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Abstract: Since current decision problems are becoming more and more complex, the decision 

environment is becoming more and more uncertain. The simplified neutrosophic indeterminate 

element (SNIE) was defined to adapt to the expression of the indeterminate and inconsistent 

information in the indeterminate decision-making problems. SNIE consists of the truth, 

indeterminacy, and falsity neutrosophic numbers and can express a singled value neutrosophic 

element or an interval value neutrosophic element depending on the value/range of indeterminacy. 

In this article, we first define some operational rules of SNIEs based on the Einstein T-norm and 

T-conorm. Next, SNIE Einstein weighted averaging (SNIEEWA) and SNIE Einstein weighted 

geometric (SNIEEWG) operators are proposed to aggregate SNIEs. In view of the SNIEEWA and 

SNIEEWG operators, a multi-attribute decision-making (MADM) method is proposed in the case of 

SNIEs. Finally, the proposed MADM method is applied to solve indeterminate MADM problems in 

the case of SNIEs. Furthermore, the validity and effectiveness of the proposed method are verified 

through an illustrative example and comparative analysis. 

Keywords: neutrosophic number; simplified neutrosophic indeterminate element; Einstein 

weighted averaging operator; Einstein weighted geometric operator 

 

 

1. Introduction 

The fuzzy set (FS) [1] can express a degree of truth membership, but does not express a degree 

of falsity membership. Therefore, an intuitionistic fuzzy set (IFS) was defined by Atanassov [2, 3], it 

can express the degrees of truth and falsity memberships simultaneously. Then, Atanassov and 

Gargov [4] introduced interval-valued IFSs (IvIFS) corresponding to the truth and falsity interval 

membership degrees. 

Since FS, IFS, and IvIFS cannot describe inconsistent, incomplete, and indeterminate 

information, Smarandache [5] proposed a neutrosophic set (NS), where the truth, indeterminacy, 

and falsity membership degrees were described independently. Then, the three membership 

degrees belong to the standard interval [0, 1]/nonstandard interval ]0, 1+[. Further, Wang et al. 

presented a single-valued NS (SvNS) [6] and an interval-valued NS (IvNS) [7]. Next, a simplified NS 

(SNS) implying SvNS and IvNS introduced by Ye [8] can better apply it in real life because the truth, 

indeterminacy, and falsity membership degrees in SNS are described in the real unit interval [0, 1]. 
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Since then, researches proposed various aggregation operators and decision-making (DM) methods 

in the cases of SvNSs and IvNSs. Meanwhile, SNSs can be used in multi-attribute decision-making 

(MADM) problems with SvNSs and IvNSs in the indeterminate and inconsistent situations. By 

combining SNS with a hesitant fuzzy notion, Liu and Shi [9] proposed single- and interval-valued 

neutrosophic hesitant fuzzy sets. Then, Ali et al. [10] introduced a neutrosophic cubic set by the 

combination of both SvNS and IvNS. The neutrosophic cubic information can represent the single- 

and interval-valued assessment information of decision makers, then the neutrosophic cubic 

MADM method [10] solved its DM problems with neutrosophic cubic information. 

As another branch of neutrosophic theory, NN was first proposed by Smarandache in 1998 [11] 

and defined as  = t + λ for indeterminacy λ  [λ, λ+] and t,   , where t and λ indicate the 

certain and uncertain terms of NN. Then, the NN  is a changeable interval number  = [t + λ, t + 

λ+] when λ changes in the range of λ  [λ, λ+]. Therefore, NNs have been widely applied to many 

fields under indeterminate environment, such as optimization programming [12], mechanical fault 

diagnosis [13] and various DM problems [14]. 

With the complexity and variability of real DM problems, there may be the indeterminacy of 

truth, falsity, and indeterminacy degrees in indeterminate DM problems. Since SNS cannot express 

the indeterminacy of the three membership degrees, Du et al. [15] defined a simplified neutrosophic 

indeterminate set/element (SNIS/SNIE) by combining the concept of SNS with NNs, which consists 

of truth, indeterminacy, and falsity NNs to flexibly express the truth, falsity, and indeterminacy 

degrees. According to different values or ranges of λ  [λ, λ+], SNIS can express different SvNSs or 

IvNSs. In [15], Du et al. proposed two weighted aggregation operators of simplified neutrosophic 

elements (SNEs) and established a MADM method using the SNIE weighted averaging (SNIEWA) 

and SNIE weighted geometric (SNIEWG) operators. Then, the Einstein T-norm and T-conorm 

functions [16] have been widely applied to deal with various fuzzy information [17-22], but the 

Einstein T-norm and T-conorm functions are not applied in the information aggregation of SNIEs. 

In this study, therefore, we propose the Einstein T-norm and T-conorm aggregation operators and 

their MADM method. 

The main organization of this article is as the following. The concepts of SNS, NN, and SNIS 

are briefly reviewed, then the score, accuracy, and certainty functions are introduced to rank SNIEs 

in Section 2. The SNIE Einstein weighted averaging (SNIEEWA) and SNIE Einstein weighted 

geometric (SNIEEWG) operators are proposed in Section 3. Then, we put forward a MADM 

approach corresponding to the SNIEEWA and SNIEEWG operators in Section 4. In Section 5, the 

proposed MADM approach is applied to an investment selection problem of metal mines, and then 

its validity and flexibility are indicated by the illustrative example and comparative analysis. The 

last section draws conclusions and indicates future research. 

2. Concepts of SNS, NN, and SNIE 

Definition 1 [5, 8]. In a universe set τ = {τ1, τ2, …, τn}, N = {<τS, T(τS), D(τS), F(τS)>| τS  τ} is defined 

as SNS, where T(τS), D(τS), F(τS)  [0, 1] or T(τS), D(τS), F(τS)  [0, 1] (s = 1, 2, …, n) are the truth, 

indeterminacy and falsity membership functions of τS to N. The component <τS, T(τS), D(τS), F(τS)> 

in N is called SNE and is simply denoted as NS = <TS, DS, FS>, which includes the SvNE NS = <TS, DS, 

FS> for TS, DS, FS  [0, 1] and the IvNE NS = <[T
L 

S , T
U 

S ],[ D
L 

S , D
U 

S ],[F
L 

S , F
U 

S ]> for [T
L 

S , T
U 

S ], [D
L 

S , D
U 

S ], [D
L 

S , D
U 

S ] 

 [0, 1]. 

Definition 2 [11]. NN is described as  = t + λ for indeterminacy λ  [λ, λ+] and t,   , where t 

and λ describe the certain term and uncertain term of NN, respectively.  

Clearly,  = t + λ is a changeable interval number  = [t + λ, t + λ+] when λ changes in range 

of λ  [λ, λ+]. It indicates that NN can flexibly express a single value or an indeterminate interval 

value according to the value/range of λ  [λ, λ+]. 

Definition 3 [15]. For a universe set τ = {τ1, τ2, …, τn}, SNIS is defined as χ = {<τS, T(τS, λ), D(τS, λ), 

F(τS, λ)>|τS  τ}, where T(τS, λ) = ts + αsλ  [0, 1], D(τS,λ) = ds + βsλ  [0, 1], and F(τS, λ) = fs + γsλ  [0, 
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1] (s = 1, 2, …, n) for λ  [λ, λ+] are the truth, indeterminacy, and falsity membership functions in χ. 

Then, χs = <T(τS, λ), D(τS, λ), F(τS, λ)> = <ts + αsλ , ds + βsλ, fs +γsλ> is called SNIE and is simply 

denoted as χs = <Ts(λ), Ds(λ), Fs(λ)> = <ts + αsλ, ds + βsλ, fs + γsλ> for λ  [λ, λ+]. 

In order to rank different SNIEs, Du et al. [15] defined three functions to compare two SNIEs. 

Let χs = <Ts(λ), Ds(λ), Fs(λ)> = <ts + αsλ, ds + βsλ, fs + γsλ> for λ  [λ, λ+] be any SNIE and λ* = λ 

+ λ+. Thus, Du et al. [15] defined its score, accuracy, and certainty functions: 
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Suppose that χ1 = <T1(λ), D1(λ), F1(λ)> = <t1 + α1λ, d1 + β1λ, f1 + γ1λ> and χ2 = <T2(λ), D2(λ), F2(λ)> 

= <t2 + α2λ, d2 + β2λ, f2 + γ2λ> for λ  [λ, λ+] are two SNIEs. We can rank them by the defined three 

functions. According to their priority, the ranking method is given as follows: 

1) If S(χ1, λ) > S(χ2, λ), then χ1 > χ2; 

2) If S(χ1, λ) = S(χ2, λ) and L(χ1, λ)> L(χ2, λ), then χ1 > χ2; 

3) If S(χ1, λ) = S(χ2, λ), L(χ1, λ) = L(χ2,λ) and C(χ1, λ) > C(χ2, λ), then χ1 > χ2; 

4) If S(χ1, λ) = S(χ2, λ), L(χ1, λ) = L(χ2, λ) and C(χ1, λ) = C(χ2, λ), then χ1 = χ2. 

3.The Einstein Aggregation Operations of SNIEs 

3.1. Einstein T-norm and T-conorm operations of SNIEs 

Definition 4 [16]. If θ and ф are real numbers, the Einstein T-norm function T(θ, ф) and T-conorm 

TC(θ, ф) for (θ, ф)  [0,1][0,1] are defined as the following formulae: 

 ( , )
1 (1 )(1 )

T


 
 


  

  (4) 

 ( )
1
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



  (5) 

The above functions are increasing strictly and satisfy T(θ, ф), TC(θ, ф)  [0, 1]. 

According to Eqs. (4) and (5), some operations of SNIEs are defined as follows. 

Definition 5. Suppose that χ1 = <T1(λ), D1(λ), F1(λ)> = <t1 + α1λ, d1 + β1λ, f1 + γ1λ> and χ2 = <T2(λ), 

D2(λ), F2(λ)> = <t2 + α2λ, d2 + β2λ, f2 + γ2λ> are two SNIEs for t1 + α1λ, d1 + β1λ, f1 + γ1λ, t2 + α2λ, d2 + β2λ, 

f2 + γ2λ  [0, 1] and λ  [λ, λ+]. 
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3.2. Einstein Weighted Arithmetic Average Operator of SNIEs 

Definition 6. Let χ = {χ1, χ2, …, χn} be SNIS, we can define the SNIEEWA operator: 
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Proof: 

(1) If n = 2, by Eqs. (6) and (8), we can get the result: 
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(2) Set n = m. Then, the following formula can hold: 
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(3) If n = m + 1, according to the formulae (6), (8) and (12), we can get 
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Thus, we have proved that the Eq. (11) can hold for any k.  

The SNIEEWA operator implies the following properties. 

(P1) Idempotency: Set χk = <Tk(λ), Dk(λ), Fk(λ)> = <tk + αkλ, dk + βkλ, fk + γkλ> as a group of SNIEs for 

λ [λ, λ+] and k = 1, 2, …, n. If χk = χ, then SNIEEWA(χ1, χ2, …, χn) = χ. 

(P2) Boundedness: Set χk = <Tk(λ), Dk(λ), Fk(λ)> = <tk + αkλ, dk + βkλ, fk + γkλ> as a group of SNIEs for 

λ [λ, λ+] and k = 1, 2, …, n. Let the minimum and maximum SNIEs be 

min min( ),min( ) , max( ),max( ) , max( ),max( )+ + +

k k k k k k k k k k k k
k k k k k k

t t d d f f                        
     

, 

max max( ),max( ) min( ),min( ) min( ),min( )+ + - +

k k k k k k k k k k k k
k k k kk k

t t d d f f                        
    

, , . 

Then, there is χmin ≤ SNIEEWA(χ1, χ2, …, χn) ≤ χmax. 

(P3) Monotonicity: Set χk = <Tk(λ), Dk(λ), Fk(λ)> and χ
* 

k= <T
* 

k (λ), D
* 

k(λ), F
* 

k(λ)> as two groups of SNIEs 

for λ [λ, λ+] and k = 1, 2, …, n. If χk  χ
* 

k , then SNIEEWA(χ1, χ2, …, χn)  SNIEEWA(χ
* 

1, χ
* 

2, …, χ
* 

n). 

Next, we give proofs of the three properties. 

Proof： 

(P1) Let χk = <tk + αkλ, dk + βkλ, fk + γkλ> = χ = <t + αλ, d + βλ, f + γλ> for k = 1, 2, …, n be SNIE with the 

related weight ρk  [0, 1] for ∑
n 

k=1ρk = 1. Then, we can get the result: 
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(P2) Assume that there is SNIEEWA(χ1, χ2, …, χn) = <T(λ), D(λ), F(λ)>. According to Eq. (11), we 

know that 
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 for λ [λ, λ+] are increasing functions of λ. So, we 

can get the following inequations: 
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According to Eq. (1), we get the score values of SNIEEWA(χ1, χ2, …, χn), χmin, and χmax: 

( ( , )) (4 ( ) ( ) ( ) ( ) ( ) ( )) 6- + - + - +

1 2 nS SNIEEWA , ,... = +T +T - D - D - F - F /         , 

min

(4 min( ) min( ) max( )
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(4 max( ) max( ) min(
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k k k

t t d
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d f f
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. 

We can get S(χmin) ≤ S(SNIEEWA(χ1, χ2,…,χn)) ≤ S(χmax). Thus χmin ≤ SNIEEWA(χ1, χ2, …, χn) ≤ 

χmax. 

(P3) If χk = <Tk(λ), Dk(λ), Fk(λ)> and χ
* 

k =<T
* 

k(λ), D
* 

k (λ), F
* 

k(λ)> for λ [λ, λ+], k = 1, 2, …, n, and χk  χ*, 

then they satisfy the following constraints: Tk(λ) ≤ T
* 

k (λ) , Tk(λ+) ≤ T
* 

k (λ+), Dk(λ) ≥ D
* 

k(λ), Dk(λ+) ≥ D
* 

k

(λ+), Fk(λ) ≥ F
* 

k (λ), and Fk(λ+) ≥ F
* 

k (λ+). We use Eq. (11) to calculate SNIEEWA(χ1, χ2, …, χn) and 

SNIEEWA(χ
* 

1, χ
* 

2, …, χ
* 

n): SNIEEWA (χ1, χ2, …, χn) = <[T(λ), T(λ+)], [D(λ), D(λ+)], [F(λ) F(λ+)]> and 

SNIEEWA(χ
* 

1, χ
* 

2, …, χ
* 

n) = <[T*(λ), T*(λ+)], [D*(λ), D*(λ+)], [F*(λ), F*(λ+)]>. Obviously, we can get T(λ) 

≤ T*(λ), T(λ+) ≤ T*(λ+), D(λ) ≥ D*(λ), D(λ+) ≥ D*(λ+), F(λ) ≥ F*(λ), and F(λ+) ≥F*(λ+). Hence 

SNIEEWA(χ1, χ2, …, χn)  SNIEEWA (χ
* 

1, χ
* 

2, …, χ
* 

n) holds. 

3.3. Einstein Weighted Geometric Average Operator of SNIEs 

Definition 7. Let χ = {χ1, χ2, …, χn} be SNIS, we can define the SNIEEWG Operator of SNIEs: 

  1 2
1

...   k

n

n k
k

SNIEEWG
   


 , , , , (13) 

where ρk  [0, 1] are weights for ∑
n 

k=1ρk = 1. 

Theorem 2. Let χk = <Tk(λ), Dk(λ), Fk(λ)> = < tk + αkλ, dk + βkλ, fk + γkλ > for k = 1, 2, …, n and λ  [λ, λ+] 

be SNIEs with the related weights ρk  [0,1] for ∑
n 

k=1ρk = 1. Then according to the operational rules (7) 

and (9), Eq. (11) can be calculated by 
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.  (14) 

In view of the same proof of Theorem 1, we can proof Theorem 2, which is omitted here.  

4. MADM Method with the SNIEEWA or SNIEEWG Operator 

For a MADM problem, there are an alternative set η = {η1, η2, …, ηm} and an attribute set C = {C1, 

C2, …, Cn} with the weight vector ρ = {ρ1, ρ2, …, ρn}. The assessment values given by the decision 

makers are in the SNIE form. Thus, the evaluation value of the attribute Cj for the alternative ηi is 

specified as χij = <Tij(λ), Dij(λ), Fij(λ)> = <tij + αijλ, dij + βijλ, fij + γijλ> for tij + αijλ, dij + βijλ, fij + γijλ  [0, 

1] and λ  [λ, λ+], (i = 1, 2, …, m; j = 1, 2, …, n). Hence, all the assessed SNIEs constitute the SNIE 

decision matrix χ= (χij)m×n. Then, the MADM method is shown as the following steps. 

Step1: Calculate the aggregation value of SNIEs χij for ηi and some ranges of λ by the following 

aggregation formula: 
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Step2: Calculate the values of the score function S(χi, λ) (accuracy function L(χi,λ) and 

certainty function C(χi,λ)) by Eq. (1) (Eqs. (2) and (3)). 

Step3: Rank the alternatives and define the best one. 

5. Illustrative Example, Sensitivity Analysis, and Comparison 

5.1. Illustrative Example 

In an illustrative example, we apply the proposed MADM method to the risk assessment of the 

investment selection of metallic mines. The mining projects have great uncertainty and a long cycle. 

Then, there are investment projects of four candidate mines, denoted as a set of four alternatives η = 

{η1, η2, η3, η4}. The key evaluation factors/attributes of the four candidate mines contain the economic 

factor (C1), the safety factor (C2), and the environmental risk factor (C3) in the investment evaluation 

process. The weight vector ρ = (0.3, 0.36, 0.34) addresses the importance of the three attributes. 

Because of evaluation information uncertainty in the four candidate mines, the decision 

makers/experts are required to evaluate each candidate mine on the three attributes in the SNIE 

form. Their evaluation information is provided by the SNIEs χij = <Tij(λ), Dij(λ), Fij(λ)> = <tij + αijλ, dij 

+ βijλ, fij + γijλ> for j = 1, 2, 3; i = 1, 2, 3, 4. Thus, the decision matrix of all SNIEs is shown below: 

0.7 0.2 , 0.2 0.1 , 0.2 0.2 0.7 0.2 , 0.1 0.3 , 0.1 0.1 0.6 0.2 , 0.2 0.2 , 0.2 0.2

0.7 0.2 , 0.2 0.1 , 0.3 0.1 0.8 0.1 , 0.1 0.2 , 0.1 0.3 0.7 0.1 , 0.2 0.2 , 0.1 0.1

0.8 0.1 , 0.2 0.1

        
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   , 0.1 0.2 0.7 0.1 , 0.2 0.1 , 0.1 0.2 0.7 0.2 , 0.3 0.1 , 0.2 0.1

0.7 0.1 , 0.1 0.2 , 0.2 0.1 0.8 0.1 , 0.1 0.2 , 0.2 0.1 0.7 0.1 , 0.2 0.1 , 0.2 0.2
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. 

According to the evaluation information and the proposed MADM method, the decision steps 

are shown below. 

Step1: Aggregate SNIEs χij for ηi (i = 1, 2, 3, 4; j = 1,2, 3) by Eq. (15) or (16). The indeterminate λ 

is specified as λ = [λ, λ+] = [0, 0], [0, 0.5], [0, 1], [0, 1.5]. The aggregation values of Eq. (15) or (16) are 

listed in Tables 1 and 2. 

 

Table 1. The aggregation values corresponding to the SNIEEWA operator 

   

 

λ= [λ, λ+] Aggregation value 

λ= [0, 0] 

χ1 = <[0.6685, 0.6685],[0.1565, 0.1565],[0.1565, 0.1565]>, 

χ2 = <[0.7400, 0.7400],[0.1565, 0.1565],[0.1407, 0.1407]>, 

χ3 = <[0.7337, 0.7337],[0.2301, 0.2301],[0.1271, 0.1271]>, 

χ4 = <[0.7400, 0.7400],[0.1271, 0.1271],[0.2000, 0.2000]> 

λ= [0, 0.5] 

χ1 = <[0.6685, 0.7699],[0.1565, 0.2661],[0.1565, 0.2354]>, 

χ2 = <[0.7400, 0.8050],[0.1565, 0.2460],[ 0.1407, 0.2343]>, 

χ3 = <[0.7337, 0.8007],[0.2301, 0.2809],[ 0.1270, 0.2159]>, 

χ4 = <[0.7400, 0.7913],[0.1271, 0.2159],[ 0.2000, 0.2661]> 

λ= [0, 1] 

χ1 = <[0.6685, 0.8729],[0.1565, 0.3676],[ 0.1565, 0.3147]>, 

χ2 = <[0.7400, 0.8729],[0.1565, 0.3315],[ 0.1407, 0.3190]>, 

χ3 = <[0.7337, 0.8711],[0.2301, 0.3315],[ 0.1270, 0.3000]>, 

χ4 = <[0.7400, 0.8435],[0.1271, 0.3000],[ 0.2000, 0.3315]> 

λ= [0, 1.5] 

χ1 = <[0.6685, 1.0000],[0.1565, 0.4673],[ 0.1565, 0.3945]>, 

χ2 = <[0.7400, 1.0000],[0.1565, 0.4158],[ 0.1407, 0.4015]>, 

χ3 = <[0.7337, 1.0000],[0.2301, 0.3819],[ 0.1270, 0.3824]>, 

χ4 = <[0.7400, 0.8983],[0.1271, 0.3824],[ 0.2000, 0.3966]> 
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Table 2. The aggregation values corresponding to the SNIEEWG operator 

λ = [λ, λ+] Aggregation value 

λ = [0, 0] 

χ1 = <[0.6651, 0.6651],[0.1645, 0.1644],[0.1644, 0.1644]>, 

χ2 = <[0.7354, 0.7354],[0.1645, 0.1644],[0.1617, 0.1617]>, 

χ3 = <[0.7294, 0.7294],[0.2346, 0.2346],[0.1343, 0.1343]>, 

χ4 = <[0.7354, 0.7354],[0.1343, 0.1343],[0.2000, 0.2000]> 

λ = [0, 0.5] 

χ1 = <[0.6651, 0.7654],[0.1645, 0.2672],[0.1644, 0.2473]>, 

χ2 = <[0.7354, 0.8006],[0.1645, 0.2495],[0.1617, 0.2477]>, 

χ3 = <[0.7294, 0.7967],[0.2346, 0.2847],[0.1343, 0.2171]>, 

χ4 = <[0.7354, 0.7855],[0.1343, 0.2171],[0.2000, 0.2672]> 

λ = [0, 1] 

χ1 = <[0.6651, 0.8657],[0.1645, 0.3709],[0.1644, 0.3311]>, 

χ2 = <[0.7354, 0.8657],[0.1645, 0.3349],[0.1617, 0.3351]>, 

χ3 = <[0.7294, 0.8637],[0.2346, 0.3349],[0.1343, 0.3000]>, 

χ4 = <[0.7354, 0.8356],[0.1343, 0.3000],[0.2000, 0.3349]> 

λ = [0, 1.5] 

χ1 = <[0.6651, 0.9659],[0.1645, 0.4769],[0.1644, 0.4165]>, 

χ2 = <[0.7354, 0.9307],[0.1645, 0.4210],[0.1617, 0.4259]>, 

χ3 = <[0.7294, 0.9307],[0.2346, 0.3851],[0.1343, 0.3832]>, 

χ4 = <[0.7354, 0.8858],[0.1343, 0.3832],[0.2000, 0.4036]> 

 

Step 2: Calculate the scores of S(χi, λ) by Eq. (1) and show the results in Tables 3 and 4. 

Table 3. Scores and ranking orders corresponding to the SNIEEWA operator 

λ = [λ, λ+] Score of S(χi, λ) Ranking  The best  

λ = [0, 0] 0.7852, 0.8143, 0.7922, 0.8043 η2 > η4 > η3 > η1 η2 

λ = [0, 0.5] 0.7706, 0.7946, 0.7801, 0.7870 η2 > η4 > η3 > η1 η2 

λ = [0, 1] 0.7577, 0.7775, 0.7694, 0.7708 η2 > η4 > η3 > η1 η2 

λ = [0, 1.5] 0.7489, 0.7709, 0.7687, 0.7554 η2 > η3 > η4 > η1 η2 

 

Table 4. Scores and ranking orders corresponding to the SNIEEWG operator 

λ = [λ, λ+] Score of S(χi, λ) Ranking  The best  

λ = [0, 0] 0.7788, 0.8031, 0.7868, 0.8004 η2 > η4 > η3 > η1 η2  

λ = [0, 0.5] 0.7645, 0.7854, 0.7759, 0.7837 η2 > η4 > η3 > η1 η2 

λ = [0, 1] 0.7500, 0.7675, 0.7649, 0.7670 η2 > η4 > η3 > η1 η2 

λ = [0, 1.5] 0.7348, 0.7488, 0.7538, 0.7500 η3 > η4 > η2 > η1 η3 

 

Step 3: The ranking orders are listed in Tables 3 and 4. There are exactly consistent ranking 

results between the SNIEEWA operator and the SNIEEWG operator when the indeterminate ranges 

of λ are λ = [0, 0], [0, 0.5], [0, 1], then η2 is the best alternative. While the indeterminate range is λ= [0, 

1.5], the ranking orders are very different between two aggregation operators, then the best 

alternative is η2 corresponding to the SNIEEWA operator and η3 corresponding to the SNIEEWG 

operator. 

5.2. Sensitivity Analysis  

An SNIE can represent an SvNE or an IvNE regarding the value or range of the indeterminate 

λ. In the above example, we have specified several indeterminate ranges of λ to make decisions. 



Neutrosophic Sets and Systems, Vol. 47, 2021    23  

 

 

Xueping Lu, Tong Zhang, Yiming Fang, Jun Ye, Einstein Aggregation Operators of Simplified Neutrosophic Indeterminate 

Elements and Their Decision-Making Method  

The results show that the ranking orders are the same within certain ranges of λ = [0, 0], [0, 0.5], [0, 

1] corresponding to two aggregation operators, while the ranking orders are very different in the 

range of λ= [0, 1.5]. The above example demonstrates that more ranking orders based on the two 

aggregation operators are nearly consistent. Due to the variability of the indeterminate λ, the 

proposed MADM approach is valid and flexible. To further analyze the change of decision results 

with the indeterminate variety of λ, we show the relational graphs corresponding to the 

indeterminate value of λ and the score of ηi in Figures 1 and 2. 

 

Figure 1. Relationship between the score of ηi and the value of λ corresponding to the SNIEEWA operator  

 

 
Figure 2. Relationship between the score of ηi and the value of λ corresponding to the SNIEEWG operator 

 

SNIE is reduced to SvNE when the indeterminate λ is a single value. In Figure 1, the ranking 

order is η2 > η4 > η3 > η1 and the best alternative is η2 when λ is in the range of λ  [0, 0.8] 

corresponding to the SNIEEWA operator. Then, the best alternative is η3 in the range of λ  [0.8, 1.5]. 

In Figure 2, the ranking order is η2 > η4 > η3 > η1 when the value of λ is less than 0.6 corresponding 

to the SNIEEWG operator. The ranking order is η3 > η4 > η2 > η1 when the value of λ is greater than 

0.6. Although the ranking orders are not exactly identical with different aggregation operators, they 

are some sensitivities to different values/ranges of λ. 
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5.3. Comparison and Discussion 

Du et al. [15] first put forward the concept of SNIE and a MADM approach based on the 

weighted aggregation operators of SNIEs. To compare the proposed MADM approach with the 

existing MADM approach [15], the ranking results of the existing MADM approach [15] in specified 

ranges of λ are indicated corresponding to the SNIEWA and SNIEWG operators and shown in Table 5. 

The ranking results corresponding to the proposed SNIEEWA operator and the existing SNIEWA 

operator [15] are identical in all ranges of λ. Corresponding to the proposed SNIEEG operator and 

the existing SNIEWG operator [15], the ranking results are different only in the range of λ = [0, 1]. In 

terms of all the results, η2 is the best investment selection, conversely η1 is the worst one. 

Table 5. Decision results of different methods 

6. Conclusions 

In this article, we presented the SNIEEWA and SNIEEWG operators of SNIEs with respect to 

the Einstein t-norm and t-conorm operations. On the basis of the SNIEEWA and SNIEEWG 

operators, the MADM method was developed and applied to the selection problem of mine 

investments. In the illustrative example, the decision results were analyzed under the single- and 

interval-valued neutrosophic indeterminate situations, which indicated some sensitivities to 

different values/ranges of λ. Compared the existing MADM approach [15] in the situation of 

interval-valued neutrosophic indeterminate information, the ranking results demonstrated that the 

proposed approach is valid. Since SNIS can flexibly express neutrosophic information according to 

indetermination ranges of λ, the proposed MADM method reflected its efficiency and flexibility 

regarding interval indeterminate ranges. 

Since SNIS is a flexible form for describing indeterminate and inconsistent assessment 

information, it can be used in many indeterminate problems. In future research, more aggregation 

operators, similarity measures, and decision-making methods will be developed and applied to 

many fields in neutrosophic indeterminate environment. 
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