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Abstract: The identification of an appropriate probability model is always essential in 
environmental data analysis. This work presents the notion of the neutrosophic lognormal 
distribution (NLD) and its application to environmental data. The general structure for the density 
function of the NLD and its usefulness has been provided. Some more critical distributional 
properties such as moments, skewness and kurtosis coefficients have been derived. A 
methodology of estimating the distributional parameters under the neutrosophic environment is 
developed. The simulation study is conducted to validate the derived results for the proposed 
model. In the application part, a real dataset on Nitrogen oxides emissions has been analyzed 
using NLD to highlight the practical significance of the proposed model. 
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1. Introduction 

In pollution studies, observing environmental levels and quantifying the concentrations of 
different contaminants entering a particular environmental region are of considerable interest 
because of the potential for adverse side effects. The selection of appropriate statistical models is 
particularly vital in environmental studies [1]. None of the probability models containing the 
traditional lognormal has been superior to others [2]. These probability models could estimate the 
parameters needed to meet up changing information desires of an environmental quality 
organization [3]. Unfortunately, data on environmental pollution is often biased to the right, with a 
long slope towards high concentrations [4]. When using the normal distribution to certain types of 
data, the validity of the appropriateness may be called into question. The modelling of this type of 
distribution consists of transforming data values to bring changed values closer to the normal 
distribution [5]. In this context, logarithmic alteration is typically applied to pollution figures. Other 
distributions may be more appropriate for representing pollution concentration data, despite the 
lognormal distribution being the most commonly used [6]. Larsen [7] modified the lognormal 
distribution by including the third parameter, called an increment to deal with air quality data. In 
the Ghent region of Belgium, Berger et al. [8] analyzed fitness based on the extreme and moderate 
values in gamma distribution at the daily concentration of sulphur dioxide. Xiang et al. [9] also 
found that gamma models reflect acid-gas quantities in an industrial zone better than the lognormal 
model. Neither of the probability models, along with the traditional lognormal, has been preferable 
to others in a general logic in published literature [10]. 
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Among these generic models, the NLD proposed in this work distribution offers a lot of 
promise for evaluating environmental contaminant data. Although the NLD is a relatively 
"unknown" distribution in environmental studies, as indicated above, its skewness and long-tail 
appear to create it suited for environmental pollutant data. Aside from that, the NLD group is 
extensive and incorporates many components that are very relatively frequent distribution when it 
comes to fitting pollutant concentration data. As a result, the NLD appears to be a potential 
candidate for environmental modeling. Smarandache's work on the idea of neutrosophy provides 
the inspiration for this generalization [11]. The analysis of false or true statements, but 
indeterminate, neutral, inconsistent, or something in between, is oriented by Neutrosophy logic [12-
14]. In the actual world, there are numerous circumstances where the data that have any kind of 
indeterminacy [15]. The notion of neutrosophic statistics is used to cope with such data [16]. The 
term "neutosophic statistics" refers to the extension of conventional statistics [17]. As a result of its 
advantageous properties, the application of neutrosophic statistics has gained considerable 
attention in recent years, particularly because conventional statistics cannot be used when our data 
contains incomplete, vague, unclear or uncertain measurements [18-20]. The use of neutrosophic 
statistics in the applied research may be seen in literature such as [21–24]. The neutrosophic 
statistics has given rise to study areas dealing with indeterminacy effects in statistical process 
control [25-29]. 

The notion of NLD in the analysis of pollutant concentration data is proposed in the present 
paper when the moments, kurtosis, and skewness of other distributions do not correspond to log 
normality. The NLD model, which has a particular form, may offer an excellent alternative to the 
lognormal distribution and greater flexibility. 

The rest of this work is arranged as follows: The neutrosophic extension of the lognormal 
distribution is established in Section 2. Section 3 explains the mathematical approach used to find 
unknown distributional parameters. A Monte Carlo simulation is conducted in Section 4 to validate 
the theoretical results of the neutrosophic model. Section 5 describes an application of the suggested 
model. Lastly, Section 6 outlines the main research findings. 

2. Proposed Model 

If X෩ = ln Z  follows a neutrosophic normal distribution, a random variable Z > 0  is said to 
follow the NLD with the density function: 

𝜔௡(𝑧) =
ଵ
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; 𝑧 > 0, 𝜇௡ , 𝜎௡ > 0       (1) 

where 𝜇௡ = [𝜇௟, 𝜇௨] is the neutrosophic location,  𝜎௡ = [𝜎௟, 𝜎௨] is neutrosophic shape parameters on 
the log scale and Z denotes neutrosophic random variable. For the selected values of 𝜇௡ = [0, 0.2]

and 𝜎௡ = [0.2, 0.8], the neutrosophic density ൫PDF෪ ൯ is graphically portrayed in Figure 1. 
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Figure 1. The density of NLD with neutrosophic parameters (a) σ୬ = [0.2, 0.8] and (b) μ୬ = [0, 0.2] 

 
In Figure 1, the area under the curve indicates the interval in which the neutrosophic lognormal 

variable will fall. The entire area of the graph in this period equals the probability of Z occurring. 

The grey zone in Figure 1 represents the neutrosophic region due to uncertainties involved in 

distributional parameters. 

Aside from specific pattern of the neutrosophic density, an analyst may be interested in seeking 

certain additional favourable distributional features of the NLD, which may be established in the 

form of some theorems below: 

Theorem 1 Show that the mode of the NLD is eஜ౤ି஢౤ 

Proof: The mode of the NLD is the point at which function ω୬(z) reaches its highest or maximum 

value. 

Therefore differentiating (1) with respect to z implies: 
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To find maxima equating (2) to zero provides:  
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Further simplification of (3) implies 

= [eஜౢି஢ౢ, eஜ౫ି஢౫], 

where [eஜౢି஢ౢ, eஜ౫ି஢౫] = eஜ౤ି஢౤, hence Proved. 
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By substituting in (4)  

y =
ln z − μ୬

σ୬

 

This yielded: 
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Thus (4) becomes 
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μ୨୬ = e୨ஜ౤ା୨మಚ౤
మ

మ      where j = 1,2,3, … is a general expression for the jth moment about the origin of the 

NLD. 

By using the following relations, moments about mean for NLD can be derived as: 
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Proof: The coefficient of skewness for NLD is given by: 
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Substituting in (5) provides: 
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Proof: By definition, the coefficient of kurtosis is NLD given by: 
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 Substituting in (6) and further simplification implies: 

γොଶ୬ = eସ஢౤
మ

+ 2eଷ஢౤
మ

+ 3eଶ஢౤
మ

− 3, 

where γොଶ୬ = [γଶ୪, γଶ୳]. 

Similarly other characteristics of the defined model may be established in a neutrosophic 

environment.  

3. Estimation Procedure 

In this part, a method for estimating the NLD parameters, known as neutrosophic maximum 
likelihood estimation, is devised. Let us take n samples of Z୨, j = 1,2, . . n values from the NLD. The 
question is, for an observed sample, which values of the neutrosophic parameters should be used? 
The likelihood function of the neutrosophic model may be used to calculate these values. Because 
neutrosophy is included in the distributional parameters, joint function of the NLD is given by: 
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The likelihood function of (7) can be written as: 
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The gradient involving unknown values μ୬ and σଶ
୬, in order to maximize τ୬ is given by: 
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The simultaneous solution for unknown is obtained by setting the gradians (9) and (10) to zero as: 
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where μො୬ = [μො୪, μො୳] and σෝଶ
୬ = [σෝଶ

୪, σෝଶ
୳] are the required neutrosophic estimators of the parameters 

μ୬ and σଶ
୬ respectively. 
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4. Simulation Study 

In this section, analytical results of the NLD for moments, skewness, and kurtosis have been 
validated using the Monte Carlo simulation. The NLD can be readily simulated in R software to 
assess the validity of theory-based results. For this, let us set the neutrosophic parameters μ୬ =

[0.5, 1.5] and σ୬ = [0.25, 0.5]  in the NLD and 10ହ  samples are randomly generated from U[0, 1]. 
Then according to (11), 10ହ pseudo neutrosophic random samples are generated from the NLD. 

୪୬(୞౟)ିஜ౤

஢౤
= Fିଵ(u୧)          (11) 

where u୧~U[0,1] for i = 1,2, …. 

As mentioned in Section 2, these simulated data are used to validate the analytical characteristics. 
Table 1 shows the exact findings for the mean, variance, mode, skewness, and kurtosis coefficients 
of the NLD beside the simulated values. 

Table 1. Comparisons of the simulated findings with the NLD analytical results 

 

 

 

 

 

 

Results in Table 1 indicate that the simulated findings match quite well with those obtained from 
the analytical properties of the NLD. 

5. Real Application 

To demonstrate the computational method of the proposed NLD model, an actual dataset on 
yearly Nitrogen oxides emissions for Denmark is provided. The United Nations Statistics Divisions 
(UNSD) have calculated Nitrogen oxides emissions per capita for the period 1990 to 2018, and the 
data is accessible on the site [30]. Nitrogen oxides are general names for the two most important air 
pollutants, nitric oxide and nitrogen dioxide. Smog and acid rain are caused by these substances, 
which also have an impact on tropospheric ozone. As a result of their presence in the Earth's 
atmosphere, they constitute one of the most significant pollutants. Naturally, nitric oxide is created 
during thunderstorms, but it may also be produced during agricultural fertilization. Nitrogen 
oxides emissions are often calculated using an international methodology based on country 
information on industrial, energy, waste management and agricultural production.  The probability 
plot and essential CDF plot of the original data are depicted in Figure 2 and Figure 3, respectively.  

Characteristics Expected Result Simulated Result 

Mean  [1.700, 5.075] [1.700, 5.072] 

Standard deviation [0.432, 2.707] [0.431, 2.709] 

Mode [1.548 , 3.490] [1.546, 3.488] 

Skewness Coefficient [0.778, 1.750] [0.771, 1.749] 

Kurtosis Coefficient [4.095, 8.898] [4.090, 8.891] 
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Figure 2. Probability plot for Nitrogen oxides emissions 

 

 

Figure 3. Empirical and theoretical CDF-plots for Nitrogen oxides emissions 

Clearly, Figure 3 and Figure 4 indicate that data are skewed to the right and how well the 

lognormal model fitted the emission measurements. Initially, data are the crisp values however, for 

the sake of demonstration, we regard data as uncertain sample values for some emission values, as 

shown in Table 2. 
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Table 2. Nitrogen oxides emissions for Denmark for the period 1990-2018 

Nitrogen oxides emissions 

[304.12, 307.82], 355.34, 310.93, 309.47, [ 309.12, 312.10], 292.80, 327.49, 

280.33, 259.99, [238.19, 242.45], 229.98, 226.77, 223.57, 233.12, 

216.37, 208.16, [206.30, 209.14], 193.44, 177.31, 157.88, 153.18,  

143.93, 132.78, 127.87, 118.28, 116.75, 116.96, 114.21, 

[106.86, 110.62] 

Table 2 indicates that Nitrogen oxides emissions such as [304.12, 307.82], [309.12, 312.10], [238.19, 

242.45], [206.30, 209.14] and [106.86, 110.62] are not accurately recorded to precise values but are 

given in intervals. Indeed, the existing lognormal model is ineffective due to ambiguity or 

uncertainties in the sample. On the other hand, the proposed model can easily be employed to 

analyze neutrosophic set of measurements. The descriptive measures using the proposed NLD are 

given in Table 3. 

Table 3. Numerical characteristics of  the for Nitrogen oxides emissions 
Descriptive Measures 

Mean (μଵ) [214.106, 214.671] 
Mode (𝑚) [174.617, 175.282] 

Skewness (𝛾ොଵ௡) [1.196, 1.200] 

Kurtosis  (𝛾ොଶ௡) [5.647, 5.666] 

 

Results in Table 3 show that the essential descriptive statistics of the Nitrogen oxides emissions are 

in ranges because of vagueness in the observed sample. Thus the proposed model can be applied to 

analyze the uncertainties involving data, which follows the NLD. 

6. Conclusions 

In this paper, a new generalization of the lognormal model under the neutrosophic 
environment, so-called the neutrosophic lognormal distribution has been proposed. This 
generalization is rooted in the methodology of neutrosophic algebra. The statistical characteristics 
of the new suggested distribution, such as moments, mode, skewness, and kurtosis, have been 
studied in detail. A strategy for estimating the neutrosophic distributional parameters has been 
developed. To investigate the validity of the analytical results produced for the suggested model, a 
simulation analysis has been performed. Simulated findings matched quite well with those 
obtained from the analytical properties of the NLD. Due to the variety of statistical properties 
proposed under the neutrosophic calculus, NLD can effectively be employed in analyzing real-
dataset involving uncertainties as described in the application section. 
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