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Abstract. Pythagorean Neutrosophic fuzzy graph, an extension of Pythagorean and Neutrosophic graph, is

more efficient in representing relationship between various objects where the relation between the objects is

uncertain, while the Dombi operators with adaptable operational parameter is very useful by taking distinct

values. The Pythagorean Neutrosophic Dombi fuzzy graphs (PNDFG) is a novel concept proposed in this re-

search paper by integrating the concepts Pythagorean Neutrosophic fuzzy graph and Dombi operator. Various

basic graphical ideas using Dombi operator have been introduced for Pythagorean Neutrosophic fuzzy graphs.

The main important part is the MCDM model which is proposed for the developed PNDFG and demonstrated

with an illustrative example for choosing the best alternative.

Keywords: Pythagorean Neutrosophic sets; Pythagorean Neutrosophic Dombi fuzzy graphs; Dombi;

Pythagorean fuzzy graphs.

—————————————————————————————————————————-

1. Introduction

In real-life situations, fuzzy set theory [1] plays an important role in resolving incomplete

and ambiguous information. A fuzzy set is a variant of a regular set in which elements have

a membership degree between 0 and 1. Fuzzy set and its conceptual development have wide-

ranging applications in fields like engineering, computer science, mathematics, artificial intel-

ligence,decision making and image analysis. The passage presented below gives some of the

recent advancements in fuzzy set theory.

Atanassov [2] extended the fuzzy set to intuitionistic fuzzy set, which gives each element a
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membership and non-membership degree. An intuitionistic fuzzy set is one that meets the re-

quirement that the sum of both membership and non-membership values is between 0 and 1.

Smarandache’s Neutrosophic set [3] is a generalization of the theory of fuzzy and intuitionistic

fuzzy sets [1, 4] which deals with imprecise information. Elements with truth, indeterminacy,

and false membership degrees that lie within the interval [0,1] characterize the single valued

neutrosophic set which was introduced by Wang et al [5].

Yager [6-8] introduced Pythagorean fuzzy sets as an extension of intuitionistic fuzzy sets to

deal with complex imprecision and uncertainty when the sum of squares of membership and

non-membership degrees is between 0 and 1. Hence, Pythagorean fuzzy set accounts for larger

amount of uncertainty than intuitionistic fuzzy set. The degree of dependence among compo-

nents of fuzzy sets and neutrosophic sets was introduced by Smarandache and was developed

further. Out of three membership functions of neutrosophic sets, one special case with inde-

pendent indeterminacy and dependent truth and falsity are chosen with the constraint that

the total of squares of membership, indeterminacy and non-membership lies between 0 and 2

and it is termed as Pythagorean Neutrosophic set [23].

Graphs are pictorial representations of objects and their relationships. More uncertainties oc-

cur in relations among objects which results in the need for framing fuzzy graph model rather

than ordinary graph, which has the same structure. Using Zadeh’s fuzzy relation, Kaufmann

[9] introduced the concept of fuzzy graphs. Various fundamental and theoretical ideas like

bridges, cycles and connectedness were defined and developed by Rosenfeld [10]. Karunam-

bigai and Parvathi [11] instituted the intuitionistic fuzzy graphs which was further extended

to intuitionistic fuzzy hypergraph and its applications have been explored [12]. Broumi et

al. presented single-valued neutrosophic graphs [13] with examples and properties, and the

properties of degree and regular single valued neutrosophic graphs were also examined [14].

The concept of fuzzy graph was advanced to pythagorean fuzzy graphs in [15]. The new

emerging concept of Pythagorean neutrosophic fuzzy graph [16] were advanced by blending

the concept of Pythagorean Neutrosophic sets and fuzzy graphs. Ashraf et al. [17] proposed

the idea of Dombi fuzzy graphs. Subsequently, many researchers worked on this Dombi fuzzy

graphs and made advancements like interval valued Dombi fuzzy neutrosophic graph [18], de-

cision making using Dombi fuzzy graphs [19], Pythagorean Dombi fuzzy graphs [20], picture

Dombi fuzzy graph [21] and Dombi bipolar fuzzy graph [22]. Application of the fuzzy theory

in decision making is an effective way for solving real-life problems, and it is advanced using

all the new concept developments most recently in [24-30]. This paper presents Pythagorean

neutrosophic Dombi graphs as a generalization of Pythagorean and Neutrosophic Dombi fuzzy

graphs (PNDFG).

The following is the layout of the research paper: In section 2, the paper’s basic terminologies
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are explained. In section 3, we define the complement, homomorphism, isomorphism, strength,

and completeness of PNDFG. Section 4 proposes an algorithm for Multi-criteria decision mak-

ing based on the PNDFG, which is demonstrated with an example and concluded in section

5.

2. Preliminaries

Definition 2.1.[1] On a universe U, A = {〈s, µA(s)〉 |s ∈ U} is a fuzzy set (FS) where

µA : U→ [0, 1] symbolizes the membership grade of A.

Definition 2.2.[1] A fuzzy relation on a fuzzy set X is X × X, represented by B =

{〈st, µB(st)〉 |st ∈ X× X} , where µB : X× X→ [0, 1] is the membership grades of A.

Definition 2.3.[9] A fuzzy graph is a duo G = (A,B) on X with A a FS on X and B a FR

on X such that µB(st) ≤ µA(s) ∧ µA(t) ∀ s, t ∈ X, where A : X → [0, 1] and B from X× X to

[0, 1].

Definition 2.4.[6] A Pythagorean fuzzy set (PFS) on a universe X is A =

{〈s, µA(s), ϑA(s)〉 |s ∈ X} , where µA : X → [0, 1] and ϑA : X → [0, 1] signify the member-

ship and non-membership grades of A, and µA, ϑA satisfying 0 ≤ µ2A(s) + ϑ2A(s) ≤ 1 ∀ s ∈ X.

Definition 2.5.[6] A Pythagorean fuzzy set on X× X is called a Pythagorean fuzzy relation

(PFR) on X, represented by B = {〈st, µB(st), ϑB(st)〉 |s ∈ X} , where µB : X× X→ [0, 1] and

ϑA : X×X→ [0, 1] signify the membership and non-membership grades of B, correspondingly,

such that 0 ≤ µ2B(st) + ϑ2B(st) ≤ 1 ∀ s, t ∈ X.

Definition 2.6.[15] A Pythagorean fuzzy graph (PFG) on a non-empty set X is a pair

G = (A,B) with A a PFS on X and B a PFR on X such that µB(st) ≤ µA(s) ∧ µA(t),

ϑB(st) ≥ ϑA(s) ∨ ϑA(t) and 0 ≤ µ2B(st) + ϑ2B(st) ≤ 1 ∀ s, t ∈ X. where µB : X×X→ [0, 1] and

ϑB : X×X→ [0, 1] symbolize the membership and non-membership grades of B, correspond-

ingly.

Definition 2.7.[19] A binary function T : [0, 1] × [0, 1] → [0, 1] is named as t-norm if ∀
a, b, u ∈ [0, 1], it fulfills the following criteria:

1. T(a, 1) = a,

2. T(a, b) = T(b, a),
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3. T(a,T(b, u)) = T(T(a, b), u),

4. T(a, b) ≤ T(u, v) if a ≤ u and b ≤ v.

The Dombi’s t-norm and t-conorm are given by 1

1+[( 1−a
a

)γ+( 1−b
b

)γ ]
1
γ
, γ > 0. and

1

1+[( 1−a
a

)−γ+( 1−b
b

)−γ ]
1

−γ
, γ > 0 respectively.

By putting γ = 1 in Dombi’s t-norm and t-conorm one gets the other set of T-operators

T(a, b) = ab
a+b−ab and P (a, t) = a+b−2ab

1−ab ,.

Definition 2.8.[16] Pythagorean Neutrosophic Fuzzy Graph (PNFG) is G = (V,E), where

V = {v1, v2, ..., vn} such that µ1, β1, σ1 are from V to [0, 1] with 0 ≤ µ1(vi)2+β1(vi)
2+σ1(vi)

2 ≤
2 ∀vi ∈ V indicates the membership, indeterminacy and non-membership functions and

µ2, β2, σ2 are from V ×V to [0, 1] such that µ2(vivj) ≤ µ1(vi)∧µ1(vj),β2(vivj) ≤ β1(vi)∧β1(vj)
and σ2(vivj) ≤ σ1(vi) ∨ σ1(vj) with 0 ≤ µ2(vivj)2 + β2(vivj)

2 + σ2(vivj)
2 ≤ 2 ∀vivj ∈ V × V .

Definition 2.9.[17] A Dombi fuzzy graph on V is a pair that has been ordered as G = (A,B),

where A : V → [0, 1] is contained in V and B : V × V → [0, 1] is a symmetric fuzzy relation

on A such that µB(st) ≤ µA(s)µA(t)
µA(s)+µA(t)−µA(s)µA(t) ∀ s, t ∈ V, where µA and µB symbolize the

membership grades of A and B, correspondingly.

3. Pythagorean Neutrosophic Dombi Fuzzy Graphs

Definition 3.1. A Pythagorean Neutrosophic Dombi Fuzzy Graph (PNDFG) with finite un-

derlying set V is a pair G = (η, ζ), where η = (µ1, β1, σ1) from V to [0, 1] is a Pythagorean

neutrosophic subset in V and ζ = (µ2, β2, σ2) from V×V to [0, 1] is a symmetric Pythagorean

Neutrosophic fuzzy relation on η such that

µ2(gh) ≤ µ1(g)µ1(h)

µ1(g) + µ1(h)− µ1(g) · µ1(gh)

β2(gh) ≤ β1(g)β1(h)

β1(g) + β1(h)− β1(g) · β1(gh)

σ2(gh) ≤ σ1(g) + σ1(h)− 2 σ1(g) σ1(h)

1− σ1(g) σ1(h)

and 0 ≤ µ22(gh) + β22(gh) + σ22(gh) ≤ 2 for all g, h ∈ V.

η and ζ denote the Pythagorean Neutrosophic Dombi fuzzy vertex and edge sets of G.
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Example 1. Consider a PNDFG over V = {a, b, c, d, e, f} defined by

〈(a, .5, .6, .5), (b, .8, .4, .2), (c, .4, .6, .2), (d, .6, .5, .7), (e, .7, .4, .3), (f, .3, .6, .7)〉
〈(ab, .44, .316, .556), (af, .231, .429, .769), (bc, .432, .316, .33), (cd, .316, .376, .721), (de, .477, .286,

.734), (ef, .266, .316, .734), (ad, .375, .375, .769), (be, .596, .25, .404), (cf, .207, .429, .721)〉

Figure 1. Pythagorean Neutrosophic Dombi Fuzzy graph

Definition 3.2. Let ζ = {(gh, µ2(gh), β2(gh), σ2(gh)) /gh ∈ E} be a PN Dombi fuzzy edge set

in PNDFG G; then

1. The order of G is represented by

O(G) =

∑
g∈V

µ1(g),
∑
g∈V

β1(g),
∑
g∈V

σ1(g)


2. The size of G is symbolized as S(G) and is defined by

S(G) =

∑
gh∈E

µ2(gh),
∑
gh∈E

β2(gh),
∑
gh∈E

σ2(gh)


Example 2. For the PNDFG in Example 1, the order of G as (3.3, 3.1, 2.6) and size of the

PNDFG as (3.34, 3.092, 5.738).

Definition 3.3. Let ζ = {(gh, µ2(gh), β2(gh), σ2(gh)) /gh ∈ E} be a PN Dombi fuzzy edge

set in PNDFG G; then the degree of vertex g ∈ V is symbolized by (D)G(g) and defined as

(D)G(g) = ((D)µ(g), (D)β(g), (D)σ(g)), where

(D)µ(g) =
∑

g,h6=g∈V
µ2(gh) =

∑
g,h 6=g∈V

µ1(g) µ1(h)

µ1(g) + µ1(h)− µ1(g) µ1(h)

(D)β(g) =
∑

g,h6=g∈V
β2(gh) =

∑
g,h6=g∈V

β1(g) β1(h)

β1(g) + β1(h)− β1(g) β1(h)
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(D)σ(g) =
∑

g,h6=g∈V
σ2(gh) =

∑
g,h6=g∈V

σ1(g) + σ1(h)− 2 σ1(g) σ1(h)

1− σ1(g) σ1(h)

The total degree of vertex g ∈ V is symbolized by (TD)G(g) and defined as

(TD)G(g) = ((TD)µ(g), (TD)β(g), (TD)σ(g)), where

(TD)µ(g) =
∑

g,h6=g∈V
µ2(gh) + µ1(g) =

∑
g,h 6=g∈V

µ1(g) µ1(h)

µ1(g) + µ1(h)− µ1(g) µ1(h)
+ µ1(g),

(TD)β(g) =
∑

g,h 6=g∈V
β2(gh) + β1(g) =

∑
g,h 6=g∈V

β1(g) β1(h)

β1(g) + β1(h)− β1(g) β1(h)
+ β1(g),

(TD)σ(g) =
∑

g,h6=g∈V
σ2(gh) + σ1(g) =

∑
g,h6=g∈V

σ1(g) + σ1(h)− 2 σ1(g) σ1(h)

1− σ1(g) σ1(h)
+ σ1(g).

Example 3. For the PNDFG in Figure 1, the degree and the total degree of the vertices are

DG(a) = (1.046, 1.12, 2.094), TDG(a) = (1.546, 1.72, 2.594)

DG(b) = (1.468, 0.882, 1.29), TDG(b) = (2.268, 1.282, 1.49)

DG(c) = (0.995, 1.12, 1.772), TDG(c) = (1.355, 1.72, 1.972)

DG(d) = (1.168, 1.036, 2.224), TDG(d) = (1.768, 1.536, 2.924)

DG(e) = (1.339, 0.852, 1.872), TDG(e) = (2.039, 1.252, 2.172)

DG(f) = (0.704, 1.174, 2.224), TDG(f) = (1.004, 1.774, 2.924)

Definition 3.4. The complement of a PNDFG G = (η, ζ) is a PNDFG Ḡ = (η̄, ζ̄) which is

defined by

1. µ1(g) = µ1(g), β1(g) = β1(g) and σ1(g) = σ1(g).

2. µ2(gh) =


µ1(g)µ1(h)

µ1(g)+µ1(h)−µ1(g)µ1(h) if µ2(gh) = 0,

µ1(g)µ1(h)
µ1(g)+µ1(h)−µ1(g)µ1(h) − µ2(gh) if 0 < µ2(gh) ≤ 1

3. β2(gh) =


β1(g)β1(h)

β1(g)+β1(h)−β1(g)β1(h) if β2(gh) = 0,

β1(g)β1(h)
β1(g)+β1(h)−β1(g)β1(h) − β2(gh) if 0 < β2(gh) ≤ 1

4. σ2(gh) =


σ1(g)+σ1(h)−2σ1(g)σ1(h)

1−σ1(g)σ1(h) if σ2(gh) = 0,

σ1(g)+σ1(h)−2σ1(g)σ1(h)
1−σ1(g)σ1(h) − σ2(gh) if 0 < σ2(gh) ≤ 1

Theorem 1. If G = (η, ζ) is a PNDFG, then G = G.

Proof: Consider G as a PNDFG. By definition of complement of PNDFG, we have

µ1(g) = µ1(g) = µ1(g), β1(g) = β1(g) = β1(g), σ1(g) = σ1(g) = σ1(g), for all g ∈ V.

If µ2(gh) = 0, β2(gh) = 0, σ2(gh) = 0, then

µ2(gh) =
µ1(g) µ1(h)

µ1(g) + µ1(h)− µ1(g) µ1(h)
=

µ1(g) µ1(h)

µ1(g) + µ1(h)− µ1(g) µ1(h)
= µ2(gh),
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β2(gh) =
β1(g) β1(h)

β1(g) + β1(h)− β1(g) β1(h)
=

β1(g) β1(h)

β1(g) + β1(h)− β1(g) β1(h)
= β2(gh),

σ2(gh) =
σ1(g) + σ1(h)− 2 σ1(g) σ1(h)

1− σ1(g) σ1(h)
=
σ1(g) + σ1(h)− 2 σ1(g) σ1(h)

1− σ1(g) σ1(h)
= σ2(gh).

If 0 < µ2(gh), β2(gh), σ2(gh) ≤ 1, then

µ2(gh) =
µ1(g) µ1(h)

µ1(g) + µ1(h)− µ1(g) µ1(h)
− µ2(gh)

=
µ1(g) µ1(h)

µ1(g) + µ1(h)− µ1(g) µ1(h)
− [

µ1(g) µ1(h)

µ1(g) + µ1(h)− µ1(g) µ1(h)
− µ2(gh)] = µ2(gh),

β2(gh) =
β1(g) β1(h)

β1(g) + β1(h)− β1(g) β1(h)
− β2(gh)

=
β1(g) β1(h)

β1(g) + β1(h)− β1(g) β1(h)
− [

β1(g) β1(h)

β1(g) + β1(h)− β1(g) β1(h)
− β2(gh)] = β2(gh),

σ2(gh) =
σ1(g) + σ1(h)− 2 σ1(g) σ1(h)

1− σ1(g) σ1(h)
− σ2(gh)

=
σ1(g) + σ1(h)− 2 σ1(g) σ1(h)

1− σ1(g) σ1(h)
−[
σ1(g) + σ1(h)− 2 σ1(g) σ1(h)

1− σ1(g) σ1(h)
−σ2(gh)] = σ2(gh) ∀g, h ∈ V.

Hence, the complement of a complement PNDFG is a PNDFG itself.

Definition 3.5. A homomorphism H : G1 → G2 of two PNDFGs G1 = (η1, ζ1) and

G2 = (η2, ζ2) is a mapping H : V1 → V2 satisfying
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(1) µη1(g) ≤ µη2(H(g)),

βη1(g) ≤ βη2(H(g)),

ση1(g) ≤ ση2(H(g)).

(2) µζ1(gt) ≤ µζ2(H(g)H(t)),

βζ1(gt) ≤ βζ2(H(g)H(t)),

σζ1(gt) ≤ σζ2(H(g)H(t)) ∀ g ∈ V1, gt ∈ E1.

Definition 3.6. An isomorphism H : G1 → G2 of two PNDFGs G1 = (η1, ζ1) and

G2 = (η2, ζ2) is a bijective mapping H : V1 → V2 satisfying

(1) µη1(g) = µη2(H(g)),

βη1(g) = βη2(H(g)),

ση1(g) = ση2(H(g)).

(2) µζ1(gt) = µζ2(H(g)H(t)),

βζ1(gt) = βζ2(H(g)H(t)),

σζ1(gt) = σζ2(H(g)H(t)) ∀ g ∈ V1, gt ∈ E1.

Definition 3.7. A weak isomorphism H : G1 → G2 of two PNDFGs G1 = (η1, ζ1) and

G2 = (η2, ζ2) is a bijective mapping H : V1 → V2 satisfying

(1) H is a homomorphism.

(2) µη1(g) = µη2(H(g)),

βη1(g) = βη2(H(g)),

ση1(g) = ση2(H(g)) g ∈ V1.

Definition 3.8. A co-weak isomorphism H : G1 → G2 of two PNDFGs G1 = (η1, ζ1) and

G2 = (η2, ζ2) is a bijective mapping H : V1 → V2 satisfying

(1) H is a homomorphism.
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(2) µζ1(gt) = µζ2(H(g)H(t)),

βζ1(gt) = βζ2(H(g)H(t)),

σζ1(gt) = σζ2(H(g)H(t)) ∀ g ∈ V1, gt ∈ E1.

Definition 3.9. A PNDFG G = (η, ζ) is called self-complement if G ∼= G.

Proposition 1. If G = (η, ζ) is a self-complementary PNDFG, then

∑
g 6=t

µζ(gt) =
1

2

∑
g6=t

µη(g) µη(t)

µη(g) + µη(t)− µη(g) µη(t)
,

∑
g 6=t

βζ(gt) =
1

2

∑
g6=t

βη(g) βη(t)

βη(g) + βη(t)− βη(g) βη(t)
,

∑
g6=t

σζ(gt) =
1

2

∑
g6=t

ση(g) + ση(t)− 2 ση(g) ση(t)

1− ση(g) ση(t)
.

Proof: Assume that G is a self-complementary PNDFG; then there exists an isomorphism

H : V→ V such that

µη(H(g)) = µη(g), βη(H(g)) = βη(g), ση(H(g)) = ση(g). ∀ g ∈ V

µζ(H(g)H(t)) = µζ(gt), βζ(H(g)H(t)) = βζ(gt), σζ(H(g)H(t)) = σζ(gt). ∀ gt ∈ E

By definition of complement of G, we have

µζ(H(g)H(t)) =
µη(H(g)) µη(H(t))

µη(H(g)) + µη(H(t))− µη(H(g)) µη(H(t))
− µζ(H(g)H(t))

µζ(gt) =
µη(g) µη(t)

µη(g) + µη(t)− µη(g) µη(t)
− µζ(H(g)H(t))

∑
g 6=t

µζ(gt) =
∑
g 6=t

µη(g) µη(t)

µη(g) + µη(t)− µη(g) µη(t)
−
∑
g 6=t

µζ(H(g)H(t))

∑
g 6=t

µζ(gt) +
∑
g 6=t

µζ(H(g)H(t)) =
∑
g6=t

µη(g) µη(t)

µη(g) + µη(t)− µη(g) µη(t)

2
∑
g6=t

µζ(gt) =
∑
g6=t

µη(g) µη(t)

µη(g) + µη(t)− µη(g) µη(t)
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∑
g 6=t

µζ(gt) =
1

2

∑
g6=t

µη(g) µη(t)

µη(g) + µη(t)− µη(g) µη(t)

Similarly for indeterminacy membership grade, we have

βζ(H(g)H(t)) =
βη(H(g)) βη(H(t))

βη(H(g)) + βη(H(t))− βη(H(g)) βη(H(t))
− βζ(H(g)H(t))

βζ(gt) =
βη(g) βη(t)

βη(g) + βη(t)− βη(g) βη(t)
− βζ(H(g)H(t))

∑
g 6=t

βζ(gt) =
∑
g 6=t

βη(g) βη(t)

βη(g) + βη(t)− βη(g) βη(t)
−
∑
g 6=t

βζ(H(g)H(t))

∑
g 6=t

βζ(gt) +
∑
g 6=t

βζ(H(g)H(t)) =
∑
g 6=t

βη(g) βη(t)

βη(g) + βη(t)− βη(g) βη(t)

2
∑
g6=t

βζ(gt) =
∑
g6=t

βη(g) βη(t)

βη(g) + βη(t)− βη(g) βη(t)∑
g 6=t

βζ(gt) =
1

2

∑
g 6=t

βη(g) βη(t)

βη(g) + βη(t)− βη(g) βη(t)

Likewise, for non-membership, we have

σζ(H(g)H(t)) =
ση(H(g)) + ση(H(t))− 2ση(H(g)) ση(H(t))

1− ση(H(g)) ση(H(t))
− σζ(H(g)H(t))

σζ(gt) =
ση(g) + ση(t)− 2ση(g) ση(t)

1− ση(g) ση(t)
− σζ(H(g)H(t))

∑
g 6=t

σζ(gt) =
∑
g 6=t

ση(g) + ση(t)− 2ση(g) ση(t)

1− ση(g) ση(t)
−
∑
g 6=t

σζ(H(g)H(t))

∑
g 6=t

σζ(gt) +
∑
g 6=t

σζ(H(g)H(t)) =
∑
g 6=t

ση(g) + ση(t)− 2ση(g) ση(t)

1− ση(g) ση(t)

2
∑
g6=t

σζ(gt) =
∑
g 6=t

ση(g) + ση(t)− 2ση(g) ση(t)

1− ση(g) ση(t)∑
g 6=t

σζ(gt) =
1

2

∑
g 6=t

ση(g) + ση(t)− 2ση(g) ση(t)

1− ση(g) ση(t)

This completes the proof.

Proposition 2. Let G = (η, ζ) be a PNDFG. If
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µζ(gt) = 1
2

(
µη(g) µη(t)

µη(g)+µη(t)−µη(g) µη(t)

)
,

βζ(gt) = 1
2

(
βη(g) βη(t)

βη(g)+βη(t)−βη(g) βη(t)

)
,

σζ(gt) = 1
2

(
ση(g)+ση(t)−2ση(g) ση(t)

1−ση(g) ση(t)

)
∀ g, t ∈ V then G is self-complementary.

Proof: Assume that G is a PNDFG that satisfies

µζ(gt) = 1
2

(
µη(g) µη(t)

µη(g)+µη(t)−µη(g) µη(t)

)
,

βζ(gt) = 1
2

(
βη(g) βη(t)

βη(g)+βη(t)−βη(g) βη(t)

)
,

σζ(gt) = 1
2

(
ση(g)+ση(t)−2ση(g) ση(t)

1−ση(g) ση(t)

)
∀ g, t ∈ V.

Then the identify mapping I : V → V is an isomorphism from G to G that satisfies the

following condition:

µη(g) = µη(I(g)), βη(g) = βη(I(g)), and ση(g) = ση(I(g)) ∀ g ∈ V.

The membership grade of an edge gt is given by

µζ(gt) = 1
2

(
µη(g) µη(t)

µη(g)+µη(t)−µη(g) µη(t)

)
∀ g, t ∈ V.

we have µζ(I(g)I(t)) = µζ(gt)

=
µη(g) µη(t)

µη(g)+µη(t)−µη(g) µη(t)
− µζ(gt)

=
µη(g) µη(t)

µη(g)+µη(t)−µη(g) µη(t) −
1
2

(
µη(g) µη(t)

µη(g)+µη(t)−µη(g) µη(t)

)
= 1

2

(
µη(g) µη(t)

µη(g)+µη(t)−µη(g) µη(t)

)
= µζ(gt)

Likewise, the indeterminacy grade of an edge gt is

βζ(gt) = 1
2

(
βη(g) βη(t)

βη(g)+βη(t)−βη(g) βη(t)

)
∀ g, t ∈ V.

we have βζ(I(g)I(t)) = βζ(gt)

=
βη(g) βη(t)

βη(g)+βη(t)−βη(g) βη(t)
− βζ(gt)

=
βη(g) βη(t)

βη(g)+βη(t)−βη(g) βη(t) −
1
2

(
βη(g) βη(t)

βη(g)+βη(t)−βη(g) βη(t)

)
= 1

2

(
βη(g) βη(t)

βη(g)+βη(t)−βη(g) βη(t)

)
= βζ(gt)

Similarly for the non-membership grade of an edge gt is,
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σζ(gt) = 1
2

(
ση(g)+ση(t)−2ση(g) ση(t)

1−ση(g) ση(t)

)
∀ g, t ∈ V.

So, we have

σζ(I(g)I(t)) = σζ(gt) =
ση(g)+ση(t)−2 ση(g) ση(t)

1−ση(g) ση(t)
− σζ(gt)

=
ση(g)+ση(t)−2 ση(g) ση(t)

1−ση(g) ση(t) − 1
2

(
ση(g)+ση(t)−2 ση(g) ση(t)

1−ση(g) ση(t)

)
= 1

2

(
ση(g)+ση(t)−2 ση(g) ση(t)

1−ση(g) ση(t)

)
= σζ(gt)

Since the conditions of isomorphism µζ(I(g)I(t)) = µζ(gt), βζ(I(g)I(t)) = βζ(gt) and

σζ(I(g)I(t)) = σζ(gt) are satisfied by I, G = (η, ζ) is self-complementary.

Proposition 3. If G1 = (η1, ζ1) and G2 = (η2, ζ2) are two isomorphic PNDFGs, then the

complement of G1 and G2 are also isomorphic to each other and the converse also holds.

Proof: Assume that G1 and G2 are two isomorphic PNDFGs. Then by definition of isomor-

phism, there exists a bijective mapping H : V1 → V2 that satisfies

µη1(g) = µη2(H(g)), βη1(g) = βη2(H(g)) and ση1(g) = ση2(H(g)). ∀ g ∈ V1,

µζ1(gt) = µζ2(H(g)H(t)), βζ1(gt) = βζ2(H(g)H(t)) and σζ1(gt) = σζ2(H(g)H(t)). ∀ gt ∈ E1.

By using the definition of complement of PNDFG, the membership grade of an edge gt is

µζ1(gt) =
µη1 (g) µη1 (t)

µη1 (g)+µη1 (t)−µη1 (g) µη1 (t)
− µζ1(gt)

=
µη2 (H(g)) µη2 (H(t))

µη2 (H(g))+µη2 (H(t))−µη2 (H(g)) µη2 (H(t)) − µζ2(H(g)H(t))

= µζ2(H(g)H(t)).

Similarly,

βζ1(gt) =
βη1 (g) βη1 (t)

βη1 (g)+βη1 (t)−βη1 (g) βη1 (t)
− βζ1(gt)

=
βη2 (H(g)) βη2 (H(t))

βη2 (H(g))+βη2 (H(t))−βη2 (H(g)) βη2 (H(t)) − βζ2(H(g)H(t))

= βζ2(H(g)H(t)).

Also, the non-membership grade of an edge gt is,

σζ1(gt) =
ση1 (g)+ση1 (t)−2ση1 (g) ση1 (t)

1−ση1 (g) ση1 (t)
− σζ1(gt)

=
ση2 (H(g))+ση2 (H(t))−2 ση2 (H(g)) ση2 (H(t))

1−ση2 (H(g)) ση2 (H(t)) − σζ2(H(g)H(t))
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= σζ2(H(g)H(t)).

Hence, the complement of G1 is isomorphic to the complement of G2. Similarly, the converse

can be proved.

Definition 3.10. A PNDFG is said to be complete if

µζ(gt) =
µη(g) µη(t)

µη(g)+µη(t)−µη(g) µη(t) ,

βζ(gt) =
βη(g) βη(t)

βη(g)+βη(t)−βη(g) βη(t) ,

σζ(gt) =
ση(g)+ση(t)−2ση(g) ση(t)

1−ση(g) ση(t) ∀ g, t ∈ V.

The above mentioned properties are satisfied for the PNDFG in Example 1, thus the PNDFG

is a complete PNDFG.

Definition 3.11. A PNDFG is said to be strong if

µζ(gt) =
µη(g) µη(t)

µη(g)+µη(t)−µη(g) µη(t) ,

βζ(gt) =
βη(g) βη(t)

βη(g)+βη(t)−βη(g) βη(t) ,

σζ(gt) =
ση(g)+ση(t)−2ση(g) ση(t)

1−ση(g) ση(t) ∀ gt ∈ E.

Example 4. The PNDFG over V = {m1,m2,m3,m4,m5,m6}
〈(m1, .5, .6, .5), (m2, .8, .4, .2), (m3, .4, .6, .2), (m4, .6, .5, .7), (m5, .7, .4, .3), (m6, .3, .6, .7)〉
and the edge set

〈(m1m2, .44, .316, .556), (m1m6, .231, .429, .769), (m2m3, .432, .316, .33), (m2m5, .596, .25, .404),

(m3m4, .316, .375, .721), (m4m5, .477, .286, .734), (m5m6, .266, .316, .734)〉 is strong.

Figure 2. Strong PNDFG
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4. Numerical Approach

We solve a decision-making problem involving the selection of the best money-transfer appli-

cations in this section to demonstrate the suitability of the proposed Pythagorean Neutrosophic

Dombi fuzzy graphs concept in a real-world scenario.

4.1 Algorithm:

The following algorithm depicts our proposed technique for multi-criteria decision making.

The algorithm for the selection of the best money transferring application.

Step 1: Input the attributes M = {m1,m2, ....mk} and set of criteria C = {c1, c2, ....cn} with

weight vector W = {w1, w2, ....wn} and construct Pythagorean fuzzy relation Q(g) = (q
(g)
lp )k×k

corresponding to each criterion.

Step 2: Aggregate all q
(g)
lp = (µ

(g)
lp , β

(g)
lp , σ

(g)
lp ) (l, p = 1, 2, .., k) regarding criteria cl(l =

1, 2, 3, 4, 5) and get Q = (qlp)k×k, where qlp = (µlp, βlp, σlp) is the value assigned for the

alternative ml over mp with respect to all the considered criteria Cl by using Pythagorean

Neutrosophic Dombi fuzzy weighted arithmetic averaging (PNDFWAA) operator given by

qlp = PNDFWAA(q
(1)
lp , q

(2)
lp , ..., q

(n)
lp , ) =

(
√√√√√√1− 1

1+

 n∑
j=1

wj

(
(βjlp)

2

1− (βglp)
2

)ρ
1
ρ
,
√√√√√√1− 1

1+

 n∑
j=1

wj

(
(µjlp)

2

1− (βglp)
2

)ρ
1
ρ
, 1

1+

 n∑
j=1

wj

(
1− (σjlp)

(σglp)

)ρ
1
ρ

)

Step 3: According to Q, draw the Pythagorean Neutrosophic fuzzy directed graph.

Step 4: By considering the condition µlp ≥ 0.5 (l, p = 1, 2, ..., k), draw the Pythagorean Neu-

trosophic fuzzy partial directed graph.

Step 5: Calculate the out degrees out− d(Mi) (i = 1, 2, ..k) of all the alternatives Mi in the

Pythagorean Neutrosophic fuzzy partial directed graph.

Step 6: Arrange the alternatives according to the diminishing value of the membership de-

grees of out− d(Mi).

Step 7: The optimal alternative is the alternative with the maximum membership degree of

out− d(Mi).

4.2 Selection of the best money transferring application:

In this modern technology-filled world, everything is turning to online and digital cards. There

is no need of searching for money exchanges as money can be easily transferred in online mode

or through online transferring. According to existing trends, the fastest and easiest way of

transferring is pivotal. Let us consider the following case. A person who has created a new
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bank account wants to sync with this existing trends and techniques and want to have a money

transferring app. Let us consider five money transferring applications Mi(i = 1, 2, 3, 4, 5) that

are doing really well on the market. The decision-making expert makes a comparison between

five money transferring apps with respect to five criteria Cl(l = 1, 2, 3, 4, 5) which are given as

C1 = Safety & security

C2 = Fast transfer without delay

C3 = Money remittance

C4 = User friendly

C5 = Offers & gifts

with the respective weight W = (0.3, 0.2, 0.3, 0.1, 0.1) and presents preferable information

Q(g) = (q
(g)
lp )5×5 (g = 1, 2, 3, 4, 5), where

q
(g)
lp = (µ

(g)
lp , β

(g)
lp , σ

(g)
lp ) is the Pythagorean Neutrosophic number assigned by decision-making

expert µ
(g)
lp , β

(g)
lp and σ

(g)
lp are the degree to which money transferring application Ml is pre-

ferred and not preferred over the application Mp regarding the given criteria, respectively. The

relations Q(g) = (q
(g)
lp )5×5 are given in the following tables (1-5).

Table 1. Comparision for Criteria 1

Q(1) M1 M2 M3 M4 M5

M1 (.5,.5,.5) (.8,.4,.2) (.7,.3,.1) (.6,.2,.4) (.4,.4,.6)

M2 (.2,.4,.8) (.5,.5,.5) (.6,.5,.4) (.8,.2,.6) (.6,.4,.7)

M3 (.1,.3,.7) (.4,.5,.6) (.5,.5,.5) (.8,.4,.3) (.7,.5,.2)

M4 (.4,.2,.6) (.6,.2,.8) (.3,.4,.8) (.5,.5,.5) (.8,.4,.7)

M5 (.6,.4,.4) (.7,.4,.6) (.2,.5,.7) (.7,.4,.8) (.5,.5,.5)

Table 2. Comparision for Criteria 2

Q(2) M1 M2 M3 M4 M5

M1 (.5,.5,.5) (.9,.8,.5) (.7,.4,.4) (.9,.4,.7) (.8,.6,.6)

M2 (.5,.8,.9) (.5,.5,.5) (.8,.4,.5) (.5,.4,.6) (.7,.6,.8)

M3 (.4,.4,.7) (.5,.4,.8) (.5,.5,.5) (.7,.8,.6) (.7,.7,.8)

M4 (.7,.4,.9) (.6,.4,.5) (.6,.8,.7) (.5,.5,.5) (.7,.8,.6)

M5 (.6,.6,.8) (.8,.6,.7) (.8,.7,.7) (.6,.8,.7) (.5,.5,.5)
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Table 3. Comparision for Criteria 3

Q(3) M1 M2 M3 M4 M5

M1 (.5,.5,.5) (.9,.6,.5) (.8,.4,.6) (.9,.8,.4) (.7,.6,.5)

M2 (.5,.6,.9) (.5,.5,.5) (.8,.7,.6) (.9,.8,.7) (.6,.6,.5)

M3 (.6,.4,.8) (.6,.7,.8) (.5,.5,.5) (.8,.2,.7) (.7,.8,.7)

M4 (.4,.8,.9) (.7,.8,.9) (.7,.2,.8) (.5,.5,.5) (.9,.6,.7)

M5 (.5,.6,.7) (.5,.6,.6) (.7,.8,.7) (.7,.6,.9) (.5,.5,.5)

Table 4. Comparision for Criteria 4

Q(4) M1 M2 M3 M4 M5

M1 (.5,.5,.5) (.9,.7,.5) (.6,.3,.4) (.7,.5,.6) (.8,.3,.6)

M2 (.5,.7,.9) (.5,.5,.5) (.9,.6,.5) (.6,.4,.7) (.7,.6,.6)

M3 (.4,.3,.6) (.5,.6,.9) (.5,.5,.5) (.9,.6,.4) (.6,.7,.8)

M4 (.6,.5,.7) (.7,.4,.6) (.4,.6,.9) (.5,.5,.5) (.9,.7,.6)

M5 (.6,.3,.8) (.6,.6,.7) (.8,.7,.6) (.6,.7,.9) (.5,.5,.5)

Table 5. Comparision for Criteria 5

Q(5) M1 M2 M3 M4 M5

M1 (.5,.5,.5) (.8,.6,.4) (.7,.6,.8) (.6,.6,.8) (.9,.3,.6)

M2 (.4,.6,.8) (.5,.5,.5) (.8,.7,.6) (.7,.5,.4) (.8,.6,.5)

M3 (.8,.6,.7) (.6,.7,.8) (.5,.5,.5) (.9,.5,.4) (.8,.5,.7)

M4 (.8,.6,.6) (.4,.5,.7) (.4,.5,.9) (.5,.5,.5) (.9,.8,.7)

M5 (.6,.3,.9) (.5,.6,.8) (.7,.5,.8) (.7,.8,.9) (.5,.5,.5)

The Pythagorean Neutrosophic directed graphs for Q(g)(g = 1, 2, 3, 4, 5) in Tables 1-5 are dis-

played in Figure 3.

With the purpose to complete the grouped qlp = (µlp, βlp, σlp) (e, p = 1, 2, 3, 4, 5) of

the money transferring application Ml over Mp regarding all considered criteria e(g)(g =

1, 2, 3, 4, 5), the PNDFWAA operator is defined as

qlp = PNDFWAA(q
(1)
lp , q

(2)
lp , ..., q

(n)
lp , ) =

(
√√√√√√1− 1

1+

 n∑
j=1

wj

(
(βjlp)

2

1− (βglp)
2

)ρ
1
ρ
,
√√√√√√1− 1

1+

 n∑
j=1

wj

(
(µjlp)

2

1− (βglp)
2

)ρ
1
ρ
, 1

1+

 n∑
j=1

wj

(
1− (σjlp)

(σglp)

)ρ
1
ρ

)
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Figure 3. Pythagorean Neutrosophic directed graph for Q(g)(g = 1, 2, 3, 4, 5)

In the above equation, we consider ρ = 1 as in Dombi’s t-norm and t-conorm to obtain the

corresponding Qg = (q
(g)
lp )5×5, which is shown in Table 6.
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Table 6. Combined Pythagorean Neutrosophic fuzzy relation

Q M1 M2 M3 M4 M5

M1 (.5,.5,.5) (.875,.651,.357) (.734,.606,.239) (.843,.635,.481) (.752,.514,.565)

M2 (.432,.651,.858) (.5,.5,.5) (.79,.605,.496) (.819,.624,.602) (.671,.557,.545)

M3 (.538,.401,.715) (.525,.605,.734) (.5,.5,.5) (.824,.583,.444) (.708,.644,.409)

M4 (.593,.635,.732) (.637,.624,.705) (.565,.583,.795) (.5,.5,.5) (.861,.679,.666)

M5 (.575,.514,.601) (.674,.558,.64) (.694,.699,.697) (.676,.679,.822) (.5,.5,.5)

The Pythagorean Neutrosophic directed graphs according to Q, is in Figure 4.

Figure 4. Pythagorean Neutrosophic directed graph according to Q

We consider the condition of µlp ≥ 0.5 (l, p = 1, 2, 3, 4, 5) a partial directed graph is drawn in

Figure 5.

The out-degrees out − d(Ml) (l = 1, 2, 3, 4, 5) of the money transferring app in the partial

graph are calculated as

out− d(M1) = (3.204, 2.4061, 1.642)

out− d(M2) = (2.28, 1.786, 1.643)

out− d(M3) = (1.532, 1.227, 0.853)

out− d(M4) = (0.861, 0.679, 0.666)

out− d(M5) = (0, 0, 0)
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Figure 5. Partial directed Pythagorean Neutrosophic directed graph

According to the membership value of out-degrees of Ml(l = 1, 2, 3, 4, 5) we get the optimal

ranking order as:

M1 �M2 �M3 �M4 �M5

On the basis of ranking, we conclude that M1 is the best money transferring application.

5. Conclusion

In this paper, the concept of Pythagorean Neutrosophic Dombi Fuzzy graph has been in-

troduced. Along with the introduction of this new model of Pythagorean neutrosophic Dombi

fuzzy graph some of its definitions and few properties have been discussed. An application

in decision making has been done by using the graph model of Pythagorean Neutrosophic

Dombi Fuzzy graphs using the newly defined PNDFWAA operator. In the proposed MCDM,

the limitation of µlp is restrained to be greater than 0.5, because the value less than 0.5 will

have very low chances to be in the obtained alternative and it is defined to be more precise for

making decision. This work on the concept of Pythgorean Neutrosophic Dombi Fuzzy graph

can be extended further to investigate the operations of PNDFG and bipolar PNDFG along

with some real life applications.
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