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Abstract. Soft set deals with single set of attributes whereas its generalization i.e. hypersoft set deals with

multiple disjoint attribute-valued sets corresponding to distinct attributes. In this paper, we first introduced

the concept of single valued neutrosophic hypersoft expert sets (SVNHESs) which combines single valued

neutrosophic sets and hypersoft expert sets. Some fundamental properties (i.e. subset, not set and equal

set), results (i.e. commutative, associative, distributive and D’ Morgan Laws) and set-theoretic operations (i.e.

complement, union intersection AND, and OR ) are discussed. An algorithm is proposed to solve decision-

making problems and applied to select the best product.

Keywords: Soft Set; Soft Expert Set; Neutrosophic set; Single Valued Neutrosophic set; Hypersoft Set; Single

Valued Neutrosophic Hypersoft Expert Set.

—————————————————————————————————————————-

1. Introduction

Neutrosophy has been introduced by Smarandache [1–3] as a new branch of philosophy and

generalization of fuzzy logic, intuitionistic fuzzy logic, para-consistent logic. Fuzzy sets [4]

and intuitionistic fuzzy sets [5] are defined by membership functions while intuitionistic fuzzy

sets are characterized by membership and nonmembership functions, respectively. In some

real life problems for proper description of an object in uncertain and ambiguous environ-

ment, we need to handle the indeterminate and incomplete information. But fuzzy sets and

intuitionistic fuzzy sets do not handle the indeterminate and inconsistent information. Thus

neutrosophic set (NS) is defined by Smarandache, as a new mathematical tool for dealing

with problems involving incomplete, indeterminacy, inconsistent knowledge. In NS, the in-

determinacy is quantified explicitly and truth-membership, indeterminacy membership, and

false-membership are completely independent. From scientific or engineering point of view,
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the neutrosophic set and set- theoretic view, operators need to be specified. Otherwise, it will

be difficult to apply in the real applications. Therefore, Wang et al [6] defined a single valued

neutrosophic set (SVNS) and then provided the set theoretic operations and various properties

of single valued neutrosophic sets. Broumi et al. [7] defined single valued neutrosophic soft

expert sets and applied it in decision making.

Molodtsov [8] conceptualized soft set theory as a new parameterized family of subsets of the

universe of discourse. Maji et al. [9] developed fuzzy soft set as a parametrization tool to

deal with uncertainty. The fundamentals of soft set like subset, union, intersection, relations,

functions etc., have been investigated by researchers [10–15]. Alkhazaleh et al. [16,17] concep-

tualized soft expert set and fuzzy soft expert set. They discussed their applications in decision

making. Broumi et al. [18] conceptualized intuitionistic fuzzy soft expert sets and presented

its application in decision making.

In 2018, Smarandache [19] generalized soft set to hypersoft set by replacing single attribute-

valued function to multi-attribute valued function. Saeed et al. [20] and Mujahid et al. [21] dis-

cussed the rudiments of hypersoft sets along with illustrative examples. Rahman et al. [22–30]

discussed the notions of complex set, convex set, parameterization, bijection, neutrosophic

graph and rough set under hypersoft set environment. Saeed et al. [31–36] explored the con-

cepts of complex multi-fuzzy set, mappings and neutrosophic graph with hypersoft settings.

They discussed application of these models in decision-making problems. Ihsan et al. [37, 38]

introduced the expert system with multi-decisive opinions embedded with hypersoft set sce-

nario. Some decision-making techniques i.e. TOPSIS etc. have been discussed for hypersoft

set and its hybrids by researchers [39–43].

Having motivation from above literature, new notions of single valued neutrosophic hypersoft

expert set are developed and an application is discussed in decision making through a proposed

method. The pattern of rest of the paper is: section 2 reviews the notions of soft sets, fuzzy

soft set, fuzzy soft expert set, hypersoft set and relevant definitions used in the proposed work.

Section 3, presents notions of single valued neutrosophic hypersoft expert set with properties.

Section 4, demonstrates an application of this concept in a decision-making problem. Section

5, concludes the paper.

2. Preliminaries

In this section, some basic definitions and terms regarding the main study, are presented

from the literature.

Definition 2.1. [8]

Let P (Ω) denote power set of Ω(universe of discourse) and F be a collection of parameters
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defining Ω. A soft set ΨM is defined by mapping

ΨM : F → P (Ω).

Definition 2.2. [9] Suppose Ω be a set of universe, while F is a set of parameters. Here IΩ

represents the power set of all fuzzy subsets of Ω. Let C ⊆ F . A pair (R,C) is called a fuzzy

soft set with R is a mapping given by

R : C → IΩ.

Definition 2.3. [16]

Assume that Y be a set of specialists (operators) and Ö be a set of conclusions, T = F ×Y ×Ö
with S ⊆ T where Ω denotes the universe , F a set of parameters.

A pair(Φ, S) is known as a soft expert set over Ω, where H is a mapping given by

Φ : S → P (Ω).

Definition 2.4. [17] A pair (H,C) is called a fuzzy soft expert set over Ω where F is a

mapping given by

H : C → IΩ

where IΩ the set of all fuzzy subsets of Ω.

Definition 2.5. [2] Suppose Ω denotes the universe of discourse then the neutrosophic set N

is an object with the form

N = {< β : µN (β), νN (β), ωN (β) >, β ∈ Ω}
While the functions µN (β), νN (β), ωN (β) : Ω →]−0, 1+[ denote the degree of membership,

indeterminacy and non membership respectively for all β ∈ Ω with the condition

−0 ≤ µN (β) + νN (β) + ωN (β) ≤ 3+.

Definition 2.6. [6] Let Ω be a set of points (objects), with a generic element in Ω denoted by

β. A single valued neutrosophic set (SVNS) N in Ω is defined by truth-membership function

TN , indeterminacy-membership function IN and falsity-membership function FN .

TN , IN , FN ∈ [0, 1] for all β in Ω with the condition

0 ≤ TN (β) + IN (β) + FN (β) ≤ 3.

Definition 2.7. [19]

Let h1, h2, h3, ....., hm, for m ≥ 1 , be m distinct attributes, whose corresponding attribute

values are respectively the sets H1, H2, H3, .....,Hm, with Hi ∩ Hj = ∅, for i 6= j, and i, j ∈
{1, 2, 3, ...,m}. Then the pair (Ψ, G), where G = H1×H2×H3× .....×Hm and Ψ : G→ P (Ω)

is called a hypersoft Set over Ω.
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3. Single Valued Neutrosophic Hypersoft Expert set (SVNHSE-Set)

In this section, a new structure of single valued neutrosophic hypersoft expert set is devel-

oped and some properties are discussed.

Definition 3.1. Fuzzy Hypersoft Expert set (FHSE-Set)

A pair(ξ,S) is known as a fuzzy hypersoft expert set over
∐

, where

ξ : S→ I
∐

where

• I
∐

is collection of all fuzzy subsets of
∐

• S ⊆ H = G × D × C

• G = G1×G2×G3× ....×Gp where Gi are disjoint attributive-valued sets corresponding

to distinct attributes gi, i = 1, 2, 3, ..., p

• D be a set of specialists (operators)

• C be a set of conclusions

For simplicity, C = {0 = disagree, 1 = agree}.

Definition 3.2. Single Valued Neutrosophic Hypersoft Expert set (SVNHSE-Set)

A pair(ξ,S) in definition 3.2, is known as a single valued neutrosophic hypersoft expert set over∐
if

ξ : S→ SV NF
∐

with SV NF
∐

is collection of all single valued neutrosophic subsets of
∐

Example 3.3. Suppose that a multi-national company aims to proceed the evaluation of

certain specialists about its certain products. Let
∐

= {m1,m2,m3,m4} be a set of products

and

G1 = {q11, q12}
G2 = {q21, q22}
G3 = {q31, q32}
be disjoint attributive sets for distinct attributes q1= simple to utilize, q2= nature, q3= modest.

Now G = G1 × G2 × G3

G =

µ1 = (q11, q21, q31), µ2 = (q11, q21, q32), µ3 = (q11, q22, q31), µ4 = (q11, q22, q32),

µ5 = (q12, q21, q31), µ6 = (q12, q21, q32), µ7 = (q12, q22, q31), µ8 = (q12, q22, q32)


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Now H = G × D × C

H =



(µ1, s, 0), (µ1, s, 1), (µ1, t, 0), (µ1, t, 1), (µ1, u, 0), (µ1, u, 1),

(µ2, s, 0), (µ2, s, 1), (µ2, t, 0), (µ2, t, 1), (µ2, u, 0), (µ2, u, 1),

(µ3, s, 0), (µ3, s, 1), (µ3, t, 0), (µ3, t, 1), (µ3, u, 0), (µ3, u, 1),

(µ4, s, 0), (µ4, s, 1), (µ4, t, 0), (µ4, t, 1), (µ4, u, 0), (µ4, u, 1),

(µ5, s, 0), (µ5, s, 1), (µ5, t, 0), (µ5, t, 1), (µ5, u, 0), (µ5, u, 1),

(µ6, s, 0), (µ6, s, 1), (µ6, t, 0), (µ6, t, 1), (µ6, u, 0), (µ6, u, 1),

(µ7, s, 0), (µ7, s, 1), (µ7, t, 0), (µ7, t, 1), (µ7, u, 0), (µ7, u, 1),

(µ8, s, 0), (µ8, s, 1), (µ8, t, 0), (µ8, t, 1), (µ8, u, 0), (µ8, u, 1)


let

S =


(µ1, s, 0), (µ1, s, 1), (µ1, t, 0), (µ1, t, 1), (µ1, u, 0), (µ1, u, 1),

(µ2, s, 0), (µ2, s, 1), (µ2, t, 0), (µ2, t, 1), (µ2, u, 0), (µ2, u, 1)

(µ3, s, 0), (µ3, s, 1), (µ3, t, 0), (µ3, t, 1), (µ3, u, 0), (µ3, u, 1),


be a subset of H and D = {s, t, u, } be a set of specialists.

Following survey depicts choices of three specialists:

ξ1 = ξ(µ1, s, 1) =

{
m1

< 0.2, 0.5, 0.4 >
,

m2

< 0.7, 0.2, 0.5 >
,

m3

< 0.5, 0.4, 0.6 >
,

m4

< 0.1, 0.3, 0.6 >

}
,

ξ2 = ξ(µ1, t, 1) =

{
m1

< 0.4, 0.2, 0.3 >
,

m2

< 0.8, 0.1, 0.5 >
,

m3

< 0.4, 0.5, 0.6 >
,

m4

< 0.2, 0.5, 0.3 >

}
,

ξ3 = ξ(µ1, u, 1) =

{
m1

< 0.7, 0.2, 0.3 >
,

m2

< 0.5, 0.3, 0.6 >
,

m3

< 0.6, 0.3, 0.7 >
,

m4

< 0.3, 0.5, 0.6 >

}
,

ξ4 = ξ(µ2, s, 1) =

{
m1

< 0.9, 0.1, 0.3 >
,

m2

< 0.4, 0.5, 0.4 >
,

m3

< 0.7, 0.2, 0.6 >
,

m4

< 0.3, 0.4, 0.8 >

}
,

ξ5 = ξ(µ2, t, 1) =

{
m1

< 0.4, 0.5, 0.6 >
,

m2

< 0.8, 0.1, 0.7 >
,

m3

< 0.3, 0.6, 0.5 >
,

m4

< 0.2, 0.6, 0.7 >

}
,

ξ6 = ξ(µ2, u, 1) =

{
m1

< 0.5, 0.4, 0.7 >
,

m2

< 0.3, 0.6, 0.4 >
,

m3

< 0.6, 0.2, 0.5 >
,

m4

< 0.8, 0.1, 0.6 >

}
,

ξ7 = ξ(µ3, s, 1) =

{
m1

< 0.2, 0.7, 0.5 >
,

m2

< 0.9, 0.1, 0.4 >
,

m3

< 0.4, 0.5, 0.7 >
,

m4

< 0.5, 0.4, 0.8 >

}
,

ξ8 = ξ(µ3, t, 1) =

{
m1

< 0.4, 0.3, 0.2 >
,

m2

< 0.6, 0.3, 0.1 >
,

m3

< 0.7, 0.2, 0.3 >
,

m4

< 0.9, 0.1, 0.4 >

}
,

ξ9 = ξ(µ3, u, 1) =

{
m1

< 0.7, 0.2, 0.6 >
,

m2

< 0.3, 0.5, 0.7 >
,

m3

< 0.5, 0.4, 0.5 >
,

m4

< 0.2, 0.7, 0.8 >

}
,

ξ10 = ξ(µ1, s, 0) =

{
m1

< 0.3, 0.2, 0.1 >
,

m2

< 0.2, 0.4, 0.5 >
,

m3

< 0.4, 0.5, 0.8 >
,

m4

< 0.1, 0.8, 0.3 >

}
,

ξ11 = ξ(µ1, t, 0) =

{
m1

< 0.1, 0.8, 0.4 >
,

m2

< 0.9, 0.1, 0.2 >
,

m3

< 0.6, 0.3, 0.4 >
,

m4

< 0.2, 0.7, 0.5 >

}
,
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ξ12 = ξ(µ1, u, 0) =

{
m1

< 0.2, 0.7, 0.5 >
,

m2

< 0.1, 0.8, 0.6 >
,

m3

< 0.3, 0.5, 0.7 >
,

m4

< 0.5, 0.4, 0.6 >

}
,

ξ13 = ξ(µ2, s, 0) =

{
m1

< 0.8, 0.1, 0.6 >
,

m2

< 0.3, 0.6, 0.7 >
,

m3

< 0.5, 0.4, 0.8 >
,

m4

< 0.7, 0.2, 0.9 >

}
,

ξ14 = ξ(µ2, t, 0) =

{
m1

< 0.7, 0.2, 0.5 >
,

m2

< 0.2, 0.6, 0.4 >
,

m3

< 0.9, 0.1, 0.6 >
,

m4

< 0.4, 0.5, 0.7 >

}
,

ξ15 = ξ(µ2, u, 0) =

{
m1

< 0.6, 0.2, 0.5 >
,

m2

< 0.7, 0.2, 0.4 >
,

m3

< 0.3, 0.5, 0.4 >
,

m4

< 0.2, 0.7, 0.6 >

}
,

ξ16 = ξ(µ3, s, 0) =

{
m1

< 0.1, 0.7, 0.5 >
,

m2

< 0.4, 0.5, 0.7 >
,

m3

< 0.7, 0.2, 0.9 >
,

m4

< 0.8, 0.2, 0.4 >

}
,

ξ17 = ξ(µ3, t, 0) =

{
m1

< 0.2, 0.7, 0.4 >
,

m2

< 0.9, 0.1, 0.6 >
,

m3

< 0.8, 0.2, 0.4 >
,

m4

< 0.3, 0.5, 0.7 >

}
,

ξ18 = ξ(µ3, u, 0) =

{
m1

< 0.5, 0.4, 0.2 >
,

m2

< 0.3, 0.6, 0.1 >
,

m3

< 0.6, 0.3, 0.2 >
,

m4

< 0.1, 0.8, 0.3 >

}
The single valued neutrosophic hypersoft expert set can be described as

(ξ,S) =



(
(µ1, s, 1),

{
m1

<0.2,0.5,0.4> ,
m2

<0.7,0.2,0.5> ,
m3

<0.5,0.4,0.6> ,
m4

<0.1,0.3,0.6>

})
,(

(µ1, t, 1),
{

m1
<0.4,0.2,0.3> ,

m2
<0.8,0.1,0.5> ,

m3
<0.4,0.5,0.6> ,

m4
<0.2,0.5,0.3>

})
,(

(µ1, u, 1),
{

m1
<0.7,0.2,0.3> ,

m2
<0.5,0.3,0.6> ,

m3
<0.6,0.3,0.7> ,

m4
<0.3,0.5,0.6>

})
,(

(µ2, s, 1),
{

m1
<0.9,0.1,0.3> ,

m2
<0.4,0.5,0.4> ,

m3
<0.7,0.2,0.6> ,

m4
<0.3,0.4,0.8>

})
,(

(µ2, t, 1),
{

m1
<0.4,0.5,0.6> ,

m2
<0.8,0.1,0.7> ,

m3
<0.3,0.6,0.5> ,

m4
<0.2,0.6,0.7>

})
,(

(µ2, u, 1),
{

m1
<0.5,0.4,0.7> ,

m2
<0.3,0.6,0.4> ,

m3
<0.6,0.2,0.5> ,

m4
<0.8,0.1,0.6>

})
,(

(µ3, s, 1),
{

m1
<0.2,0.7,0.5> ,

m2
<0.9,0.1,0.4> ,

m3
<0.4,0.5,0.7> ,

m4
<0.5,0.4,0.8>

})
,(

(µ3, t, 1),
{

m1
<0.4,0.3,0.2> ,

m2
<0.6,0.3,0.1> ,

m3
<0.7,0.2,0.3> ,

m4
<0.9,0.1,0.4>

})
,(

(µ3, u, 1),
{

m1
<0.7,0.2,0.6> ,

m2
<0.3,0.5,0.7> ,

m3
<0.5,0.4,0.5> ,

m4
<0.2,0.7,0.8>

})
,(

(µ1, s, 0),
{

m1
<0.3,0.2,0.1> ,

m2
<0.2,0.4,0.5> ,

m3
<0.4,0.5,0.8> ,

m4
<0.1,0.8,0.3>

})
,(

(µ1, t, 0),
{

m1
<0.1,0.8,0.4> ,

m2
<0.9,0.1,0.2> ,

m3
<0.6,0.3,0.4> ,

m4
<0.2,0.7,0.5>

})
,(

(µ1, u, 0),
{

m1
<0.2,0.7,0.5> ,

m2
<0.1,0.8,0.6> ,

m3
<0.3,0.5,0.7> ,

m4
<0.5,0.4,0.6>

})
,(

(µ2, s, 0),
{

m1
<0.8,0.1,0.6> ,

m2
<0.3,0.6,0.7> ,

m3
<0.5,0.4,0.8> ,

m4
<0.7,0.2,0.9>

})
,(

(µ2, t, 0),
{

m1
<0.7,0.2,0.5> ,

m2
<0.2,0.6,0.4> ,

m3
<0.9,0.1,0.6> ,

m4
<0.4,0.5,0.7>

})
,(

(µ2, u, 0),
{

m1
<0.6,0.2,0.5> ,

m2
<0.7,0.2,0.4> ,

m3
<0.3,0.5,0.4> ,

m4
<0.2,0.7,0.6>

})
,(

(µ3, s, 0),
{

m1
<0.1,0.7,0.5> ,

m2
<0.4,0.5,0.7> ,

m3
<0.7,0.2,0.9> ,

m4
<0.8,0.2,0.4>

})
,(

(µ3, t, 0),
{

m1
<0.2,0.7,0.4> ,

m2
<0.9,0.1,0.6> ,

m3
<0.8,0.2,0.4> ,

m4
<0.3,0.5,0.7>

})
,(

(µ3, u, 0),
{

m1
<0.5,0.4,0.2> ,

m2
<0.3,0.6,0.1> ,

m3
<0.6,0.3,0.2> ,

m4
<0.1,0.8,0.3>

})


Definition 3.4. Single Valued Neutrosophic Hypersoft Expert subset

A single valued neutrosophic hypersoft expert set (ξ1,S) is said to be single valued neutrosophic

hypersoft expert subset of (ξ2, R) over
∐

, if

(i) S ⊆ R,
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(ii) ∀ α ∈ S, ξ1(α) ⊆ ξ2(α).

and denoted by (ξ1, S) ⊆ (ξ2, R). Similarly (ξ2, R) is said to be single valued neutrosophic

hypersoft expert superset of (ξ1, S).

Example 3.5. Considering Example 3.3, Suppose

A1 =
{

(µ1, s, 1), (µ3, s, 0), (µ1, t, 1), (µ3, t, 1), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1)
}

A2 =
{

(µ1, s, 1), (µ3, s, 0), (µ3, s, 1), (µ1, t, 1), (µ3, t, 1), (µ1, t, 0), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1), (µ1, u, 1)
}

It is clear thatA1 ⊂ A2.Suppose (ξ1, A1) and (ξ2, A2) be defined as following

(ξ1,A1) =



(
(µ1, s, 1),

{
m1

<0.1,0.6,0.7> ,
m2

<0.6,0.5,0.8> ,
m3

<0.4,0.6,0.9> ,
m4

<0.1,0.8,0.6>

})
,(

(µ1, t, 1),
{

m1
<0.3,0.4,0.5> ,

m2
<0.6,0.4,0.6> ,

m3
<0.2,0.5,0.7> ,

m4
<0.1,0.5,0.6>

})
,(

(µ3, t, 1),
{

m1
<0.2,0.6,0.4> ,

m2
<0.5,0.4,0.7> ,

m3
<0.6,0.5,0.8> ,

m4
<0.8,0.6,0.4>

})
,(

(µ3, u, 1),
{

m1
<0.6,0.4,0.3> ,

m2
<0.2,0.7,0.6> ,

m3
<0.4,0.5,0.3> ,

m4
<0.1,0.7,0.4>

})
,(

(µ1, u, 0),
{

m1
<0.1,0.6,0.3> ,

m2
<0.1,0.7,0.4> ,

m3
<0.2,0.7,0.6> ,

m4
<0.1,0.6,0.7>

})
,(

(µ3, s, 0),
{

m1
<0.1,0.8,0.6> ,

m2
<0.3,0.6,0.5> ,

m3
<0.6,0.3,0.4> ,

m4
<0.7,0.2,0.6>

})
,(

(µ3, t, 0),
{

m1
<0.1,0.7,0.4> ,

m2
<0.6,0.3,0.6> ,

m3
<0.7,0.2,0.5> ,

m4
<0.2,0.7,0.4>

})



(ξ2,A2) =



(
(µ1, s, 1),

{
m1

<0.2,0.3,0.6> ,
m2

<0.7,0.4,0.7> ,
m3

<0.5,0.4,0.8> ,
m4

<0.2,0.4,0.5>

})
,(

(µ1, t, 1),
{

m1
<0.4,0.3,0.4> ,

m2
<0.8,0.3,0.5> ,

m3
<0.4,0.3,0.6> ,

m4
<0.2,0.6,0.5>

})
,(

(µ3, s, 1),
{

m1
<0.1,0.3,0.4> ,

m2
<0.9,0.1,0.3> ,

m3
<0.4,0.5,0.4> ,

m4
<0.5,0.3,0.4>

})
,(

(µ3, t, 1),
{

m1
<0.4,0.2,0.3> ,

m2
<0.6,0.3,0.6> ,

m3
<0.7,0.4,0.5> ,

m4
<0.9,0.5,0.2

})
,(

(µ1, u, 1),
{

m1
<0.7,0.2,0.4> ,

m2
<0.5,0.2,0.6> ,

m3
<0.6,0.2,0.7> ,

m4
<0.3,0.5,0.8

})
,(

(µ3, u, 1),
{

m1
<0.7,0.3,0.1> ,

m2
<0.3,0.5,0.4> ,

m3
<0.5,0.4,0.2> ,

m4
<0.2,0.6,0.3>

})
,(

(µ1, u, 0),
{

m1
<0.2,0.5,0.1> ,

m2
<0.2,0.6,0.3> ,

m3
<0.3,0.5,0.4> ,

m4
<0.5,0.3,0.5>

})
,(

(µ1, t, 0),
{

m1
<0.1,0.6,0.4> ,

m2
<0.9,0.1,0.6> ,

m3
<0.6,0.3,0.8> ,

m4
<0.2,0.6,0.8>

})
,(

(µ3, s, 0),
{

m1
<0.2,0.7,0.4> ,

m2
<0.4,0.5,0.3> ,

m3
<0.7,0.2,0.1> ,

m4
<0.8,0.1,0.5>

})
,(

(µ3, t, 0),
{

m1
<0.2,0.5,0.1> ,

m2
<0.7,0.2,0.3> ,

m3
<0.8,0.2,0.4> ,

m4
<0.3,0.5,0.2>

})


which implies that (ξ1, A1) ⊆ (ξ2, A2).

Definition 3.6. Two single valued neutrosophic hypersoft expert sets (ξ1, A1) and (ξ2, A2)

over
∐

are said to be equal if (ξ1, A1) is a single valued neutrosophic hypersoft expert subset

of (ξ2, A2) and (ξ2, A2) is a single valued neutrosophic hypersoft expert subset of (ξ1, A1).

Definition 3.7. The complement of a single valued neutrosophic hypersoft expert set (ξ,S),

denoted by (ξ,S)c, is defined by

(ξ,S)c = c̃(ξ(β)) ∀ β ∈
∐

while c̃ is a NF complement.
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Example 3.8. Taking complement of single valued neutrosophic hypersoft expert set deter-

mined in 3.3, we have

(ξ,S)c =



(
(µ1, s, 1),

{
m1

<0.4,0.5,0.2> ,
m2

<0.5,0.8,0.7> ,
m3

<0.6,0.6,0.5> ,
m4

<0.6,0.7,0.1>

})
,(

(µ1, t, 1),
{

m1
<0.3,0.8,0.6> ,

m2
<0.5,0.9,0.8> ,

m3
<0.6,0.5,0.4> ,

m4
<0.3,0.5,0.2>

})
,(

(µ1, u, 1),
{

m1
<0.3,0.8,0.7> ,

m2
<0.6,0.7,0.5> ,

m3
<0.7,0.7,0.6> ,

m4
<0.6,0.5,0.3>

})
,(

(µ2, s, 1),
{

m1
<0.3,0.9,0.9> ,

m2
<0.4,0.5,0.4> ,

m3
<0.6,0.8,0.7> ,

m4
<0.8,0.6,0.3>

})
,(

(µ2, t, 1),
{

m1
<0.6,0.5,0.4> ,

m2
<0.7,0.9,0.8> ,

m3
<0.5,0.4,0.3> ,

m4
<0.7,0.4,0.2>

})
,(

(µ2, u, 1),
{

m1
<0.7,0.6,0.5> ,

m2
<0.4,0.4,0.3> ,

m3
<0.5,0.8,0.6> ,

m4
<0.6,0.9,0.8>

})
,(

(µ3, s, 1),
{

m1
<0.5,0.3,0.2> ,

m2
<0.4,0.9,0.9> ,

m3
<0.7,0.5,0.4> ,

m4
<0.8,0.6,0.5>

})
,(

(µ3, t, 1),
{

m1
<0.2,0.7,0.4> ,

m2
<0.1,0.7,0.6> ,

m3
<0.3,0.8,0.7> ,

m4
<0.4,0.9,0.9>

})
,(

(µ3, u, 1),
{

m1
<0.6,0.8,0.7> ,

m2
<0.7,0.5,0.3> ,

m3
<0.5,0.6,0.5> ,

m4
<0.8,0.3,0.2>

})
,(

(µ1, s, 0),
{

m1
<0.1,0.8,0.3> ,

m2
<0.5,0.6,0.2> ,

m3
<0.8,0.5,0.4> ,

m4
<0.3,0.2,0.1>

})
,(

(µ1, t, 0),
{

m1
<0.4,0.2,0.1> ,

m2
<0.2,0.9,0.9> ,

m3
<0.4,0.7,0.6> ,

m4
<0.5,0.3,0.2>

})
,(

(µ1, u, 0),
{

m1
<0.5,0.3,0.2> ,

m2
<0.6,0.2,0.1> ,

m3
<0.7,0.5,0.3> ,

m4
<0.6,0.6,0.5>

})
,(

(µ2, s, 0),
{

m1
<0.6,0.9,0.8> ,

m2
<0.7,0.4,0.3> ,

m3
<0.8,0.6,0.5> ,

m4
<0.9,0.8,0.7>

})
,(

(µ2, t, 0),
{

m1
<0.5,0.8,0.7> ,

m2
<0.4,0.4,0.2> ,

m3
<0.6,0.9,0.9> ,

m4
<0.7,0.5,0.4>

})
,(

(µ2, u, 0),
{

m1
<0.5,0.8,0.6> ,

m2
<0.4,0.8,0.7> ,

m3
<0.4,0.5,0.3> ,

m4
<0.6,0.3,0.2>

})
,(

(µ3, s, 0),
{

m1
<0.5,0.3,0.1> ,

m2
<0.7,0.5,0.3> ,

m3
<0.9,0.8,0.8> ,

m4
<0.4,0.8,0.8>

})
,(

(µ3, t, 0),
{

m1
<0.4,0.3,0.2> ,

m2
<0.6,0.9,0.9> ,

m3
<0.4,0.8,0.8> ,

m4
<0.7,0.5,0.3>

})
,(

(µ3, u, 0),
{

m1
<0.2,0.6,0.5> ,

m2
<0.1,0.4,0.3> ,

m3
<0.2,0.7,0.6> ,

m4
<0.3,0.2,0.1>

})



Definition 3.9. An agree-single valued neutrosophic hypersoft expert set (ξ,S)ag over
∐

, is

a single valued neutrosophic hypersoft expert subset of (ξ,S) and is characterized as

(ξ, S)ag = {ξag(β) : β ∈ G × D × {1}}.
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Example 3.10. Finding agree-single valued neutrosophic hypersoft expert set determined in

3.3, we get

(ξ,S) =



(
(µ1, s, 1),

{
m1

<0.2,0.5,0.4> ,
m2

<0.7,0.2,0.5> ,
m3

<0.5,0.4,0.6> ,
m4

<0.1,0.3,0.6>

})
,(

(µ1, t, 1),
{

m1
<0.4,0.2,0.3> ,

m2
<0.8,0.1,0.5> ,

m3
<0.4,0.5,0.6> ,

m4
<0.2,0.5,0.3>

})
,(

(µ1, u, 1),
{

m1
<0.7,0.2,0.3> ,

m2
<0.5,0.3,0.6> ,

m3
<0.6,0.3,0.7> ,

m4
<0.3,0.5,0.6>

})
,(

(µ2, s, 1),
{

m1
<0.9,0.1,0.3> ,

m2
<0.4,0.5,0.4> ,

m3
<0.7,0.2,0.6> ,

m4
<0.3,0.4,0.8>

})
,(

(µ2, t, 1),
{

m1
<0.4,0.5,0.6> ,

m2
<0.8,0.1,0.7> ,

m3
<0.3,0.6,0.5> ,

m4
<0.2,0.6,0.7>

})
,(

(µ2, u, 1),
{

m1
<0.5,0.4,0.7> ,

m2
<0.3,0.6,0.4> ,

m3
<0.6,0.2,0.5> ,

m4
<0.8,0.1,0.6>

})
,(

(µ3, s, 1),
{

m1
<0.2,0.7,0.5> ,

m2
<0.9,0.1,0.4> ,

m3
<0.4,0.5,0.7> ,

m4
<0.5,0.4,0.8>

})
,(

(µ3, t, 1),
{

m1
<0.4,0.3,0.2> ,

m2
<0.6,0.3,0.1> ,

m3
<0.7,0.2,0.3> ,

m4
<0.9,0.1,0.4>

})
,(

(µ3, u, 1),
{

m1
<0.7,0.2,0.6> ,

m2
<0.3,0.5,0.7> ,

m3
<0.5,0.4,0.5> ,

m4
<0.2,0.7,0.8>

})
,


Definition 3.11. A disagree-single valued neutrosophic hypersoft expert set (ξ,S)dag over

∐
,

is a single valued neutrosophic hypersoft expert subset of (ξ,S) and is characterized as

(ξ, S)dag = {ξdag(β) : β ∈ G×D × {0}}.

Example 3.12. Getting disagree-single valued neutrosophic hypersoft expert set determined

in 3.3,

(ξ,S) =



(
(µ1, s, 0),

{
m1

<0.3,0.2,0.1> ,
m2

<0.2,0.4,0.5> ,
m3

<0.4,0.5,0.8> ,
m4

<0.1,0.8,0.3>

})
,(

(µ1, t, 0),
{

m1
<0.1,0.8,0.4> ,

m2
<0.9,0.1,0.2> ,

m3
<0.6,0.3,0.4> ,

m4
<0.2,0.7,0.5>

})
,(

(µ1, u, 0),
{

m1
<0.2,0.7,0.5> ,

m2
<0.1,0.8,0.6> ,

m3
<0.3,0.5,0.7> ,

m4
<0.5,0.4,0.6>

})
,(

(µ2, s, 0),
{

m1
<0.8,0.1,0.6> ,

m2
<0.3,0.6,0.7> ,

m3
<0.5,0.4,0.8> ,

m4
<0.7,0.2,0.9>

})
,(

(µ2, t, 0),
{

m1
<0.7,0.2,0.5> ,

m2
<0.2,0.6,0.4> ,

m3
<0.9,0.1,0.6> ,

m4
<0.4,0.5,0.7>

})
,(

(µ2, u, 0),
{

m1
<0.6,0.2,0.5> ,

m2
<0.7,0.2,0.4> ,

m3
<0.3,0.5,0.4> ,

m4
<0.2,0.7,0.6>

})
,(

(µ3, s, 0),
{

m1
<0.1,0.7,0.5> ,

m2
<0.4,0.5,0.7> ,

m3
<0.7,0.2,0.9> ,

m4
<0.8,0.2,0.4>

})
,(

(µ3, t, 0),
{

m1
<0.2,0.7,0.4> ,

m2
<0.9,0.1,0.6> ,

m3
<0.8,0.2,0.4> ,

m4
<0.3,0.5,0.7>

})
,(

(µ3, u, 0),
{

m1
<0.5,0.4,0.2> ,

m2
<0.3,0.6,0.1> ,

m3
<0.6,0.3,0.2> ,

m4
<0.1,0.8,0.3>

})
,


Proposition 3.13. If (ξ,S) is a single valued neutrosophic hypersoft expert set over

∐
, then

(1). ((ξ,S)c)c = (ξ, S)

(2). (ξ,S)cag = (ξ,S)dag

(3). (ξ,S)cdag = (ξ,S)ag

Definition 3.14. The union of (ξ1, S) and (ξ2,R) over
∐

is (ξ3, L) with L = S∪R, defined as

ξ3(β) =


ξ1(β)

ξ2(β)

∪(ξ1(β), ξ2(β))

; β ∈ S− R
; β ∈ R− S
; β ∈ S ∩ R
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where ∪(ξ1(β), ξ2(β)) = {< u, max {µ1(β), µ2(β)}, min {ν1(β), ν2(β)}, min {ω1(β), ω2(β)} >:

u ∈ U}.

Example 3.15. Taking into consideration the concept of example 3.3, consider the following

two sets

A1 =
{

(µ1, s, 1), (µ3, s, 0), (µ1, t, 1), (µ3, t, 1), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1)
}

A2 =
{

(µ1, s, 1), (µ3, s, 0), (µ3, s, 1), (µ1, t, 1), (µ3, t, 1), (µ1, u, 1), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1), (µ1, t, 0)
}

Suppose (ξ1, A1) and (ξ2, A2) over
∐

are two single valued neutrosophic hypersoft expert sets

such that

(ξ1,A1) =



(
(µ1, s, 1),

{
m1

<0.1,0.6,0.4> ,
m2

<0.6,0.3,0.2> ,
m3

<0.4,0.5,0.1> ,
m4

<0.1,0.8,0.5>

})
,(

(µ1, t, 1),
{

m1
<0.3,0.4,0.5> ,

m2
<0.6,0.2,0.3> ,

m3
<0.2,0.5,0.6> ,

m4
<0.1,0.5,0.3>

})
,(

(µ3, t, 1),
{

m1
<0.2,0.6,0.7> ,

m2
<0.5,0.2,0.3> ,

m3
<0.6,0.3,0.5> ,

m4
<0.8,0.1,0.9>

})
,(

(µ3, u, 1),
{

m1
<0.6,0.2,0.4> ,

m2
<0.2,0.7,0.6> ,

m3
<0.4,0.3,0.5> ,

m4
<0.1,0.5,0.4>

})
,(

(µ1, u, 0),
{

m1
<0.1,0.3,0.5> ,

m2
<0.1,0.7,0.6> ,

m3
<0.2,0.7,0.4> ,

m4
<0.4,0.6,0.8>

})
,(

(µ3, s, 0),
{

m1
<0.1,0.6,0.9> ,

m2
<0.3,0.6,0.7> ,

m3
<0.6,0.1,0.2> ,

m4
<0.7,0.2,0.3>

})
,(

(µ3, t, 0),
{

m1
<0.1,0.7,0.3> ,

m2
<0.8,0.1,0.2> ,

m3
<0.7,0.2,0.4> ,

m4
<0.2,0.7,0.6>

})



(ξ2,A2) =



(
(µ1, s, 1),

{
m1

<0.2,0.3,0.4> ,
m2

<0.7,0.4,0.5> ,
m3

<0.5,0.4,0.6> ,
m4

<0.2,0.4,0.7>

})
,(

(µ1, t, 1),
{

m1
<0.4,0.3,0.8> ,

m2
<0.8,0.3,0.5> ,

m3
<0.4,0.3,0.5> ,

m4
<0.2,0.6,0.7>

})
,(

(µ3, s, 1),
{

m1
<0.1,0.3,0.6> ,

m2
<0.9,0.1,0.7> ,

m3
<0.4,0.5,0.8> ,

m4
<0.5,0.3,0.5>

})
,(

(µ3, t, 1),
{

m1
<0.4,0.2,0.3> ,

m2
<0.6,0.3,0.5> ,

m3
<0.7,0.4,0.5> ,

m4
<0.9,0.5,0.7

})
,(

(µ1, u, 1),
{

m1
<0.7,0.2,0.3> ,

m2
<0.5,0.2,0.4> ,

m3
<0.6,0.2,0.4> ,

m4
<0.3,0.5,0.6

})
,(

(µ3, u, 1),
{

m1
<0.7,0.3,0.7> ,

m2
<0.3,0.5,0.6> ,

m3
<0.5,0.4,0.3> ,

m4
<0.2,0.6,0.4>

})
,(

(µ1, u, 0),
{

m1
<0.2,0.5,0.4> ,

m2
<0.2,0.6,0.3> ,

m3
<0.3,0.5,0.6> ,

m4
<0.5,0.3,0.7>

})
,(

(µ1, t, 0),
{

m1
<0.1,0.6,0.3> ,

m2
<0.9,0.1,0.2> ,

m3
<0.6,0.3,0.4> ,

m4
<0.2,0.6,0.3>

})
,(

(µ3, s, 0),
{

m1
<0.2,0.7,0.5> ,

m2
<0.4,0.5,0.6> ,

m3
<0.7,0.2,0.3> ,

m4
<0.8,0.1,0.4>

})
,(

(µ3, t, 0),
{

m1
<0.2,0.5,0.4> ,

m2
<0.7,0.2,0.3> ,

m3
<0.8,0.2,0.6> ,

m4
<0.3,0.5,0.7>

})


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Then (ξ1, A1) ∪ (ξ2, A2) = (ξ3, A3)

(ξ3,A3) =



(
(µ1, s, 1),

{
m1

<0.2,0.3,0.4> ,
m2

<0.7,0.3,0.2> ,
m3

<0.5,0.4,0.1> ,
m4

<0.2,0.4,0.5>

})
,(

(µ1, t, 1),
{

m1
<0.4,0.3,0.5> ,

m2
<0.8,0.2,0.3> ,

m3
<0.4,0.3,0.5> ,

m4
<0.2,0.5,0.3>

})
,(

(µ3, s, 1),
{

m1
<0.1,0.3,0.6> ,

m2
<0.9,0.1,0.7> ,

m3
<0.4,0.5,0.8> ,

m4
<0.5,0.3,0.5>

})
,(

(µ3, t, 1),
{

m1
<0.4,0.2,0.3> ,

m2
<0.6,0.2,0.3> ,

m3
<0.7,0.3,0.5> ,

m4
<0.9,0.1,0.7

})
,(

(µ1, u, 1),
{

m1
<0.7,0.2,0.3> ,

m2
<0.5,0.2,0.4> ,

m3
<0.6,0.2,0.4> ,

m4
<0.3,0.5,0.6

})
,(

(µ3, u, 1),
{

m1
<0.7,0.2,0.4> ,

m2
<0.3,0.5,0.6> ,

m3
<0.5,0.3,0.3> ,

m4
<0.2,0.5,0.4>

})
,(

(µ1, u, 0),
{

m1
<0.2,0.3,0.4> ,

m2
<0.2,0.6,0.3> ,

m3
<0.3,0.5,0.4> ,

m4
<0.5,0.3,0.7>

})
,(

(µ1, t, 0),
{

m1
<0.1,0.6,0.3> ,

m2
<0.9,0.1,0.2> ,

m3
<0.6,0.3,0.4> ,

m4
<0.2,0.6,0.3>

})
,(

(µ3, s, 0),
{

m1
<0.2,0.6,0.5> ,

m2
<0.4,0.5,0.6> ,

m3
<0.7,0.1,0.2> ,

m4
<0.8,0.1,0.3>

})
,(

(µ3, t, 0),
{

m1
<0.2,0.5,0.3> ,

m2
<0.8,0.1,0.2> ,

m3
<0.8,0.2,0.4> ,

m4
<0.3,0.5,0.6>

})


Proposition 3.16. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three single valued neutrosophic hy-

persoft expert sets over
∐
, then

(1). (ξ1, A1) ∪ (ξ2, A2) = (ξ2, A2) ∪ (ξ1, A1)

(2). ((ξ1, A1) ∪ (ξ2, A2)) ∪ (ξ3, A3) = (ξ1, A1) ∪ ((ξ2, A2) ∪ (ξ3, A3))

Definition 3.17. The intersection of (ξ1, S) and (ξ2,R) over
∐

is (ξ3, L) with L = S ∩ R,
defined as

ξ3(β) =


ξ1(β)

ξ2(β)

∩(ξ1(β), ξ2(β))

; β ∈ S− R
; β ∈ R− S
; β ∈ S ∩ R

where ∩(ξ1(β), ξ2(β)) = {< u, min {µ1(β), µ2(β)}, max {ν1(β), ν2(β)}, max {ω1(β), ω2(β)} >:

u ∈ U}.

Example 3.18. Taking into consideration the concept of example 3.3, consider the following

two sets

A1 =
{

(µ1, s, 1), (µ3, s, 0), (µ1, t, 1), (µ3, t, 1), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1)
}

A2 =
{

(µ1, s, 1), (µ3, s, 0), (µ3, s, 1), (µ1, t, 1), (µ3, t, 1), (µ1, t, 0), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1), , (µ1, u, 1)
}
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Suppose (ξ1, A1) and (ξ2, A2) over
∐

are two single valued neutrosophic hypersoft expert sets

such that

(ξ1,A1) =



(
(µ1, s, 1),

{
m1

<0.1,0.6,0.4> ,
m2

<0.6,0.3,0.2> ,
m3

<0.4,0.5,0.1> ,
m4

<0.1,0.8,0.5>

})
,(

(µ1, t, 1),
{

m1
<0.3,0.4,0.5> ,

m2
<0.6,0.2,0.3> ,

m3
<0.2,0.5,0.6> ,

m4
<0.1,0.5,0.3>

})
,(

(µ3, t, 1),
{

m1
<0.2,0.6,0.7> ,

m2
<0.5,0.2,0.3> ,

m3
<0.6,0.3,0.5> ,

m4
<0.8,0.1,0.9>

})
,(

(µ3, u, 1),
{

m1
<0.6,0.2,0.4> ,

m2
<0.2,0.7,0.6> ,

m3
<0.4,0.3,0.5> ,

m4
<0.1,0.5,0.4>

})
,(

(µ1, u, 0),
{

m1
<0.1,0.3,0.5> ,

m2
<0.1,0.7,0.6> ,

m3
<0.2,0.7,0.4> ,

m4
<0.4,0.6,0.8>

})
,(

(µ3, s, 0),
{

m1
<0.1,0.6,0.9> ,

m2
<0.3,0.6,0.7> ,

m3
<0.6,0.1,0.2> ,

m4
<0.7,0.2,0.3>

})
,(

(µ3, t, 0),
{

m1
<0.1,0.7,0.3> ,

m2
<0.8,0.1,0.2> ,

m3
<0.7,0.2,0.4> ,

m4
<0.2,0.7,0.6>

})



(ξ2,A2) =



(
(µ1, s, 1),

{
m1

<0.2,0.3,0.4> ,
m2

<0.7,0.4,0.5> ,
m3

<0.5,0.4,0.6> ,
m4

<0.2,0.4,0.7>

})
,(

(µ1, t, 1),
{

m1
<0.4,0.3,0.8> ,

m2
<0.8,0.3,0.5> ,

m3
<0.4,0.3,0.5> ,

m4
<0.2,0.6,0.7>

})
,(

(µ3, s, 1),
{

m1
<0.1,0.3,0.6> ,

m2
<0.9,0.1,0.7> ,

m3
<0.4,0.5,0.8> ,

m4
<0.5,0.3,0.5>

})
,(

(µ3, t, 1),
{

m1
<0.4,0.2,0.3> ,

m2
<0.6,0.3,0.5> ,

m3
<0.7,0.4,0.5> ,

m4
<0.9,0.5,0.7

})
,(

(µ1, u, 1),
{

m1
<0.7,0.2,0.3> ,

m2
<0.5,0.2,0.4> ,

m3
<0.6,0.2,0.4> ,

m4
<0.3,0.5,0.6

})
,(

(µ3, u, 1),
{

m1
<0.7,0.3,0.7> ,

m2
<0.3,0.5,0.6> ,

m3
<0.5,0.4,0.3> ,

m4
<0.2,0.6,0.4>

})
,(

(µ1, u, 0),
{

m1
<0.2,0.5,0.4> ,

m2
<0.2,0.6,0.3> ,

m3
<0.3,0.5,0.6> ,

m4
<0.5,0.3,0.7>

})
,(

(µ1, t, 0),
{

m1
<0.1,0.6,0.3> ,

m2
<0.9,0.1,0.2> ,

m3
<0.6,0.3,0.4> ,

m4
<0.2,0.6,0.3>

})
,(

(µ3, s, 0),
{

m1
<0.2,0.7,0.5> ,

m2
<0.4,0.5,0.6> ,

m3
<0.7,0.2,0.3> ,

m4
<0.8,0.1,0.4>

})
,(

(µ3, t, 0),
{

m1
<0.2,0.5,0.4> ,

m2
<0.7,0.2,0.3> ,

m3
<0.8,0.2,0.6> ,

m4
<0.3,0.5,0.7>

})


Then (ξ1, A1) ∩ (ξ2, A2) = (ξ3, A3)

(ξ3,A3) =



(
(µ1, s, 1),

{
m1

<0.1,0.6,0.4> ,
m2

<0.6,0.4,0.5> ,
m3

<0.4,0.5,0.6> ,
m4

<0.1,0.8,0.7>

})
,(

(µ1, t, 1),
{

m1
<0.3,0.4,0.8> ,

m2
<0.6,0.3,0.5> ,

m3
<0.2,0.5,0.6> ,

m4
<0.1,0.6,0.7>

})
,(

(µ3, t, 1),
{

m1
<0.2,0.6,0.7> ,

m2
<0.5,0.4,0.5> ,

m3
<0.6,0.4,0.5> ,

m4
<0.8,0.1,0.7>

})
,(

(µ3, u, 1),
{

m1
<0.6,0.3,0.7> ,

m2
<0.2,0.7,0.6> ,

m3
<0.4,0.4,0.5> ,

m4
<0.1,0.6,0.4>

})
,(

(µ1, u, 0),
{

m1
<0.1,0.5,0.5> ,

m2
<0.1,0.6,0.6> ,

m3
<0.2,0.7,0.6> ,

m4
<0.4,0.6,0.8>

})
,(

(µ3, s, 0),
{

m1
<0.1,0.7,0.9> ,

m2
<0.3,0.6,0.7> ,

m3
<0.6,0.2,0.3> ,

m4
<0.7,0.2,0.4>

})
,(

(µ3, t, 0),
{

m1
<0.1,0.7,0.4> ,

m2
<0.8,0.2,0.3> ,

m3
<0.7,0.2,0.6> ,

m4
<0.2,0.7,0.7>

})


Proposition 3.19. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three single valued neutrosophic hy-

persoft expert sets over
∐
, then

(1). (ξ1, A1) ∩ (ξ2, A2) = (ξ2, A2) ∩ (ξ1, A1)

(2). ((ξ1, A1) ∩ (ξ2, A2)) ∩ (ξ3, A3) = (ξ1, A1) ∩ ((ξ2, A2) ∩ (ξ3, A3))
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Proposition 3.20. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three single valued neutrosophic hy-

persoft expert sets over
∐
, then

(1). (ξ1, A1) ∪ ((ξ2, A2) ∩ (ξ3, A3)) = ((ξ1, A1) ∪ ((ξ2, A2)) ∩ ((ξ1, A1) ∪ (ξ3, A3))

(2). (ξ1, A1) ∩ ((ξ2, A2) ∪ (ξ3, A3)) = ((ξ1, A1) ∩ ((ξ2, A2)) ∪ ((ξ1, A1) ∩ (ξ3, A3))

Definition 3.21. If (ξ1, A1) and (ξ2, A2) are two single valued neutrosophic hypersoft expert

sets over
∐

then (ξ1, A1) AND (ξ2, A2) denoted by (ξ1, A1) ∧ (ξ2, A2) is defined by

(ξ1, A1) ∧ (ξ2, A2) = (ξ3, A1 ×A2),

while ξ3(β, γ) = ξ1(β) ∩ ξ2(γ),∀(β, γ) ∈ A1 ×A2.

Example 3.22. Taking into consideration the concept of example 3.3, let two sets

A1 =
{

(µ1, s, 1), (µ1, t, 1), (µ3, s, 0)
}

A2 =
{

(µ1, s, 0), (µ3, s, 1)
}

Suppose (ξ1, A1) and (ξ2, A2) over
∐

are two single valued neutrosophic hypersoft expert sets

such that

(ξ1,A1) =


(

(µ1, s, 1),
{

m1
<0.1,0.6,0.4> ,

m2
<0.6,0.4,0.5> ,

m3
<0.4,0.5,0.6> ,

m4
<0.1,0.8,0.7>

})
,(

(µ1, t, 1),
{

m1
<0.3,0.4,0.8> ,

m2
<0.6,0.3,0.5> ,

m3
<0.2,0.5,0.6> ,

m4
<0.1,0.6,0.7>

})
,(

(µ3, s, 0),
{

m1
<0.1,0.6,0.9> ,

m2
<0.3,0.6,0.7> ,

m3
<0.6,0.1,0.2> ,

m4
<0.7,0.2,0.3>

})


(ξ2,A2) =


(

(µ1, s, 0),
{

m1
<0.2,0.1,0.3> ,

m2
<0.7,0.2,0.4> ,

m3
<0.5,0.2,0.5> ,

m4
<0.2,0.3,0.6>

})
,(

(µ3, s, 1),
{

m1
<0.1,0.5,0.6> ,

m2
<0.4,0.2,0.5> ,

m3
<0.7,0.1,0.2> ,

m4
<0.8,0.1,0.4>

})
,


Then (ξ3, A3) ∧ (ξ2, A2) = (ξ3, A1 ×A2),

(ξ3,A1 ×A2) =



(
((µ1, s, 1), (µ1, s, 0)),

{
m1

<0.1,0.6,0.4> ,
m2

<0.6,0.4,0.5> ,
m3

<0.4,0.5,0.6> ,
m4

<0.1,0.8,0.7>

})
,(

((µ1, t, 1), (µ1, s, 0)),
{

m1
<0.2,0.4,0.8> ,

m2
<0.6,0.3,0.5> ,

m3
<0.2,0.5,0.6> ,

m4
<0.1,0.6,0.7>

})
,(

((µ1, t, 1), (µ3, s, 1)),
{

m1
<0.1,0.5,0.8> ,

m2
<0.4,0.3,0.5> ,

m3
<0.2,0.5,0.6> ,

m4
<0.1,0.6,0.7>

})
,(

((µ1, s, 1), (µ3, s, 1)),
{

m1
<0.1,0.6,0.6> ,

m2
<0.4,0.4,0.5> ,

m3
<0.4,0.5,0.6> ,

m4
<0.1,0.8,0.7>

})
,(

((µ3, s, 0), (µ1, s, 0)),
{

m1
<0.1,0.6,0.9> ,

m2
<0.3,0.6,0.7> ,

m3
<0.5,0.2,0.5> ,

m4
<0.2,0.3,0.6>

})
,(

((µ3, s, 0), (µ3, s, 1)),
{

m1
<0.1,0.6,0.9> ,

m2
<0.3,0.6,0.7> ,

m3
<0.6,0.1,0.2> ,

m4
<0.7,0.2,0.4>

})


Definition 3.23. If (ξ1, A1) and (ξ2, A2) are two single valued neutrosophic hypersoft expert

sets over
∐

then (ξ1, A1) OR (ξ2, A2) denoted by (ξ1, A1) ∨ (ξ2, A2) is defined by

(ξ1, A1) ∨ (ξ2, A2) = (ξ3, A1 ×A2),

while ξ3(β, γ) = ξ1(β) ∪ ξ2(γ),∀(β, γ) ∈ A1 ×A2.
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Example 3.24. Taking into consideration the concept of example 3.3, suppose the following

sets

A1 =
{

(µ1, s, 1), (µ1, t, 1), (µ3, s, 0)
}

A2 =
{

(µ1, s, 0), (µ3, s, 1)
}

Suppose (ξ1, A1) and (ξ2, A2) over
∐

are two single valued neutrosophic hypersoft expert sets

such that

(ξ1,A1) =


(

(µ1, s, 1),
{

m1
<0.1,0.6,0.4> ,

m2
<0.6,0.4,0.5> ,

m3
<0.4,0.5,0.6> ,

m4
<0.1,0.8,0.7>

})
,(

(µ1, t, 1),
{

m1
<0.3,0.4,0.8> ,

m2
<0.6,0.3,0.5> ,

m3
<0.2,0.5,0.6> ,

m4
<0.1,0.6,0.7>

})
,(

(µ3, s, 0),
{

m1
<0.1,0.6,0.9> ,

m2
<0.3,0.6,0.7> ,

m3
<0.6,0.1,0.2> ,

m4
<0.7,0.2,0.3>

})


(ξ2,A2) =


(

(µ1, s, 0),
{

m1
<0.2,0.1,0.3> ,

m2
<0.7,0.2,0.4> ,

m3
<0.5,0.2,0.5> ,

m4
<0.2,0.3,0.6>

})
,(

(µ3, s, 1),
{

m1
<0.1,0.5,0.6> ,

m2
<0.4,0.2,0.5> ,

m3
<0.7,0.1,0.2> ,

m4
<0.8,0.1,0.4>

})
,


Then (ξ3, A3) ∨ (ξ2, A2) = (ξ3, A1 ×A2),

(ξ3,A1 ×A2) =



(
((µ1, s, 1), (µ1, s, 0)),

{
m1

<0.2,0.1,0.3> ,
m2

0<0.7,0.2,0.4> ,
m3

<0.5,0.2,0.5> ,
m4

<0.2,0.3,0.6>

})
,(

((µ1, t, 1), (µ1, s, 0)),
{

m1
<0.3,0.1,0.3> ,

m2
<0.7,0.2,0.4> ,

m3
<0.5,0.2,0.5> ,

m4
<0.2,0.3,0.6>

})
,(

((µ1, t, 1), (µ3, s, 1)),
{

m1
<0.3,0.4,0.6> ,

m2
<0.6,0.2,0.5> ,

m3
<0.7,0.1,0.2> ,

m4
<0.8,0.1,0.4>

})
,(

((µ1, s, 1), (µ3, s, 1)),
{

m1
<0.1,0.5,0.4> ,

m2
<0.6,0.2,0.5> ,

m3
<0.7,0.1,0.2> ,

m4
<0.8,0.1,0.4>

})
,(

((µ3, s, 0), (µ1, s, 0)),
{

m1
<0.2,0.1,0.3> ,

m2
<0.7,0.2,0.4> ,

m3
<0.6,0.1,0.2> ,

m4
<0.7,0.2,0.3>

})
,(

((µ3, s, 0), (µ3, s, 1)),
{

m1
<0.1,0.5,0.6> ,

m2
<0.4,0.2,0.5> ,

m3
<0.7,0.1,0.2> ,

m4
<0.8,0.1,0.4>

})


Proposition 3.25. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three single valued neutrosophic hy-

persoft expert sets over
∐
, then

(1). ((ξ1, A1) ∧ (ξ2, A2))c = ((ξ1, A1))c ∨ ((ξ2, A2))c

(2). ((ξ1, A1) ∨ (ξ2, A2))c = ((ξ1, A1))c ∧ ((ξ2, A2))c

Proposition 3.26. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three single valued neutrosophic hy-

persoft expert sets over
∐
, then

(1). ((ξ1, A1) ∧ (ξ2, A2)) ∧ (ξ3, A3) = (ξ1, A1) ∧ ((ξ2, A2) ∧ (ξ3, A3))

(2). ((ξ1, A1) ∨ (ξ2, A2)) ∨ (ξ3, A3) = (ξ1, A1) ∨ ((ξ2, A2) ∨ (ξ3, A3))

(3). (ξ1, A1) ∨ ((ξ2, A2) ∧ (ξ3, A3) = ((ξ1, A1) ∨ ((ξ2, A2)) ∧ ((ξ1, A1) ∨ (ξ3, A3))

(4). (ξ1, A1) ∧ ((ξ2, A2) ∨ (ξ3, A3)) = ((ξ1, A1) ∧ ((ξ2, A2)) ∨ ((ξ1, A1) ∧ (ξ3, A3))
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4. An Application to Single valued Neutrosophic Hypersoft expert set

In this section, an application of single valued neutrosophic hypersoft expert set theory in

a decision making problem, is presented.

Statement of the problem

Mr. John wants to purchase a mobile from a mobile market for his personal use. He takes help

from his some friends (Stephen, Thomas and Umar) who have expertise in mobile purchase.

Proposed Algorithm

The following algorithm is adopted for this selection (purchase).

(1). Construct SVNHSES (ξ,K),

(2). Determine the values of µ(ci)−ν(ci)−ω(ci) for each ci ∈
∐

where µ(ci) is a membership

function, ν(ci)indeterminacy function and ω(ci) is a non membership function for each

element of
∐

.

(3). Calculate the the highest numerical grade for the agree-SVNHSES and disagree-

SVNHSES,

(4). Determine the score of each element ci ∈
∐

by taking the sum of the products of the nu-

merical grade of each element for the agree- SVNHSES and disagree SVNHSES,denoted

by Gi and Hi respectively

(5). Determine ji = Gi −Hi for each element ci ∈
∐

,

(6). Compute n, for which M= max ji. Then the decision is to choose element as the

optimal or best solution to the problem.

Step-1

Let four categories of mobile are there which form the universe of discourse coprod =

{c1, c2, c3, c4} and X = {E1 = Stephen,E2 = Thomas,E3 = Umar} be a set of experts

for this purchase. The following are the attribute-valued sets for prescribed attributes:

L1 = Brand = {X = l1, Y = l2}
L2 = Price = {20, 000 = l3, 15, 000 = l4}
L3 = Colour = {White = l5, Blue = l6}
L4 = Memory = {6GB = l7, 4GB = l8}
L5 = Resolution(size) = {5inch = l9, 6inch = l10}
and then

L = L1 × L2 × L3 × L4 × L5
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L =



(l1, l3, l5, l7, l9), (l1, l3, l5, l7, l10), (l1, l3, l5, l8, l9), (l1, l3, l5, l8, l10), (l1, l3, l6, l7, l9),

(l1, l3, l6, l7, l10), (l1, l3, l6, l8, l9), (l1, l3, l6, l8, l10), (l1, l4, l5, l7, l9), (l1, l4, l5, l7, l10),

(l1, l4, l5, l8, l9), (l1, l4, l5, l8, l10), (l1, l4, l6, l7, l9), (l1, l4, l6, l7, l10), (l1, l4, l6, l8, l9),

(l1, l4, l6, l8, l10), (l2, l3, l5, l7, l9), (l2, l3, l5, l7, l10), (l2, l3, l5, l8, l9), (l2, l3, l5, l8, l10),

(l2, l3, l6, l7, l9), (l2, l3, l6, l7, l10), (l2, l3, l6, l8, l9), (l2, l3, l6, l8, l10), (l2, l4, l5, l7, l9),

(l2, l4, l5, l7, l10), (l2, l4, l5, l8, l9), (l2, l4, l5, l8, l10), (l2, l4, l6, l7, l9), (l2, l4, l6, l7, l10),

(l2, l4, l6, l8, l9), (l2, l4, l6, l8, l10)


Now take K ⊆ L as

K = {k1 = (l1, l3, l5, l7, l9), k2 = (l1, l3, l6, l7, l10), k3 = (l1, l4, l6, l8, l9), k4 =

(l2, l3, l6, l8, l9), k5 = (l2, l4, l6, l7, l10)}

(ξ,A)1 =



(
(k1, E1, 1),

{
c1

<0.9,0.1,0.7> ,
c2

<0.3,0.4,0.5> ,
c3

<0.6,0.2,0.4> ,
c4

<0.3,0.7,0.2>

})
,(

(k1, E2, 1),
{

c1
<0.8,0.2,0.7> ,

c2
<0.1,0.2,0.3> ,

c3
<0.6,0.2,0.8> ,

c4
<0.3,0.6,0.5>

})
,(

(k1, E3, 1),
{

c1
<0.7,0.3,0.1> ,

c2
<0.3,0.7,0.2> ,

c3
<0.3,0.1,0.4> ,

c4
<0.3,0.6,0.7>

})
,(

(k2, E1, 1),
{

c1
<0.6,0.4,0.8> ,

c2
<0.4,0.2,0.1> ,

c3
<0.7,0.1,0.6> ,

c4
<0.5,0.2,0.6>

})
,(

(k2, E2, 1),
{

c1
<0.5,0.2,0.3> ,

c2
<0.6,0.4,0.5> ,

c3
<0.3,0.6,0.7> ,

c4
<0.4,0.2,0.9>

})
,(

(k2, E3, 1),
{

c1
<0.4,0.3,0.1> ,

c2
<0.3,0.2,0.4> ,

c3
<0.3,0.2,0.5> ,

c4
<0.8,0.2,0.7>

})
,(

(k3, E1, 1),
{

c1
<0.2,0.4,0.9> ,

c2
<0.5,0.2,0.6> ,

c3
<0.6,0.2,0.7> ,

c4
<0.7,0.2,0.6>

})
,(

(k3, E2, 1),
{

c1
<0.2,0.3,0.4> ,

c2
<0.4,0.2,0.5> ,

c3
<0.6,0.2,0.4> ,

c4
<0.3,0.2,0.3>

})
,(

(k3, E3, 1),
{

c1
<0.3,0.4,0.1> ,

c2
<0.6,0.3,0.2> ,

c3
<0.4,0.2,0.3> ,

c4
<0.3,0.6,0.4>

})
,(

(k4, E1, 1),
{

c1
<0.9,0.1,0.7> ,

c2
<0.1,0.3,0.8> ,

c3
<0.5,0.1,0.7> ,

c4
<0.4,0.3,0.2>

})
,(

(k4, E2, 1),
{

c1
<0.8,0.1,0.4> ,

c2
<0.4,0.3,0.5> ,

c3
<0.2,0.7,0.6> ,

c4
<0.7,0.2,0.7>

})
,(

(k4, E3, 1),
{

c1
<0.6,0.2,0.4> ,

c2
<0.1,0.3,0.2> ,

c3
<0.3,0.5,0.9> ,

c4
<0.6,0.1,0.3>

})
,(

(k5, E1, 1),
{

c1
<0.6,0.3,0.2> ,

c2
<0.2,0.8,0.4> ,

c3
<0.1,0.2,.03> ,

c4
<0.1,0.7,0.4>

})
,(

(k5, E2, 1),
{

c1
<0.5,0.3,0.4> ,

c2
<0.6,0.2,0.4> ,

c3
<0.4,0.3,0.5> ,

c4
<0.6,0.1,0.2>

})
,(

(k5, E3, 1),
{

c1
<0.4,0.3,0.1> ,

c2
<0.6,0.1,0.2> ,

c3
<0.3,0.5,0.6> ,

c4
<0.5,0.4,0.2>

})
,


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and

(ξ,K)0 =



(
(k1, E1, 0),

{
c1

<0.4,0.3,0.1> ,
c2

<0.9,0.1,0.2> ,
c3

<0.8,0.2,0.3> ,
c4

<0.6,0.1,0.8>

})
,(

(k1, E2, 0)
{

c1
<0.7,0.2,0.3> ,

c2
<0.6,0.4,0.2> ,

c3
<0.2,0.7,0.1> ,

c4
<0.8,0.2,0.7>

})
,(

(k1, E3, 0),
{

c1
<0.2,0.3,0.4> ,

c2
<0.6,0.2,0.5> ,

c3
<0.1,0.7,0.2> ,

c4
<0.1,0.4,0.5>

})
,(

(k2, E1, 0),
{

c1
<0.1,0.4,0.5> ,

c2
<0.4,0.3,0.7> ,

c3
<0.2,0.7,0.4> ,

c4
<0.3,0.2,0.6>

})
,(

(k2, E2, 0),
{

c1
<0.2,0.5,0.6> ,

c2
<0.7,0.2,0.3> ,

c3
<0.6,0.3,0.2> ,

c4
<0.5,0.3,0.4>

})
,(

(k2, E3, 0),
{

c1
<0.7,0.2,0.1> ,

c2
<0.3,0.5,0.2> ,

c3
<0.1,0.7,0.8> ,

c4
<0.3,0.4,0.3>

})
,(

(k3, E1, 0),
{

c1
<0.9,0.1,0.6> ,

c2
<0.4,0.2,0.7> ,

c3
<0.5,0.1,0.9> ,

c4
<0.3,0.2,0.1>

})
,(

(k3, E2, 0),
{

c1
<0.8,0.2,0.1> ,

c2
<0.2,0.7,0.4> ,

c3
<0.3,0.6,0.7> ,

c4
<0.5,0.2,0.6>

})
,(

(k3, E3, 0),
{

c1
<0.6,0.2,0.4> ,

c2
<0.6,0.1,0.3> ,

c3
<0.5,0.4,0.9> ,

c4
<0.4,0.5,0.2>

})
,(

(k4, E1, 0),
{

c1
<0.6,0.3,0.2> ,

c2
<0.3,0.5,0.6> ,

c3
<0.2,0.6,0.5> ,

c4
<0.3,0.4,0.6>

})
,(

(k4, E2, 0),
{

c1
<0.5,0.4,0.3> ,

c2
<0.5,0.2,0.1> ,

c3
<0.3,0.1,0.2> ,

c4
<0.6,0.2,0.1>

})
,(

(k4, E3, 0),
{

c1
<0.4,0.5,0.3> ,

c2
<0.7,0.2,0.1> ,

c3
<0.6,0.1,0.4> ,

c4
<0.9,0.1,0.6>

})
,(

(k5, E1, 0),
{

c1
<0.2,0.5,0.7> ,

c2
<0.6,0.2,0.8> ,

c3
<0.9,0.1,0.3> ,

c4
<0.9,0.2,0.5>

})
,(

(k5, E2, 0),
{

c1
<0.3,0.6,0.1> ,

c2
<0.2,0.8,0.3> ,

c3
<0.3,0.6,0.2> ,

c4
<0.4,0.3,0.2>

})
,(

(k5, E3, 0),
{

c1
<0.1,0.7,0.3> ,

c2
<0.5,0.2,0.4> ,

c3
<0.5,0.1,0.7> ,

c4
<0.4,0.6,0.3>

})



are single valued neutrosophic hypersoft expert sets.

Step-2

Table 1 represents the values of µ(ci)-ν(ci)-ω(ci)

Step-(2-5)

Table 2 and table 3 represent the grade values of agree and disagree single valued neutrosophic

hypersoft expert set respectively. Table 4 depicts the difference of scores of agree and disagree

SVNHSES. The scores for agree SVNHSES are :

S(c1) = 0.6, S(c2) = 0.5, S(c3) = 0.4 and S(c4) = 1.5

whereas scores for disagree SVNHSES are:

S(c1) = 1.4, S(c2) = 0.7, S(c3) = 0.5 and S(c4) = −0.2.

Step-6; Decision

As j4 is maximum, so category c4 is preferred to be best.
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Table 1. Agree-single valued neutrosophic hypersoft expert set

C c1 c2 c3 c4 C c1 c2 c3 c4

(k1, E1, 1) 0.1 -0.6 0.0 -0.6 (k1, E1, 0) 0.0 0.6 0.3 -0.3

(k1, E2, 1) -0.1 -0.4 -0.4 0.2 (k1, E2, 0) 0.2 0.0 -0.6 -0.1

(k1, E3, 1) 0.3 -0.2 -0.2 0.4 (k1, E3, 0) -0.5 -0.1 -0.8 -0.8

(k2, E1, 1) -0.6 0.1 0.0 -0.3 (k2, E1, 0) -0.8 -0.6 -0.9 -0.5

(k2, E2, 1) 0.0 -0.3 0.4 -0.7 (k2, E2, 0) -0.9 0.2 0.1 -0.2

(k2, E3, 1) 0.0 -0.3 -0.4 -0.1 (k2, E3, 0) 0.4 -0.4 -1.4 -0.4

(k3, E1, 1) -1.1 -0.3 -0.3 -0.1 (k3, E1, 0) 0.2 -0.5 -0.5 0.0

(k3, E2, 1) -0.5 -0.3 0.0 -0.2 (k3, E2, 0) 0.5 -0.9 -1.0 -0.3

(k3, E3, 1) -0.2 0.1 -0.1 -0.7 (k3, E3, 0) 0.0 0.2 -0.8 -0.3

(k4, E1, 1) 0.1 -1.0 -0.3 -0.1 (k4, E1, 0) 0.1 -0.8 -0.9 -0.7

(k4, E2, 1) 0.3 -0.6 -1.1 -0.2 (k4, E2, 0) -0.1 0.2 0.0 0.3

(k4, E3, 1) 0.0 -0.4 -1.1 0.2 (k4, E3, 0) -1.4 0.4 0.1 0.2

(k5, E1, 1) 0.1 -0.7 -0.4 -1.0 (k5, E1, 0) -1.0 -0.4 0.5 0.2

(k5, E2, 1) -0.2 0.0 -0.4 0.3 (k5, E2, 0) -0.4 -0.9 -0.5 0.1

(k5, E3, 1) 0.0 0.3 -0.8 -0.1 (k5, E3, 0) -0.9 -0.1 -0.3 -0.5

Table 2. Numerical Grades of agree SVNHSES

ci Highest Numerical Grade

(k1, E1, 1) c1 0.1

(k1, E2, 1) c4 0.2

(k1, E3, 1) c4 0.4

(k2, E1, 1) c2 0.1

(k2, E2, 1) c3 0.4

(k2, E3, 1) c4 0.6

(k3, E1, 1) c1 0.0

(k3, E2, 1) c3 0.0

(k3, E3, 1) c2 0.1

(k4, E1, 1) c1 0.1

(k4, E2, 1) c1 0.3

(k4, E3, 1) c4 0.2

(k5, E1, 1) c1 0.1

(k5, E2, 1) c4 0.3

(k5, E3, 1) c2 0.3

5. Conclusions

In this paper, the fundamentals of single valued neutrosophic hypersoft expert set are es-

tablished and some basic properties, laws and operations are generalized. A decision-making
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Table 3. Numerical Grades of disagree SVNHSES

ci Highest Numerical Grade

(k1, E1, 0) c2 0.6

(k1, E2, 0) c1 0.2

(k1, E3, 0) c2 -0.1

(k2, E1, 0) c4 -0.5

(k2, E2, 0) c2 0.2

(k2, E3, 0) c1 0.4

(k3, E1, 0) c1 0.2

(k3, E2, 0) c1 0.5

(k3, E3, 0) c2 0.2

(k4, E1, 0) c1 0.1

(k4, E2, 0) c4 0.3

(k4, E3, 0) c2 0.4

(k5, E1, 0) c3 0.5

(k5, E2, 0) c2 0.1

(k5, E3, 0) c2 -0.1

Table 4. Numerical values of ji = Gi −Hi

Gi Hi ji = Gi −Hi

S(c1) = 0.6 S(c1) = 1.4 -1.8

S(c2) = 0.5 S(c2) = 0.7 -0.2

S(c3) = 0.4 S(c3) = 0.5 -0.1

S(c4) = 1.5 S(c4) = −0.2 1.7

application regarding the selection of the best product is presented with the help of proposed

algorithm. Future work may include the extension of the presented work for other single val-

ued neutrosophic hypersoft-like hybrids.
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