4:4,5:6.9,7]:0.6,0.1,0.2) . @ X1 @ ([8;3,4:4,5;7.9,8]:0.7,0.5,0.2) g @ Xo
= ([68;41,94; 54, 133;67.8, 262]; 0.6,0.5,0.3) . &

where ([:L’l; ll, 713 1/1,7“/1; llll, 7“’1/]; X1,M1, Cl) and ([3?2; lg, T2, 1/2, 7’/2; 12/,7“/2/]; X2,1M2, CQ)LR are LR—type SNNE.
X1a7717C1,X277727C2 € [0’ 1]
Step 1: Let Xy = ([w1; 0y, r1; 00,711, 77 xa, 1, G or and Xo = ([wo; 12, 72515, 753 15, 755 X2, 12, C2) LR, then prob-
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lems can be written as

MCLJJZTTLZZ@([].2, 5) 6) 7785 ]-Oa 11]5 06)027 O'B)LR ® ([xla llvrl; l/l’riv /llvrlll]; X1, M1, Cl)LR69
([14;4,7;6,9:8,13];0.8,0.5,0.4) g @ ([2; l2,72; 5, 755 15, 75]; X2, 712, C2) LR

subject to

([5;2,3;3,5;4.7,6];0.9,0.6,0.3) L g @ ([x1; 11, 71; 17, 1 U v xasm, G ) e @ (65 1,252,3;5.5,5];0.8,0.3,0.2) L
@ ([w2;l2, 725 15, 753 15, 73]; X2, M2, C2) LR = ([50; 26, 62; 38,1015 49.2,192];0.7,0.6,0.5) LR
([77 37 47 47 5) 697 7]a 067 017 0'2)LR & ([gjla llv 15 /17 T/lv /1/7 T/ﬂ; X1,M1, Cl)LR S ({87 37 4a 4) 5) 797 8]7 07) 057 O'Z)LR
@ ([an l277”2; l/27ré7 /2/7 TI2/]7 X252, CQ)LR = ([68’ 417 947 54) 1337 6787 262}7 067 0'5)0‘3)LR

where ([331, lla 13 lllv Tlla lllla Tlll]; X1,M1, Cl) and ([IITQ, lZa Tr2; l/27 T/2a l/2,7 T/2/]7 X2,12, CQ)LR are LR—type SNNs.

X171, C17 X272, <2 € [07 1]
Step 2: Using product defined in Section (2.1), the FSNLP, problem obtained in step 1, can be written as:

Maximize([12x1; 1221 — min{7xy — 711,18z — 1811}, max{18x1 + 18r1, Tx1 + Tr1} — 12x1; 122,
—min{5xy — 5l},20z1 — 2001}, maz{20x + 20r], 521 + 5r}} — 1221; 1221 — min

{2x1 — 217, 2321 — 231]}, maz{23x1 + 2377, 221 + 27} — 1221];0.6 A x1,0.2V 11,03V (1) LR
®([14x9; 14x9 — min{10xy — 10l2, 21xe — 2112}, max{21xy + 21r9, 1029 + 10re} — 14xwe; 142
—min{8xq — 814, 23x9 — 2314}, max{23xs + 23rh, 8wy + 8rh} — 14x9; 1429 — min

{619 — 615, 2Tx9 — 2715}, maz{27xy + 277y, 629 + 679 } — 1425]; 0.8 A X2,0.5V 12,0.4 V (2) LR

subject to

([5x1; 521 — min{3z1 — 311, 8x1 — 81}, max{8x1 + 8r1,3x1 + 3r1} — bx1; 51y

—min{2x; — 21},10z1 — 10} }, max{10x; + 107}, 221 + 2r}} — 5a1;5z1 — min

{0.3z1 — 0317, 112y — 11}, max{11lzy + 117, 21 + r{} — 521];0.9 A x1,0.6 V 11,0.3V (1) LR
®([6xg; 622 — min{bxy — bly, 8xe — 8la}, max{8xa + 8ra, g + Hra} — 619; 69

—min{dxy — 4ly, 9o — 915}, max{9wy + 97, 4o + 414} — 629; 629 — Miin

{0.5z9 — 0.515, 1129 — 1115}, max{11lxg + 1175, 229 + 2rh} — 622];0.8 A x2,0.3V 12,0.2V (2) LR
— ([50; 26, 62; 38, 101; 49.2, 192]; 0.7, 0.6, 0.5) .

([Tx1; 721 — min{dxy — 41, 11y — 110 }, max{11xy + 11r, 42y +4r1} — 7215721

—min{3zy — 3l},12z; — 1201}, maz {1221 + 12r],3z1 + 3r}} — Tz1; Tx1 — min

{0.121 — 0.11Y, 142y — 141}, max{14zy + 1477, 21 + 7} — 721];0.6 A x1,0.1V 11,0.2V (1) LR
®([8x2; 8xe — min{bxe — blg, 1229 — 12l5}, max{12x9 + 1279, 5o + 5ro} — 8x9; 8o

—min{4ze — 415, 13z9 — 1315}, max {13z + 1314, 4wy + 4rh} — 8x9; 819 — min

{0.129 — 0.115, 1629 — 1615}, max{16z2 + 1675, 229 + 2ry } — 8x3];0.7 A x2,0.5V 12,0.2V (2) LR
— ([68;41,94; 54,133; 67.8, 262; 0.6, 0.5, 0.3) 1.1

where ([z1; 11, r1; 0, 75 7] xa, m, G) and ([z2; 12, ro; 1S, 755 15 55 X2, M2, C2) Lr are LR-type SNNs.

X157, Cl,X277727 <2 € [07 ]-]
Step 3: Using the arithmetic operations which are defined in Section (2.1), the FSNLP, problem obtained in step 2, can
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be rewritten as:

Maximize([12x1 + 14x9; 1221 — min{7zy — 711, 18x1 — 1811} 4+ 14z — min{10xs — 10l3, 2129 — 21l5},
+ maz{18z1 + 18ry, Tz + Tr1} — 1221 + max{21ze + 2179, 10x9 + 10r9} — 14x9; 1224
—min{bzy — 5l},20z; — 200} } + 14x9 — min{8zy — 815, 23w9 — 2315}, max{20z1 + 2077,
51+ 5r1} — 1221 + maz{23z2 + 23rh, 8o + 8y} — 14wa; 1227 — min{2xq — 217, 2321 — 2317}
+ 14z9 — min{6xy — 615, 27x9 — 2715}, maz{23x1 + 23r7, 221 + 27} — 1221 + maz{27zy + 277}
, 629 + 6745} — 14x9]; A[(0.6 A x1) A (0.8 A x2)], V[(0.2V n1) V (0.5 V n2)], V[(0.3V (1) V (0.4 V ()R

subject to

5x1 + 622 = 50, 7z + 822 = 68,

5x1 — min{3xy — 3l1,8z1 — 811} + 6z9 — min{bxe — 5la, 8xy — 8la} = 26,

max{8x1 + 8r1,3x1 + 3r1} — bxy + max{8xa + 8re, bxg + Hro} — 69 = 62,

5z1 — min{2xy — 21,1021 — 1001} + 69 — min{dzy — 415, 9o — 915} = 38,

maz{10x1 + 10}, 221 + 271} — 51 + max{9xs + 9Irh, 4wy + A1)} — 629 = 101,

5x1 — min{0.3z1 — 0.317, 1121 — 111]} + 629 — min{0.5z5 — 0.515, 11z — 1115} = 49.2,
maz{11xy + 11r], 21 + r{} — 521 + max{1lxs + 1174, 229 + 275} — 629 = 192,

A(0.9A x1) A (0.8 A x2)] =0.7,V[(0.6 Vnr) V (0.3Vn2)] =0.6,V[(0.3V 1)V (0.2V ()] =0.5,
Tx1 —min{dx; — 4ly, 11z — 1111} + 8x9 — min{bxy — 5la, 1229 — 12[5} = 41,

maz{1lz; + 11ry,4x; + 4r1} — Tx; + maz{12z9 + 1219, bxe + 5o} — 8xe = 94,

Tz — min{3xy — 31,1221 — 1201} + 879 — min{dxy — 415, 13z — 1315} = 54,

max{12x1 + 120}, 3z1 + 31} — Tz1 + max{13x9 + 131}, 49 + 475} — 879 = 133,

7z1 — min{0.1xy — 0.117, 142y — 1417} + 8x9 — min{0.1z5 — 0.115, 1622 — 1615} = 67.8,
maz{14xy + 14r], z1 + 7} — Tx1 + maz {1625 + 1675, 229 + 215} — 819 = 262,

AL(0.6 A x1) A (0.7 A x2)] = 0.6, V[(0.1V 1) V (0.5 V 13)] = 0.5, V[(0.2V (1) V (0.2 V ()] = 0.3,
I1>0,r1 >0, =11 >0, —r >0,0{ =15 >0,7 =71 >0,1o0>0,70> 0,1, —ls > 0,75, —ry >0,
Iy —ly > 0,19 — 75 > 0,x1,71, 1, X2, 72, 2 € [0,1].

Step 4: Using the ranking function which are defined in Section (3), the FSNLP, problem obtained in step 3, can be
rewritten as:

MaximizeR([12z1 + 14xo; 1221 — min{7x; — 711,182z — 1811} + 14x9 — min{10xy — 10l2, 21x9 — 21l5},
+ maz{18zx; + 18ry, Tz + Tr1} — 1221 + mazx{21ze + 2179, 1029 + 10re} — 14x9; 1224
—min{bzy — 5l},20z; — 200} } + 14z9 — min{8zy — 81}, 23z — 2315}, maz{20x1 + 20r],
51 4 5ry} — 1221 + maz{23ze + 23rh, 8xo + 8rh} — 14we; 1221 — min{2xq — 217,232 — 231}
+ 14z9 — min{6xy — 615, 27x9 — 2715}, maz{23x1 + 2317, 221 + 27} — 1221 + maz{27zy + 277}
, 622 + 65} — 14wa]; A[(0.6 A x1) A (0.8 A x2)], V(0.2 V1) V(0.5 V m2)], V(0.3 V G1) V(0.4 V G2)])r
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subject to

5x1 + 629 = 50, 7Tz + 8x9 = 68,

S5x1 —min{3x; — 3l1,8x1 — 8l1} + 6x9 — min{bxe — bla, 8xy — 8y} = 26,

max{8z1 + 8r1,3x1 + 3r1} — bx1 + max{8xs + 8re, bxo + bra} — 69 = 62,

5z1 — min{2x — 21,1021 — 1001} + 629 — min{dzy — 415, 99 — 915} = 38,

maz{10x1 + 10}, 221 + 271} — b1 + max{9xs + Irh, 4wy + A1)} — 629 = 101,

5z1 — min{0.3xy — 0.317, 11y — 111]} + 629 — min{0.5z2 — 0.505, 11z — 1115} = 49.2,
maz{1lxy + 117, 21 + 7} — 521 + maz{11zy + 117y, 229 + 215} — 629 = 192,

AJ(0.9 A x1) A (0.8 A x2)] =0.7,V[(0.6 Vn1) V(0.3 Vn2)] =0.6,V[(0.3V )V (0.2V ()] =0.5,
Tx1 —min{dx; — 4ly, 11zq — 1111} + 8x9 — min{bxy — 5la, 1229 — 12[5} = 41,

mazx{1lx; + 11ry, 4dx; + 4r1} — Tx1 + maz{12z9 + 1219, bxe + 5o} — 8xe = 94,

Tr1 — min{3xy — 311,12z — 121} } + 8x9 — min{4xs — 41}, 13x2 — 1315} = 54,

maz{12z1 + 12r], 3z1 + 37} — Tx1 + max{13xs + 137}, 4o + 475} — 829 = 133,

7z1 — min{0.1xy — 0.117, 142y — 1417} + 8x9 — min{0.1z5 — 0.115, 1625 — 1615} = 67.8,
max{l4zy + 140, 21 + '} — 721 + max {1629 + 1674, 229 + 2ry} — 8z = 262,

AL(0.6 A x1) A (0.7 A x2)] = 0.6, V[(0.1V 1) V (0.5 V 12)] = 0.5,V[(0.2V (1) V (0.2 V ()] = 0.3,
l1>0,r1 > O,Z/l -l > 0,7'/1 —ry > 0,l’1’ —l’l > 0,7“’{—7"’1 > 0,05 >0,r9 > 0,l’2 — 1y > 0,7"5 —1r9 > 0,
Iy =1y > 0,75 — 15 >0, x1,71,C1, X2, 72, G2 € [0, 1].

Step 5: Using min{a,b} = %2 — |%52|, max{a,b} = 2t* + |%32|, the FSNLP, problem obtained in step 4, can be
rewritten as:

(96 + 48X — 487 —48¢C + x> + (n —1)2 + (¢ - 1)?)

Maximize([ B 1+
(112 4 56 — 561 — 56¢ + 3x2 4+ 3(n — 1)2 4+ 5(¢ — 1)?) 25 11 31,
12 xQ_ﬂX — Xl =l =5t

11 2| l|+25 + 2oy + |+31 + 2xg + 19| — 25( — 1)

— —X"|r2 — r x r
24X 2 2 24X 1 X 1 1 4X 2 X T2 T T2 24 1
15 31 15 25 15

Y _12 —ll—f —12l/—7 —l _1 e o 2 /
51 (1= DPlor = 1] = 330 = 12 — 22 (n = 1)y = 5] + 2201 = D + 57 (n — 1)%a + 74
31 1 25 21 33
e _12/ - _12 A _121//_7 -1 —l”—f —12l//

+24(77 )7"2+24( )7 |z2 + 75 24@ )l 24(C ) |21 24@ )7l
21 25 21 21

e _12 12// _12 . 2// _12 /"
(€ 1Pz — U] (¢ 1P 4 (G 1P + 1]+ o (= 1P 4 (= 1) 7]

Jamil Ahmed, LR-Type Fully Single-Valued Neutrosophic Linear Programming Problems.



Neutrosophic Sets and Systems, Vol. 46, 2021 435

subject to

5x1 + 622 = 50, 7901 + 89 = 68,

1 11 5 Tro 13
—Za+ Sl e — bl - 2+ 2 —ly| =26
2$U1+ 5 1+2\961 1\ 5 2+ = !362 2! )
Lo U +5\ +rl 4+ 2 +13 + | + 73| = 62
2£E1 27“1 2561 1 B 27”2 2332 2] = 0z,
13 5
—x1+61’1+4|x1—z’1|—%+—l’2+§|wz—l’zl=3&

T 13
xy + 6r) + 4lzy + ] + ﬁ torat g |$2 + 75| = 101,

1.3 113 107 0.5 115 105
——x + l// | T —l”’—l— xg—l——l” | Q—ZH‘ = 49.2,
2
13
a:1—|—67'1+5\x1+ —i-?%—?” §\x2+r2|:192,
AI(0.9A x1) A (0.8 A x2)] =0.7,V[(0.6 V1) V(0.3 V 7]2)] =0.6,V[(0.3V (1) V (0.2 V (2)] = 0.5,
1 15 17
—5T Tt *h + 5 \961 — |- % *12 + 5 ’952 — lo| =41,
1+15+\+\+x+17+y+|—94
21E1 27“1 2561 1 B 2?”2 2332 2| = 94,
1 15 9 xg 17 9
5%t 1+ gl - Il - > *5/2 + §|$2 —ly| = 54,
1 15 x 17
f:v1+ r1+ ]m1+r'1|+—2 —r2+ |$2+r’2|:133,
0.1 14.1 139 0.1 161 159
——r + — U+ |z = l]| - —xg—l——l” — |z — 1§ = 67.8,
2 2 2
1 15
Z%1+ 37’1 + ?|CU1 + 7| + 29 + 9y + T|wo + 1| = 262,

AL0.6 A x1) A (0.7 A x2)] = 0.6, V[(0.1V )V (0.5V 52)] = 0.5, V[(0.2V (1) V (0.2 V ()] = 0.3,
lh>0,r1 >0, =1 >0,77 —r1 >0, =13 >0,7] —r] > 0,15 > 0,72 > 0,15 —lo > 0,75 — ry >0,
l/2/ - l/2 Z OaTIQI - Té Z 0)X177717C17X277727C2 € [07 1]

Step 6:By solving the crisp mathematical problem obtained in step 5, we get the optimal solution 1 = 4,11 = 1,1 =
2, =2, =3,1] =3,7] =T,29 =5,lo = 2,190 = 3,l, =37, =415 =4,r] =6,x1 =0.7,m = 0.5,(1 =
0.4,x2 =0.9,m = 0.4, (3 = 0.5.

Step 7: SUbStitUting the values of &1, l1, 71, l/1> ,,4/1’ /1/7 rlllv T2, l2, T2, l27 T?v ZQ ) TQ » X1, M1, C1s X2, 2 and (2 in X7 = ([.Tl, l,
r UL U] xasm, G or and Xo = ([zo; 1o, 725 15, 755 15, 755 X2, m2, C2) LR the exact LR-type single-valued neutro-
sophic optimal solution is X7 = ([4;1,2;2,3;3,7];0.7,0.5,0.4)Lr, Xo = ([5;2,3;3,4;4,6];0.9,0.4,0.5) . g

Step 8: By substituting the values of X; and X3, obtained in Step 7, into the objective function, the L R-type single-
valued neutrosophic optimal value is ([118; 67, 158; 92, 229; 110, 432];0.6,0.5,0.5) .

Example 2.

Minimize([10;3,5;4,6;7,8];0.8,0.4,0.5) g ® X1 @ ([16;4,6;8,10;12,14];0.7,0.3,0.2) .g ® X2
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subject to

(I7:3,4;4,6;5,7);0.6,0.5,0.4) . © X1 @ ([9;4,5;6,7;8,9];0.7,0.1,0.3) . @ X2

= ([87;56, 149; 75, 216; 84, 297]; 0.6, 0.5, 0.4) L

([10;4,6;8,9:9,10];0.9,0.2,0.1) .z ® X ® ([11;4,6;6,8;9,10];0.8,0.3,0.4) .z ® X2
= ([115;70,198; 101, 284; 112, 377];0.7,0.5,0.4) .

Step 1: Ler X1 = ([x1; b, ri; 0, U il xa, s G e and Xo = ([x2; 1, 1251y, 15315, 75 |5 X2, 12, (2) LR, then prob-
lems can be written as

Minimize([10;3,5;4,6;7,8];0.8,0.4,0.5) Lr @ ([z1; 1,715 13, v 1, 77 ] xa.m, ) Lr®
([167 47 67 87 10, 127 14]7 07> 037 O'Q)LR ® ([3327 l27 T2 l/2> ’l“é7 1,2/7 ’I"g]; X2,12, CQ)LR

subject to

(17:3,4;4,6;5,7];0.6,0.5,0.4) Lr ® ([w1; 11, m1; 15, 5 17T xa,m, G e @ ([95 4, 5;6,7:8,9]50.7,0.1,0.3) L r®
([.%'2; lQ, T2; llg, 7“/2; lg, Té’]; X2,M2, CQ)LR = ([87; 56, 149; 75, 216; 84, 297}; 0.6, 0.5, 0-4)LR
([10;4,6;8,9;9,10];0.9,0.2,0.1) Lr @ ([z1; 11, r1; 15, v 17 ) xa, m, ) e @ ([1154, 656, 8;9,10];0.8,0.3,0.4) Lr®
([o; 12, o5 15, mh: 15 75]; X2, m2, C2) Lr = ([115;70,198;101,284;112,377];0.7,0.5,0.4) Lk

where ([xb lla 13 l,la Tll; /1/7 T,ll]; X1, M1, (1) and ([an l27 723 ll27 ’I"é; /2/1 TIQIL X252, CQ)LR are LR'Wpe SNNs.
X1,M1, Cl,X277727 CQ S [07 1]
Step 2: Using product defined in Section (2.1), the FSNLP, problem obtained in step 1, can be written as:

Minimize([10x1; 1021 — min{7x1 — 7ly, 1521 — 1501}, maz{15x; + 15ry, Tz + Tr1} — 10x1; 102,
—min{6xy — 6l},16z1 — 1601}, maz{16x1 + 167,621 + 61} } — 1021; 1021 — min

{3z1 — 31Y,18z1 — 1817}, max{18x1 + 1877, 3x1 + 3r{} — 1021];0.8 A x1,0.4V 11,05V (1) LR
D([16x9; 1622 — min{12x9 — 1219, 22x9 — 22l }, max {2229 + 2219, 1229 + 12r9} — 1629; 1629
—min{8xy — 81, 26x9 — 2614}, max{26xs + 2614, 8xo + 84} — 16x9; 16290 — min

{4z — 415, 30z2 — 3005}, maz{30xs + 307y, dxo + 4rh} — 1622];0.7 A x2,0.3V 12,0.2V (2) LR
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subject to

([Tx1; 721 — min{dxy — 411, 11z — 110}, max{11xy + 11r, 42y +4r1} — 721572
—min{3z; — 3l},13z; — 131} }, maz{13x1 + 13r],3z1 + 3r}} — Tz1; 721 — min

{221 — 21,142y — 141]}, max{14zy + 1477, 221 + 2r]} — 721];0.6 A x1,0.5V 11,04V (1) LR
@ ([9z2; 9x2 — min{bxy — bla, 14xe — 14lo}, max{14xy + 1479, 5z + 5ro} — 929; 929

— min{3zs — 31y, 1629 — 1615}, max{16z2 + 1674, 3z + 3ry} — 9z2; 99 — Min

{xg — 15,1839 — 1815}, max {18z + 181, o + 74 } — 922];0.7 A X2,0.1 V 12,0.3 V {2) LR

— (8756, 149; 75, 216; 84, 297): 0.6, 0.5, 0.4) 1.1

([10x1; 10z — min{6xy — 611,161 — 1611 }, max{16x; + 1671, 621 + 671} — 10x7; 1021

— min{2xy — 211,192, — 1901}, maz {1921 + 1977, 221 + 271} — 1021; 1021 — min

{1 — 17,20z — 2017}, maz{20z1 + 20r], 1 + |} — 1021];0.9 A x1,0.2V 11,0.1 V (1) LR

@ ([11xg; 11z — min{Txy — Tlo, 17xe — 17lo}, max{17xs + 17ry, Txo + Tro} — 1lxg; 11zy

— min{bze — 55,1929 — 1915}, max {1929 + 1974, 529 + 5rh} — 1129; 1129 — Min

{229 — 215, 2129 — 2115}, maz{21xs + 2174, 220 + 2rh} — 1122];0.8 A x2,0.3V 12,0.4V (o) LR
— ([115;70,198: 101, 284; 112, 377]:0.7,0.5,0.4) .

where ([x1; i, 131, v 1L ] xa, m, Q) and ([ 1o, 123 15, rh; 15, 155 X2, 12, C2) LR are LR-type SNN.

X151, C17 X2,1M2, C? € [07 1]
Step 3: Using the arithmetic operations which are defined in Section (2.1), the FSNLP, problem obtained in step 2, can

be rewritten as:

Minimize([10x1 4+ 1622; 1021 — min{7xy — 7l1,15x1 — 1511} 4+ 1629 — min{12zy — 12ly, 2229 — 22l5},
max{15x1 + 15r1, Tx1 + Tr1} — 1021 + max{22x9 + 2279, 1229 + 12r9} — 1629; 1021

— min{6x1 — 61,1621 — 161} } + 1622 — min{8xy — 815, 2625 — 2615}, max{16x1 + 1677, 621 + 67} — 1021
+ maz{26z2 + 2674, 8wy + 8y} — 16x2; 1021 — min{3xy — 311,18z — 181} + 1629 — min{4xs — 417,
30z2 — 3005}, max{18x1 + 1877, 321 + 3r]} — 1021 + max{30xy + 3075, 4xo + 475} — 1622]; A[(0.8 A X1)

A (0.7 A x2)], V(0.4 V) V(0.3 V)], V(0.5 V ¢1) V (0.2V Gl))r
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subject to

Tx1 4 929 = 87,1021 + 1129 = 115,

Txy —min{dx; — 41y, 11z — 1111} + 929 — min{bxy — 5la, 1dzg — 1415} = 56,

max{1lxy + 11r, 421 + 4r} — 721 + max{14xe + 14r9, 5xe 4 5ro} — 9ze = 149,

Tx1 — min{3zy — 314, 13x1 — 1311} + 929 — min{3ze — 315, 1622 — 1615} = 75

max{13x1 + 137}, 3z1 + 311} — Tz1 + max{16xy + 161, 3x9 + 3rh} — 9xo = 216,

Txy — min{2x — 217,142y — 141} + 929 — min{xe — 15,1879 — 1815} = 84,

maz{14xy + 1477, 221 + 2r(} — Tz1) + max{18xy + 181, w9 + rh} — 9z9) = 297,

A[((0.6 A x1) A (0.7 A x2)] = 0.6, V[(0.5Vn1) V (0.1Vn)] =0.5,V[(0.4V (1) V(0.3V )] =04,
10zy — min{6x1 — 611,161 — 1601} + 11axe — min{Txe — Ty, 1729 — 171} = 70,

maz{16x; + 1671, 6x1 + 611} — 1021 + maz{17xe + 17re, Txe + Tro} — 11lae = 198,

10z — min{2x1 — 211, 1921 — 190} } + 112y — min{5zs — 5l5, 1922 — 1915} = 101,

max{19z1 + 1971, 221 + 201} — 1021 + max {1922 + 197, 5xg + 5rh} — 119 = 284,

1021 — min{z; —1f,20z; — 201]} + 11zy — min{2ze — 215,212y — 2115} = 112,

max{20z1 + 20y, 21 + i} — 1021 + maz {21z + 2174, 229 + 2r5} — 1129 = 377,

AL(0.9A x1) A (0.8 A x2)] = 0.7, V[(0.2V 1) V (0.3 V 12)] = 0.5, V[(0.1V (1) V (0.4V G)] = 0.4,
l1>0,r1 > O,Z/l -l > 0,7'/1 —ry > 0,l’1’—l’1 > 0,7“’1’—7"’1 > 0,05 >0,r9 > 0,l’2 — 1y > 0,7"5 —1ro > 0,
Iy =1y > 0,75 — 715 >0,x1,m,C1, X2, 72, G2 € [0,1].

Step 4: Using the ranking function which are defined in Section (3), the FSNLP, problem obtained in step 3, can be
rewritten as:

MinimizeR([10z1 + 16x9; 1021 — min{7xy — Tly, 1521 — 1511} + 1629 — min{12xy — 123, 2229 — 22[5},
max{15x1 + 15r1, Tx1 + Tr1} — 1021 + maz{22x9 + 2279, 1229 + 12r9} — 16x9; 102

—min{6x1 — 6l],1621 — 161} } + 1629 — min{8zy — 81}, 26z — 2615}, max{16x1 + 1617, 621 + 61} — 1024
+ max{26zy + 261, 89 + 87} — 16w2; 1021 — min{3z; — 317, 1821 — 1811} + 1629 — min{dxy — 415,
30xe — 3005}, max {18z + 187, 3z1 + 3r]} — 1021 + max {30z + 3074, 4zo + 475} — 1622]; A[(0.8 A x1)

A (0.7 A x2)], V(0.4 Vi) V(0.3 V)], VI(0.5V (1) V(0.2 V G e
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subject to

Tr1 + 919 = 87,1021 + 11z = 115,

Txy —min{dx; — 41y, 11z — 1111} + 929 — min{bxy — 5la, 1dzg — 1415} = 56,

max{1lxy + 11r, 421 + 4r} — 721 + max{14xe + 14r9, 5xe 4 5ro} — 9ze = 149,

Tx1 — min{3zy — 314, 13x1 — 1311} + 929 — min{3ze — 315, 1622 — 1615} = 75

max{13x1 + 137}, 3z1 + 311} — Tz1 + max{16xy + 161, 3x9 + 3rh} — 9xo = 216,

Txy — min{2x — 217,142y — 141} + 929 — min{xe — 15,1879 — 1815} = 84,

maz{14xy + 1477, 221 + 2r(} — Tz1) + max{18xy + 181, w9 + rh} — 9z9) = 297,

A[((0.6 A x1) A (0.7 A x2)] = 0.6, V[(0.5Vn1) V (0.1Vn)] =0.5,V[(0.4V (1) V(0.3V )] =04,
10zy — min{6x1 — 611,161 — 1601} + 11axe — min{Txe — Ty, 1729 — 171} = 70,

maz{16x; + 1671, 6x1 + 611} — 1021 + maz{17xe + 17re, Txe + Tro} — 11lae = 198,

10z — min{2x1 — 211, 1921 — 190} } + 112y — min{5zs — 5l5, 1922 — 1915} = 101,

max{19z1 + 1971, 221 + 201} — 1021 + max {1922 + 197, 5xg + 5rh} — 119 = 284,

1021 — min{z; —1f,20z; — 201]} + 11zy — min{2ze — 215,212y — 2115} = 112,

max{20z1 + 20y, 21 + i} — 1021 + maz {21z + 2174, 229 + 2r5} — 1129 = 377,

AL(0.9A x1) A (0.8 A x2)] = 0.7, V[(0.2V 1) V (0.3 V 12)] = 0.5, V[(0.1V (1) V (0.4V G)] = 0.4,
l1>0,r1 > O,Z/l -l > 0,7'/1 —ry > 0,l’1’ —l’l > 0,7“’{—7"’1 > 0,05 >0,r9 > 0,l’2 — 1y > 0,7"5 —1ro > 0,
Iy =1y > 0,75 — 715 >0,x1,m,C1, X2, 72, G2 € [0,1].

Step 5: Using min{a,b} = %2 — |952| max{a,b} = “Eb + |%5L|, the FSNLP, problem obtained in step 4, can be
rewritten as:

(80 4 40x — 40n — 40¢ + 2x% +2(n — 1)2 + (¢ — 1)?)

Minimize(| b 1+
(64 + 32y —32n — 32( + x>+ (n — 1) + (¢ — 1)?) 11, 1, 17
5 T2 — 15X h 3X |21 =l - 12X lo
5 11 1 17 ) 11
- EX2|$2 — o + EX2?“1 + §X2|931 + |+ EXQTz + EXZ\@ +ral = 5= 1%
5 17 9 11 5)
L 1|z = 1] = - 1%l — 151~ 1)?|z2 — lo| + - 1% + 15— 1)?|z1 + 7y
17 9 21 15 17
-0 _12/ 7 _12 A _121//_7 _12 —l//—f _121//
+ =17+ 5 (= 1wz + o = S (€= 1) = o (C=1)an = ii] = 5 (¢ = 1)
13 21 15 17 13
= €= Do = Bl + 5 (C= DM 4 o (C= D 47| + 5 (C = 1 + 5 (C = 1|z +73]])
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subject to

Tx1 + 929 = 87, 10:61 + 11z = 115,

1 15 T 19
—§$1+fl1+ \961—11\—52 712_,_ !$2—l2!=56;
1 15 9 19
— — — —= 4+ = — =14
2x1+27“1+2]331+7'1|+2+27"2+ |x2—|—7“2| 9,
19 1
—1:1+8l'1+5|:x1—l'1|—% |a:2—l’\—75
19

x1+87“1+5|x1+7‘1|+ +—2+ |x2+r2|—216

—ay 4 81 + 6|z — 1] — —2 + —l” + 3\@ — 1| = 84,
19 o

2
AL(0.6 A x1) A (0.7 A y2)] = 0.6, V[(0.5V m1) V (0.1 V)] = 0.5, V[(0.4V ¢1) V (0.3V G)] = 0.4,

—x1 + 1111 + 5|l‘1 — l1| —x9 + 1205 + 5’%2 — l2| =70,
1+ 11r + 5‘.%1 + 7“1’ + 29+ 12r9 + 5|l‘2 + T2| = 198,

17
z1 + 8r] + 6|1 + 7 \—i—f—i- ?\x2+r§'|:297,

1 21, 17
—5o1+ ?l’l + E\xl — Ui — zo + 1205 + T|zo — I5] = 101,
1 21 17
5[L‘1 —+ ?T’ll + ?‘1'1 +7"/1’ —1-1‘2 + 127"/2 + 7|ZE2 +7‘/2| — 284’
1 21, 19 o 23, 19
Tyt it e =l e S+ e — 1] = 112,
1 21 19 23
53314-?7“/1/—%?’331—!- H— +3§'+ |x2—|—7“§/|:377,

A[(0.9A x1) A (0.8 A x2)] = 0.7,V[(0.2Vn1) V (0.3 V19)] = 0.5, \/[(0.1 V(1) V(0.4V ()] =04,
I1>0,70>0,0] =11 >0,7y —r1 >0,1{ =15 >0,7] —r] > 0,15 >0,79 > 0,15 — s > 0,75 —ro >0,
l,2/ — ll2 2 0,7"/2, - Té Z 0,X177717<1aX2,772aC2 € [07 1]

Step 6:By solving the crisp mathematical problem obtained in step 5, we get the optimal solution x1 = 6,11 = 2,7 =
4,0 =47 =511 =5,7] =6,20 =5l =2, = 4,1, =3,75, =5l =4, =T7,x1 =0.7,m =05, =
0.3, X2 = 0.9, 2 = 0.3, <2 =0.4.

Step 7: Substituting the values of x1, 1y, r1, 1,70, 1], 2o, la,mo, Uy, rh, 15,78 x1, M1, C1, Xa, 2 and G in X1 = ([x1; 14,
r L U T xasm, G ) nr and Xo = ([xe; e, oy Uy, rh; 15, 155 X2, M2, C2) LR the exact LR-type single-valued neutro-
sophic optimal solution is X1 = ([6;2,4;4,5;5,6];0.7,0.5,0.3) Lr, X2 = ([5;2,4;3,5;4,7];0.9,0.3,0.4) . 5.

Step 8: By substituting the values of X1 and X, obtained in Step 7, into the objective function, the L R-type single-valued
neutrosophic optimal value is ([140; 76, 208; 112, 296; 133, 436];0.7,0.5,0.5) ..r.

5 Conclusion

In this paper, we have applied the concept of neutrosophic sets to the LPPs. We have defined unrestricted L R-type SNNs
and their arithmetic operations. We have developed ranking function of the L R-type SNN. We have proposed a method
to solve the FSNLP problems with equality constraints having unrestricted L R-type SNNs as right hand side, parameters
and variables. We have solved numerical examples to explain it which satisfies the given constraints.
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