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Abstract: In this article, neutrosophic triplet partial bipolar metric spaces are obtained. Then some definitions and examples are      

given for neutrosophic triplet partial bipolar metric space. Based on these definitions, new theorems are given and proved. In addition,       

neutrosophic triplet partial bipolar metric spaces have been shown to be different from classical partial metric space, neutrosophic      

triplet partial metric space and neutrosophic triplet metric space. Thus, we add a new structure in neutrosophic triplet theory. 
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1 Introduction   

Smarandache obtained neutrosophic logic and set [1]. In neutrosophic theory, there is a degree of membership (t), 

there is a degree of indeterminacy (ı) and there is a degree of non-membership (f). These degrees are defined in-

dependently of each other. Therefore, neutrosophic logic and neutrosophic set help us to explain many uncertain-

ties in our lives. In addition, many     researchers have made studies on this theory [2-27]. Recently, some re-

searchers studied neutrosophic theory       [50 - 53]. Also, Tey et al. studied novel neutrosophic data analytic hi-

erarchy process for multi-criteria decision making method [54], Son et al. obtained on the stabilizability for a 

class of linear time-invariant systems under uncertainty [55], Tanuwijaya et al. introduced novel single valued 

neutrosophic hesitant fuzzy time series model [56]. 

 

In fact, neutrosophic set is a generalized state of fuzzy [28] and intuitionistic fuzzy set [29]. 

Also, Smarandache and Ali obtained neutrosophic triplet set (NTS) and neutrosophic triplet groups (NTG) [30].  

For every element “x” in NTS A, there exist a neutral of “x” and an opposite of “x”. Also, neutral of “x” must be 

different from the classical neutral element. Therefore, the NTS is different from the classical set. Furthermore, a 

neutrosophic triplet (NT) “x” is showed by   <x, neut(x), anti(x)>. Also, many researchers have obtained NT 

structures [31-44]. Recently, Şahin, Kargın Uz and Kılıç have discussed neutrosophic triplet bipolar metric space 

[45]. 

Mutlu and Gürdal introduced bipolar metric space [46] in 2016. Bipolar metric space is a generalization of met-

ric space. Also, bipolar metric spaces have an important role in fixed point theory. Recently, Mutlu, Özkan and 

Gürdal studied fixed point theorems on bipolar metric spaces [47]; Kishore, Agarwal, Rao, and Rao introduced 

contraction and fixed point theorems in bipolar metric spaces with applications [48]; Rao, Kishore and Kumar 

obtained Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with     

applications to homotopy [49]. 

In this section, neutrosophic triplet partial bipolar metric space is introduced. Chapter 2 provides definitions and 

properties for bipolar metric space [46], neutrophic triplet sets [30], neutrophic triplet metric spaces [32],        

neutrosophic triplet partial metric space [36] and neutrosophic triplet b - metric space [45]. In chapter 3,          
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neutrosophic triplet partial bipolar metric space is described and some properties are given for neutrosophic     

triplet partial bipolar metric space. In addition, neutrosophic triplet partial bipolar metric spaces are shown to be 

different from classical partial metric space, neutrosophic triplet partial metric space and neutrosophic triplet 

metric space. We give conclusions in Chapter 4. 

2 Preliminaries  

Definition 2.1: [30] Let # be a binary operation. An NTS (X, #) is a set such that for x ∊ X, 

i) There exists neutral of “x” such that x#neut(x) = neut(x)#x = x, 

ii) There exists anti of “x” such that x#anti(x) = anti(x)#x = neut(x). 

Also, a neutrosophic triplet “x” is denoted by (x, neut(x), anti(x)). 

Definition 2.2: [32] Let (N,*) be an NTS and   :NxN→ ℝ
+∪{0} be a function. If   :NxN→ ℝ

+∪{0} and (N, *) 

satisfies the following conditions, then    is called NTM.  

a) x*y ∈ N , 

b)   (x, y) ≥ 0 , 

c) If x = y, then   (x, y) = 0, 

d)   (x, y) =   (y, x) , 

e) If there exits at least a y ∊ N for each x, z ∊N such that   (x, z) ≤   (x, z*neut(y)), then 

  (x, z*neut(y)) ≤   (x, y) +   (y, z).  

In this case, ((N,*),   ) is called an NTMS. 

Definition 2.3: [36]  Let (N,*) be a NTS. If   :NxN→ ℝ
+∪{0} satisfies the following conditions, then    is a 

NTpM. For all x, y, z ∈ N, 

a) x*y ∈ N, 

b)    (x, y) ≥    (x, x) ≥ 0, 

c) If    (x, y) =     (x, x) =    (y, y) = 0, then there exists at least one pair of elements x, y ∈N such that x = y. 

d)    (x, y) =    (y, x), 

e) If for each pair of x, z ∊N, there exists at least one y ∊N such that    (x, z) ≤    (x, z*neut(y)), then               

   (x, z*neut(y)) ≤    (x, y) +    (y, z) -    (y, y). 

In this case, ((N,*),   ) is called a NTpMS. 

Definition 2.4: [46] Let X and Y be nonempty sets and d:NxN→ ℝ
+∪{0} be a function. If d satisfies the           

following conditions, then d is called a bipolar metric (bM). 

i) For       ∈    , if d(x, y) = 0, then x = y, 

ii) For   ∈    , d(u, u) = 0, 

iii) For   ∈    ,              , 

iv) For              ∈    ,                                . 

In this case, (X, Y, d) is called a bipolar metric space (bMS). 
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Definition 2.5: [45] Let       and       be two NTSs and let         ∪ { } be a function. If d,       

and       satify the following conditions, then d is called a neutrosophic triplet bipolar metric (NTbM). 

i) For     ∈  ,    ∈  , 

  for     ∈  ,    ∈  , 

ii) For   ∈    and   ∈  , if         , then    , 

iii) For   ∈    , d(u,u)=0, 

iv) For      ∈    ,              . 

v)  Let              ∈    . For each      , if there exists at least one         such that 

        (            )                            and 

                                               , 

then 

                                                  . 

In this case ((       )  ) is called a neutrosophic triplet bipolar metric space (NTbMS). 

Definition 2.6: [45] Let  (          )    be a NTbMS. A left sequence (  ) converges to a right point y     

(symbolically        or               ) if and only if for every ε > 0 there exists an   ∈   , such that 

          for all     . Similarly, a right sequence       converges to a left point x (denoted as      or 

            ) if and only if, for every ε > 0 there exists an   ∈   such that, whenever     ,          . 

Also, if        and       , then    ) converges to point u ((  ) is a central sequence). 

Definition 2.7: [45] Let  (          )    be an NTbMS,      be a left sequence and      be a right sequence in 

this space.         is called an NT bisequence. Furthermore, if      and      are convergent, then         is 

called an NT convergent bisequence. Also, if       and      converge to the same point, then         is called 

an NT biconvergent bisequence. 

Definition 2.8: [45] Let  (          )    be an NTbMS and         be an NT bisequence.         is called an 

NT Cauchy bisequence if and only if  for every ε > 0 there exists an   ∈   , such that            for all 

    .  

3 Neutrosophic Triplet Partial Bipolar Metric Space  

Definition 3.1: Let       and       be two NTSs and let            ∪ { } be a function. If    ,       

and       satify the following conditions, then     is called a NT partial bipolar metric (NTpbM). 

i-) For all    ∈   ,    ∈  , 

 for all    ∈    ,    ∈  , 

ii-) For all  ∈   and   ∈  ,  

                     and                    0, 

iii-) If                             , there exists at least one pair of elements    ∈     such that 

           , 
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iv-) For all    ∈    ,                   , 

v-) Let              ∈    . For each      , if there exists at least one         such that 

            (            )                              and 

                                                     , 

then 

                                   
        

           
       min {     

            
     }. 

In this case ((       )     ) is called a NTpbM space (NTpbMS). 

Example 3.2: Let   {             } and   {        }. We show that       and       are NTSs in 

       .  

For      , NTs are (0, 0, 0), (3, 6, 12), (6, 6, 6), (9, 6, 9), (10,10,10), (12, 6, 3). 

Also, for      , NTs are (0, 0, 0), (5, 10, 5), (6, 6, 6), (10, 10, 10). 

Thus,       and       are NTSs. 

Furthermore, we define the           ∪ { } function such that             {|    | |    |}. We 

show that d is a NTpbM. 

i-)      ∈ ,      ∈  ,      ∈  ,      ∈  ,        ∈  ,       ∈  ,      ∈  ,                  

     ∈  ,       ∈  ,        ∈  ,       ∈  ,      ∈  ,       ∈  ,        ∈  ,      

  ∈  ,      ∈  ,       ∈  ,       ∈  ,         ∈  ,       ∈          ∈  . 

Thus, for all    ∈  ,    ∈  . 

Also,      ∈  ,      ∈  ,      ∈  ,       ∈  ,       ∈  ,       ∈  ,       ∈  ,             

        ∈  ,       ∈  ,      ∈   

 Thus, for  all    ∈  ,    ∈  . 

ii-)For all  ∈    ∈  , if 

          max{|    | |    |},  

          max{|    | |    |}, 

          max{|    | |    |}, 

then it is clear that  

                    and 

                   . 

iii-)For                              , if            , then there exists at least one pair               

   ∈    . 

If           max{|    | |    |}   , then        and       . 

If        and       ,       ∈      are pairs of elements, since     ∈    and     ∈  . 

iv) For all   ∈     ,                   . 

          max{|    | |    |}   max{|    | |    |} =          . 

v) It is clear that  
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                      (            )       (                   )            ,  

                                                      (                   )            . 

Also, 

    (                   )                                                           

 min {                 }. 

It is clear that 

              (            )              {|    | |    |} 

        (                    )          , 

                                        {|    | |    |} 

        (                    )          .  

Also, 

   (                    )           

                                   {                   }. 

It is clear that 

             (            )               {|    | |     |} 

        (                    )          , 

          |     |                                 {|    | |     |} 

    (                    )            

Also, 

   (                    )                                            {                 } 

It is clear that 

         |    |     (           )              {|    | |    |} 

        (                   )          , 

         |    |                               {|    | |    |} 

        (                   )          . 

Also, 

   (                   )              

                                 {                  } 

It is clear that 

         |    |     (           )              {|    | |    |} 

    (                   )            

         |    |                                  {|    | |    |}     

    (                   )            
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Also, 

    (                   )             

                                 {                 }  

It is clear that 

         |    |     (            )              {|    | |    |}

    (                    )            

         |    |                               {|    | |    |} 

    (                    )            

Also,  

   (                    )                                     {                   }. 

It is clear that  

          |     |     (            )               {|    | |     |}

    (                    )             

           |     |                                 {|    | |     |}  

       (                    )           . 

Also,    (                    )                                   {                  } 

It is clear that 

          |    |     (           )              {|    | |    |}  

    (                   )            

                      |    |                               {|    | |    |}  

                   (                   )          . 

Also,  

   (                   )                                           {                 } 

It is clear that 

         |    |     (           )              {|    | |    |} 

    (                   )            

         |    |                               {|    | |    |} 

    (                   )            

Also, 

    (                   )                                           {                 }. 

It is clear that 

         |    |     (           )              {|    | |    |} 

    (                    )            
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         |    |                                {|    | |    |} 

    (                    )            

Also,  

   (                    )

                                           {                   }  

 

It is clear that 

          |     |     (            )               {|    | |     |}

    (                    )             

          |     |                                 {|    | |     |} 

    (                    )             

Also, 

   (                    )                                            {                 } 

It is clear that 

         |    |     (           )              {|    | |    |} 

    (                   )            

         |    |                               {|    | |    |} 

    (                   )            

Also,  

   (                   )                                           {                 } 

It is clear that 

         |    |     (           )              {|    | |    |} 

    (                    )           

         |    |                                {|    | |    |} 

    (                    )            

Also, 

   (                    )           

                                  {                   }  

It is clear that 

         |    |     (           )              {|    | |    |} 

    (                    )            

         |    |                                {|    | |    |} 

    (                    )            

Also,  
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   (                    )          

                                   {                   }  

It is clear that 

          |     |     (            )               {|    | |     |}

    (                    )             

          |     |                                 {|    | |     |} 

    (                    )             

Also, 

   (                    )            

                                 {                 }  

It is clear that 

         |    |     (           )              {|    | |    |} 

    (                   )            

         |    |                               {|    | |    |} 

    (                   )            

Also, 

   (                   )                                           {                 } 

It is clear that 

          |     |     (            )               {|     | |    |}    

    (                     )             

          |     |                                  {|     | |    |} 

                                                    (                     )              

Also, 

   (                     )            

                                   {                   }. 

It is clear that 

          |     |     (            )               {|     | |    |}

    (                     )             

          |     |                                  {|     | |    |} 

    (                     )             

Also, 

   (                     )            

                                   {                   }  
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It is clear that 

           |     |     (             )                {|     | |     |}

    (                     )             

           |     |                                  {|    | |     |} 

    (                     )             

Also, 

   (                     )            

                                  {                 }  

It is clear that 

          |     |     (            )               {|     | |    |}

    (                    )             

          |     |                                 {|     | |    |} 

    (                    )             

Also,  

   (                    )            

                                 {                 }. 

It is clear that 

          |     |     (            )               {|     | |    |}

    (                    )             

          |     |                                 {|     | |    |} 

    (                    )             

Also, 

   (                    )            

                                 {                 }  

It is clear that 

          |     |     (             )               {|     | |    |}

    (                     )             

          |     |                                 {|     | |    |} 

    (                     )             

Also, 

   (                     )            

     
                               {                   }  

It is clear that 
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           |     |     (             )               {|     | |    |}

    (                     )             

           |     |                                   {|     | |     |} 

    (                     )             

Also, 

   (                     )            

                                  {                   }  

It is clear that 

          |     |     (             )               {|     | |    |}

    (                     )             

          |     |                                 {|     | |    |} 

    (                     )             

Also, 

   (                     )            

                                   {                   }. 

Thus, for each      , if there exists at least a         such that 

            (            )                              

                                                     , 

then 

                                   
        

           
        {     

           
     }. 

Therefore,     is an NTpbM and ((       )    ) is an NTpbMS.  

Corollary 3.3:  

1) The NTpbMS differs from the NTPMS due to the i -), ii-) and v-) conditions in the NTpbMS. 

2) The NTpbMS differs from the NTMS. Because the triangle inequality in the NTMS differs from the triangle 

inequality in the NTpbMS. 

3) The NTpbMS differs from the NTbMS. Because the triangle inequality in the NTbMS differs from the          

triangle inequality in the NTpbMS. Also, in a NTpbMS, it can be that    (x, x)   0. 

Theorem 3.4: Let  (       )       be a NTpbMS.  If the following conditions are satisfied, then              

is a NTpMS. 

a)    . 

b)      , by the triangle equality in Definition 3.1.  

Proof: 

i)  (       )      is a NTpbMS implies that for all    ∈  ,    ∈   and for all    ∈  ,    ∈  . Also, 

from condition a) it is clear that for all    ∈   = Y,    ∈   = Y. 
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ii) Since  (       )      is a NTpbMS, for all   ∈   and for all   ∈  , 

                    and 

                    and is obvious by condition (a) 

For all   ∈   ,                    . 

iii) Since   (       )      is a NTpbMS, for                             , if           ; then  

there exists at least one pair of    ∈    , and also from condition a)  if    , then                    

            there exists at least one pair of    ∈       such that           . 

iv) Since   (       )      is a NTpbMS, we have for all    ∈    ,                  . Also, from             

condition a), we can write     = X. Thus, for all    ∈  ,                  . 

v) Since  (       )      is a NTpbMS, for each      , if there exists at least a         such that 

            (            )                              and 

                                                     , 

then 

                                   
        

           
          {     

             
     }. 

From condition b), we can write that 

            (            )    

   (                     )          
       

           
      min {     

            
     }  =   

       
   +      

          {     
            

     } . 

Also, from condition a), if there exists at least a     ∊ Y = X for each  , b ∊ Y = X such that 

    ( , b) ≤    ( , b*neut(  )), then 

   ( , b*neut(  )) ≤    ( ,   ) +    (  , b)- min {     
            

     } =     ( ,   ) +    (  , b) . 

Thus,             is a NTpMS. 

Theorem 3.5: Let  (       )      be a NTpbMS. If (X Y,  ) is a NTS, then  (           )      is 

a NTpbMS. 

Proof: We suppose that (X Y,  ) is a NTS. 

i) Since  (       )      is a NTpbMS, for all    ∈  ,    ∈   and for all    ∈  ,    ∈  . Thus, it is 

clear that     ∈          ∈    . 

ii) Since  (       )      is a NTpbMS, for all  ∈   and for all  ∈  , if                    , then 

                   . 

Thus, it is clear that for all  ∈        ∈    ; 

                    and                    . 

iii) Since  (       )      is a NTpbMS, if      (   ) =          =           0, then there exists at least one 

pair of elements      ∈     such that     (    ) = 0. Thus, it is clear that for                                                        

    (   ) =          =           0, there exists at least one pair of      ∈            . 
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 iv) Since  (       )      is a NTpbMS, we have for all     ∈    ,                  . Thus, it is clear 

that for all    ∈             =    ,                   . 

v) Now, let              ∈    . For each      , if there exists at least one         such that 

            (            )                              and 

                                                     , 

then 

                                   
        

           
          {     

             
     }. 

Thus, it is clear that for each      ∈            , if there exists at least one                                   

       ∈             such that  

            (            ) , 

                           and 

                                   , then 

                                   
        

           
          {     

             
     }.  

Thus,  (           )      is an NTpbMS. 

Theorem 3.6: Let  (       )     a NTbMS. Then, for   ∈   ,                   is a NTpbM. 

Proof:  

i) For all   ∈   ,    ∈   and  for all    ∈   ,   ∈    since d is a neutrosophic triplet bipolar metric. 

ii) For all  ∈   and for all  ∈  , 

                  and 

                  . 

Because;   

                   

                   

                   

         and           for  all    ∈    . 

iii) If                               the proof is straightforward, since 

                                

                                 . 

iv) For all    ∈      ,                    . 

This is because of the fact that                    and                for     ∈     . 

v) Let               ∈     . For each       ∈    , If there exists at least one        ∈     such that 

            (            ), 

                          , 

            (                     ), 

 then 
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            (                     )    

       
        

           
      min{     

           
     } .  

As                    and                                                    , we obtain 

that 

   (                     )    

                                  min{     
           

     }  =                

                              min{     
           

     } =      

                             min{                     } =  

                            min{   } =   

                            k =  

                            . 

In this case, 

   (                     )          
        

           
      min{     

           
     } . 

Corollary 3.7: A NTpbMS can be obtained from a NTbMS. 

Definition 3.8:  Let ((       )    )  be a NTpbMS. A left sequence  nx converges to a right point y          

(symbolically        or             ) if and only if for every ε > 0 there exists an   ∈   , such that 

            -min {                 }for all     . Similarly, a right sequence       converges to a left 

point x (denoted as      or             ) if and only if, for every ε > 0 there exists an   ∈   such that, 

whenever     ,            - min {                 } . Also, if        and       , then    )       

converges to point u ((  ) is a central sequence). 

Definition 3.9: Let  (          )      be a NTpbMS,      be a left sequence and      be a right sequence in 

this space.         is called a NT partial bisequence. Furthermore, if      and      are convergent, then         

is called a NT partial convergent bisequence. Also, if       and      converge to same point, then         is 

called a NT partial biconvergent bisequence. 

Definition 3.10: Let  (          )      be a NTpbMS and         be a NT partial bisequence.         is 

called an NT partial Cauchy bisequence if and only if  for every ε > 0, there exists an   ∈   , such that         

             -min {                 } for all       .  

Definition 3.11: Let ((       )    ) be a NTpbMS. In this space, if each         NT partial Cauchy bise-

quence is a NT partial convergent Cauchy bisequence,  then ((       )    ) is called complete  NT partial 

bipolar metric space.

Conclusion  
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In this study we first obtained NTpbMS. We show that NTpbMS is different from NTpMS and NTMS. Also, we 

show that a NTpbMS will provide the properties of a NTbMS under which conditions are met. Thus, we added a 

new structure to neutrosophic triple structures. Also, thanks to this study, researchers can obtain new fixed point    

theories, neutrosophic triplet partial bipolar normed space, neutrosophic triplet partial bipolar inner product 

space. 

Abbreviations 

bM: bipolar metric 

bMS: bipolar metric space 

pMS: partial metric space 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTM: Neutrosophic triplet metric 

NTMS: Neutrosophic triplet metric space 

NTpM: Neutrosophic triplet partial metric 

NTpMS: Neutrosophic triplet partial metric space 

NTbM: Neutrosophic triplet bipolar metric  

NTbMS: Neutrosophic triplet bipolar metric space 

NTpbMS: Neutrosophic triplet partial bipolar metric space 
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