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Abstract. The notions of neutrosophic UP-subalgebras, neutrosophic near UP-filters, neutrosophic UP-filters,
neutrosophic UP-ideals, and neutrosophic strong UP-ideals were introduced by Songsaeng and Iampan [M.
Songsaeng, A. lampan, Neutrosophic set theory applied to UP-algebras, Eur. J. Pure Appl. Math., 12 (2019),
1382-1409]. In this paper, we introduce the notions of neutrosophic implicative UP-filters, neutrosophic com-
parative UP-filters, and neutrosophic shift UP-filters of UP-algebras by applying the notions of implicative
UP-filters, comparative UP-filters, and shift UP-filters of UP-algebras to neutrosophic set, and investigate some
of their important properties. Relations between neutrosophic implicative UP-filters (resp., neutrosophic com-

parative UP-filters, neutrosophic shift UP-filters) and their level subsets are considered.
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1. Introduction

A fuzzy set f in a nonempty set S is a function from S to the closed interval [0, 1]. The con-
cept of a fuzzy set in a nonempty set was first considered by Zadeh [27]. The fuzzy set theories
developed by Zadeh and others have found many applications in the domain of mathematics
and elsewhere. The notion of neutrosophic sets was introduced by Smarandache [19] in 1999

which is a more general platform that extends the notions of classic sets, (intuitionistic) fuzzy
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sets and interval valued (intuitionistic) fuzzy sets (see [19,[20]). Neutrosophic set theory is

applied to various part which is referred to the site
http://fs.unm.edu/neutrosophy.htm.

The above-mentioned section has been derived from [24]. Wang et al. [26] introduced the
notion of interval neutrosophic sets in 2005. The notion of neutrosophic N-structures and
their applications in semigroups was introduced by Khan et al. |[12] in 2017. The notion of
neutrosophic sets was applied to many logical algebras (see [7,11-13.[16]).

The notions of neutrosophic UP-subalgebras, neutrosophic near UP-filters, neutrosophic
UP-filters, neutrosophic UP-ideals, and neutrosophic strong UP-ideals were introduced by
Songsaeng and Iampan [22] in 2019. In this paper, we introduce the notions of neutrosophic
implicative UP-filters, neutrosophic comparative UP-filters, and neutrosophic shift UP-filters
of UP-algebras by applying the notions of implicative UP-filters, comparative UP-filters, and
shift UP-filters of UP-algebras to neutrosophic set, and investigated some of their important
properties. Relations between neutrosophic implicative UP-filters (resp., neutrosophic com-

parative UP-filters, neutrosophic shift UP-filters) and their level subsets are considered.

2. Basic results on UP-algebras

Before we begin our study, we will give the definition and useful properties of UP-algebras.

Definition 2.1. [4] An algebra X = (X, -,0) of type (2,0) is called a UP-algebra, where X
is a nonempty set, - is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary

operation) if it satisfies the following axioms:
(Vz,y,2 € X)((y-2) - (z-y) - (x-2)) = 0), (1)
Ve e X)(0-z =x), (2)
(Vx € X)(x-0=0), and (3)
( (4)

Ve,ye X)(z-y=0,y-z2=0=z=y).

From [4], we know that the notion of UP-algebras is a generalization of KU-algebras (see

[15]).
For examples of UP-algebras, see [1.|2}5,14}/17,/18].
The binary relation < on a UP-algebra X = (X, -,0) is defined as follows:
(Vr,ye X)(z <y x-y=0) (5)

M. Songsaeng, K. P. Shum, R. Chinram, A. lampan, Neutrosophic implicative UP-filters,
neutrosophic comparative UP-filters, and neutrosophic shift UP-filters of UP-algebras




Neutrosophic Sets and Systems, Vol. 47, 2021 @

and the following assertions are valid (see [4}5]).

(Vo € X)(z < x), (6)
(Vo,y,2 € X)(z <y,y <z = x < 2), (7)
Vr,y,ze X)(z<y=z-x<z-y), (8)
(Vo,y,ze X)(z<y=y-z2<z-2), (9)
(Vx,y,z € X)(z < y-x, in particular, y - z < z - (y - 2)), (10)
Ve,ye X)(y-z<z&x=y-x), (11)
(Vo,y € X)(z <y-y), (12)
(Va,2,y,2 € X)(z-(y-2) <z ((a-y) - (a-2))), (13)
(Va,z,y,z € X)(((a-z) - (a-y)) -2 < (z-y) - 2), (14)
(Vz,y,z € X)((z-y)-2<y-2), (15)
Ve,y,ze X)(z<y=z<z-y), (16)
(Ve,y,z€ X)((x-y)-z<z-(y-2)), and (17)
(Va,2,y,2 € X)((z-y)-2<y-(a-2)) (18)

Definition 2.2. [34,6}/8-10,21] A nonempty subset S of a UP-algebra X = (X,-,0) is called

(1) a UP-subalgebra of X if it satisfies the following condition:
(Vz,y € S)(z-y €9), (19)
(2) a near UP-filter of X if it satisfies the following condition:
Ve,ye X)(ye S=z-yeS9). (20)
(3) a UP-filter of X if it satisfies the following conditions:

the constant 0 of X isin S, (21)

(Vz,ye X)(z-ye S,xe S=>yeld), (22)

(4) an implicative UP-filter of X if it satisfies the condition (21)) and the following condi-

tion:
(Vx,y,z€e X)(z-(y-2)€S,z-ye S=x-2z€59), (23)

(5) a comparative UP-filter of X if it satisfies the condition and the following condi-

tion:

(Vz,y,z€ X)(z-((y-2)-y) €S,z e S=yebd), (24)
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(6) a shift UP-filter of X if it satisfies the condition and the following condition:
Ve,y,ze X)(x-(y-2) €S,z eS=((z-y)-y)-z€59), (25)
(7) a UP-ideal of X if it satisfies the condition and the following condition:
(Vz,y,z€ X)(z-(y-2)€S,ye S=z-2€585), (26)
(8) a strong UP-ideal of X if it satisfies the condition and the following condition:
Va,y,z€e X)((z-y)-(z-x) € S,ye S=x €89). (27)

Guntasow et al. [3] proved that the only strong UP-ideal of a UP-algebra X is X.

3. NSs in UP-algebras

In 1999, Smarandache [19] introduced the notion of neutrosophic sets as the following defi-
nition.

A neutrosophic set (briefly, NS) in a nonempty set X is a structure of the form:
A ={(z, (), \1(2), Ap(2)) | © € X} (28)

where A\r : X — [0,1] is a truth membership function, \; : X — [0,1] is an indeterminate
membership function, and Ap : X — [0,1] is a false membership function.

For our convenience, we will denote a NS as A = (X, Ap, A1, Ar) = (X, Ar 1, r) = {(z, A\r(2),
Ar(x), Ap(z)) |z € X}

Definition 3.1. [19] Let A be a NS in a nonempty set X. The NS A = (X, A1 p) in X
defined by

XT({L‘) =1- )\T(ZL‘)
(Vz € X) | M(z) =1—Ai(z) (29)

)\F(a:) =1- )\F(:c)
is called the complement of A in X. For all NS A in a nonempty set X, we have A = A.

In what follows, let X denote a UP-algebra (X, -,0) unless otherwise specified.
Songsaeng and Iampan [23] introduced the new concepts of neutrosophic sets in UP-algebras:
neutrosophic UP-subalgebras, neutrosophic near UP-filters, neutrosophic UP-filters, neutro-

sophic UP-ideals, and neutrosophic strong UP-ideals.

Definition 3.2. A NS A in X is called
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(1) a neutrosophic UP-subalgebra of X if it satisfies the following conditions:

(Va,y € X)(Ar(z - y) = min{Ar(z), Ar(y)}), (30)
(Va,y € X)(Ar(z - y) < max{Ar(z), Ar(y)}), (31)
(Va,y € X)(Ar(z - y) 2 min{Ar(z), Ar(y)}), (32)

(2) a neutrosophic near UP-filter of X if it satisfies the following conditions:

(Va,y € X)(Ar(z-y) = Ar(y)), (33)
(Va,y € X)(Ar(z - y) < Ar(y)), (34)
(Va,y € X)(Ar(z - y) = Ar(y)), (35)

(3) a neutrosophic UP-filter of X if it satisfies the following conditions:

(Vo € X)(Ar(0) = Ar(x)), (36)

(Vo € X)(A1(0) < Ar(x)), (37)

(Vz € X)(Ar(0) > Ap(x)), (38)

(Vo,y € X)(Ar(y) = min{Ar(z - y), Ar(2)}), (39)
(Vo,y € X)(Ar(y) < max{Ar(z - y), Ar(z)}), (40)

(Vo,y € X)(Ar(y) = min{Ar(z - y), Ap(2)}), (41)

(4) a neutrosophic UP-ideal of X if it satisfies the following conditions: , , ,

and
(Va,y,2 € X)(Ar(z - 2) = min{Ar(z - (y - 2)), Ar(y)}), (42)
(Vz,y,2 € X)(A1(z - 2) <max{Ar(z - (y-2)),A\r(y)}), (43)
(Vz,y,2 € X)(Ap(z - 2) 2 min{Ar(z - (y - 2)), Ar(y)}), (44)
(5) a neutrosophic strong UP-ideal of X if it satisfies the following conditions: (36)), (37)),
([38), and
(Va,y,2 € X)(Ar(z) = min{Ar((z - y) - (z - 2)), Ar(y)}), (45)
(Va,y,z € X)(A1(z) < max{Ar((z - y) - (2~ 2)), Ar(y)}), (46)
(Vo,y,z € X)(Ap(z) =2 min{Ar((z-y) - (z- 7)), Ar(y)}). (47)

Definition 3.3. [23] A NS A in X is said to be constant if A is a constant function from X
to [0,1]3. That is, A, A7, and Ag are constant functions from X to [0, 1].

Songsaeng and Iampan [23] proved the generalization that the concept of neutrosophic
UP-subalgebras is a generalization of neutrosophic near UP-filters, neutrosophic near UP-

filters is a generalization of neutrosophic UP-filters, neutrosophic UP-filters is a generalization
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of neutrosophic UP-ideals, and neutrosophic UP-ideals is a generalization of neutrosophic
strong UP-ideals. Moreover, they proved that neutrosophic strong UP-ideals and constant

neutrosophic sets coincide.

Definition 3.4. A NS A in X is called a neutrosophic implicative UP-filter of X if it satisfies

the following conditions: , , , and

(Vz,y,2 € X)(A(z - 2z) 2 min{A(z - (y - 2)), A(z - y)}), (48)
(Va,y,2 € X)(Mz - 2) < max{A(z - (y-2)), Az - y)}), (49)
(Vx,y,z € X)(A(z-2) > min{\(z- (y-2)),\x-y)}). (50)

Example 3.5. Let X = {0,1,2,3,4} be a UP-algebra with a fixed element 0 and a binary
operation - defined by the following Cayley table:

01 2 3 4
0(0 1 2 3 4
110 0 2 3 4
2/0 0 0 0 4
3|01 2 0 4
40 0 0 0 O

We define a NS A in X as follows:

(0123 4N (0 1 23 4 (0 1 2 3 4
T=%08 08060606/ "7 \0404040408)"F \0707050705)

Hence, A is a neutrosophic implicative UP-filter of X.

Definition 3.6. A NS A in X is called a neutrosophic comparative UP-filter of X if it satisfies

the following conditions: , , , and

(Vo,y,z € X)(A(y) =2 min{A(z - ((y - 2) - ), AM2)}), (51)
(Va,y, 2 € X)(My) < max{A(z- ((y - 2) - ), Ax)}), (52)
(Va,y,z € X)(A(y) 2 min{A(z - ((y - 2) - 9)), A(2)}). (53)

Example 3.7. Let X = {0,1,2,3,4} be a UP-algebra with a fixed element 0 and a binary
operation - defined by the following Cayley table:

01 2 3 4
0j0 1 2 3 4
110 0 2 2 4
2|0 0 01 4
3]0 0 0 0 4
410 1 2 3 0
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We define a NS A in X as follows:

(0 12 3 4N /0 1 23 4y (0 1 2 3 4
T=106 0606 0604) "7 0404040408)" F " \0707070705)"

Hence, A is a neutrosophic comparative UP-filter of X.

Definition 3.8. A NS A in X is called a neutrosophic shift UP-filter of X if it satisfies the
following conditions: , , , and
(Vz,y,z € X)(AM((z-y) - y) - 2) = min{A(z - (y - 2)), A(@)}), (54)
(Vo,y,2 € X(M((z-y) - y) - 2) <max{A(z- (y-2)),A(2)}), (55)
(Vo,y,2 € X)(A(((z- ) - y) - 2) = min{A(z - (y - 2)), A(@)}). (56)

Example 3.9. Let X = {0,1,2,3,4} be a UP-algebra with a fixed element 0 and a binary
operation - defined by the following Cayley table:

01 2 3 4
0(0 1 2 3 4
110 0 2 3 4
2/0 0 0 2 4
310 0 0 0 4
410 1 2 3 0

We define a NS A in X as follows:

(0 12 3 4N (0 1 23 4y (0 1 2 3 4
710606 060604) "7 0404080808/ " 10909070707/

Hence, A is a neutrosophic shift UP-filter of X.

Theorem 3.10. 23] A NS A in X is constant if and only if it is a neutrosophic strong
UP-ideal of X.

Theorem 3.11. Every neutrosophic implicative UP-filter of X is a neutrosophic UP-ideal.

Proof. Assume that A is a neutrosophic implicative UP-filter of X. Then A satisfies the
conditions , , and .

Let z,y,z € X. Then Ap(z - z) > min{Ar(z - (y - 2)), Ar(x - y)} By generalization of
neutrosophic near UP-filter, neutrosophic UP-filter, and the condition we have Ap(z-z) >
min{Ar(z - (y - 2)), Ar(y)},

Let z,y,z € X. Then Af(z - z) < max{A;(z - (y-2)), A\r(z - y)} By generalization of neu-
trosophic near UP-filter, neutrosophic UP-filter, and the condition we have Aj(z - 2z) <

max{A(x - (y-2)), A\r(y)},
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Let z,y,z € X. Then Ap(z - z) > min{Ap(z - (y - 2)), Ar(z - y)} By generalization of
neutrosophic near UP-filter, neutrosophic UP-filter, and the condition we have A\p(x-z) >

min{Ap(z - (y - 2)), Ar(y) },
Hence, A is a neutrosophic UP-ideal of X.

Example 3.12. From the Cayley table in Example [3.7] we define a NS A in X as follows:

W (012 3 4N (01 2 3 4) (0 1 2 3 4
T~ \107060604)" \003050507/)""" \0908070705)"

Then A is a neutrosophic UP-ideal of X. Since A;(2-3) = 0.3 > 0 = max{A;(2-(1-3)), A\;(2-1)},

we have A is not a neutrosophic implicative UP-filter of X.
Theorem 3.13. Every neutrosophic comparative UP-filter of X is a nmeutrosophic UP-filter.

Proof. Assume that A is a neutrosophic comparative UP-filter of X. Then A satisfies the
conditions , , and . Next, let =,y € X. Then

Ar(y) > min{Ar(z - ((y-y) - y)), Ar(e)} by
= min{Ar(z - (0-y)), Ar(z)} by (6)
= min{Ar(z - y), Ar(2)}, by

Mr(y) < max{r(z- ((y-y) - y), Ar(@)} by
=max{A;(z - (0-y)), A\r(z)} by (©)
= max{Ar(z - y), Ar(2)}, by

Ar(y) = min{Ap(z - ((y-y) -y)), Ar(z)} by
= min{Ar(z - (0-y)), Ar(x)} by (6)
= min{Ap(z - y), Ar(z)}. by

Hence, A is a neutrosophic UP-filter of X.

Example 3.14. From Example we have A is a neutrosophic UP-ideal of X and so A is
a neutrosophic UP-filter of X. Since Ap(1) = 0.7 < 1 = min{Ap(0- ((1-3)-1)),Ar(0)}, we

have A is not a neutrosophic comparative UP-filter of X.

Theorem 3.15. Every neutrosophic shift UP-filter of X is a neutrosophic UP-filter.
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Proof. Assume that A is a neutrosophic shift UP-filter of X. Then A satisfies the conditions

, , and . Next, let z,y € X. Then

Ar(y) = Ar(((y - 0)-0) - y) by (2) and
> min{Ar(z - (0-y)), \r(x)} by
= min{Ar(z - y), Ar(2)}, by

Ar(y) = Ar(((y-0)-0) - y) by (2) and
< max{\;(z - (0-y)), Ar(z)} by
= max{A;(z - y), Ar(z)}, by

Ar(y) = Ar(((y-0)-0)-y) by (2) and
> min{Ap(z - (0-y)), Ap(2)} by
= min{Ap(z - y), Ar(z)}. by

Hence, A is a neutrosophic UP-filter of X.

Example 3.16. From Example we have A is a neutrosophic UP-ideal of X and so A is
a neutrosophic UP-filter of X. Since Ap(((1-2)-2)-1) =0.7 <1 =min{Ap(0-(2-1)),Ar(0)},
we have A is not a neutrosophic shift UP-filter of X.

Theorem 3.17. FEvery neutrosophic strong UP-ideal of X is a neutrosophic implicative UP-
filter.

Proof. Assume that A is a neutrosophic strong UP-ideal of X. Then A satisfies the conditions

(6], (37), and (38). By Theorem we have A is constant. Then for all z € X, Ap(z) =
Ar(0), Ar(z) = A1(0), and Ap(x) = Ap(0). Next, let z,y,z € X. Then

Ar(z-z) = Ap(z - y) by Ar is constant
> min{Ap(z - (y - 2)), Ar(z - y)},

Az 2) = A(z-y) by A; is constant
< max{Ar(z - (y-2)), Ar(z-y)},

Ap(z-2) = Ap(x - y) by Ar is constant

> min{Ap(z-(y-2)), Arp(z-y)}.

Hence, A is a neutrosophic implicative UP-filter of X.
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Example 3.18. From Example [3.5] we have A is a neutrosophic implicative UP-filter of X.
Since A is not constant, it follows from Theorem [3.10] that it is not a neutrosophic strong

UP-ideal of X.

Theorem 3.19. Every neutrosophic strong UP-ideal of X is a neutrosophic comparative UP-

filter.

Proof. Assume that A is a neutrosophic strong UP-ideal of X. Then A satisfies the conditions

(36), (37), and (38). By Theorem we have A is constant. Then for all z € X, Ap(z) =
Ar(0), Ar(z) = A7(0), and Ap(z) = Ap(0). Next, let x,y,z € X. Then

Ar(y) = Ar(z) by Ar is constant
> min{Ar(z - ((y - 2) - y)), Ar(2)},

Ar(y) = Ar(z) by s is constant
< max{Ar(z - ((y-2)-y)), Ar(z)},

Ar(y) = Ap(z) by A is constant

> min{Ap(z-((y-2)-y)), A\p(x)}.

Hence, A is a neutrosophic comparative UP-filter of X.

Example 3.20. From Example we have A is a neutrosophic comparative UP-filter of X.
Since A is not constant, it follows from Theorem [3.10] that it is not a neutrosophic strong

UP-ideal of X.
Theorem 3.21. Every neutrosophic strong UP-ideal of X is a neutrosophic shift UP-filter.

Proof. Assume that A is a neutrosophic strong UP-ideal of X. Then A satisfies the conditions

6], (7). and (38). By Theorem we have A is constant. Then for all x € X, A\p(z) =
Ar(0), Ar(z) = Ar(0), and Ap(z) = Ap(0). Next, let x,y,z € X. Then

Ar(((z-y) - y) - 2) = Ar(a) by Ar is constant
> min{Ap(z - (y - 2)), Ar(2)},

M(((z-y) - y) - 2) = Ai(z) by s is constant
< max{Ar(z - (y-2)), Ar(2)},

Ar(((z-y) - y) - 2) = Ap(w) by Ar is constant

> min{Ar(z - (y - 2)), Ar(2)}.

Hence, A is a neutrosophic shift UP-filter of X.
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Example 3.22. From Example we have A is a neutrosophic shift UP-filter of X. Since
A is not constant, it follows from Theorem that it is not a neutrosophic strong UP-ideal
of X.

Example 3.23. From Example we have A is a neutrosophic implicative UP-filter of X.
Since A7(((3:2)-2)-3) = 0.6 < 0.8 = min{A7(0-(2-3)), Ar(0)}, we have A is not a neutrosophic
shift UP-filter of X.

Example 3.24. From Example 3.9 we have A is a neutrosophic shift UP-filter of X. Since
Ar(2:3) = 0.7 < 0.9 = min{A\r(2:(2:3)), Ar(2-2) }, we have A is not a neutrosophic implicative
UP-filter of X.

By Theorems [3.11] [3.13] [3.15], [3.17}, [3.19] and [3.21] and Examples[3.12] [3.14], [3.16] [3.18] [3.20]

and [3:22] we have that the notion of neutrosophic UP-ideals is a generalization of neutrosophic

implicative UP-filters, the notion of neutrosophic UP-filters is a generalization of neutrosophic
comparative UP-filters, the notion of neutrosophic UP-filters is a generalization of neutro-
sophic shift UP-filters, and the notions of neutrosophic implicative UP-filters, neutrosophic
comparative UP-filters, neutrosophic shift UP-filters is a generalization of neutrosophic strong
UP-ideals.

Theorem 3.25. If A is a neutrosophic UP-ideal of X satisfying the following condition:

(- (y-2)) 2 Mr(y) = AMr(y) > Ar(z-y)
(Va,y,z € X) | Ar(z- (y-2)) < Aiy) = Ar(y) < Ar(z-y) | (57)
Ar(z-(y-2)) 2 Ar(y) = Ar(y) > Ap(z - y)

then A is a neutrosophic implicative UP-filter of X .

Proof. Assume that A is a neutrosophic UP-ideal of X satisfying the condition . Then A
satisfies the conditions , , and . Next, let z,y,z € X. Then

Ar(x - z) > min{Ar(x - (y - 2)), A\r(y)} by
> min{Ar(z - (y - 2)), Ar(z - y)}, by (B7) for Ar
Ar(z - 2) <max{Ar(z - (y- 2)), A1(y)} by
<max{Ar(z- (y-2)), \r(z-y)}, by for Ay
Ap(z - 2) > min{Ap(z - (y-2)), \r(y)} by
> min{Ap(z- (y-2)), \r(z-y)}. by for A\p

Hence, A is a neutrosophic implicative UP-filter of X.
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Theorem 3.26. If A is a neutrosophic UP-filter of X satisfying the following condition:
Ar(z) 2 Ar(z-y) = Ar(z-y) 2 Ar(z - ((y- 2) - y))
(Va,y,z€ X) | Ar(z) < Ai(z-y) = Ar(z-y) < Az ((y-2)-y) | (58)
Ap(z) 2 Ap(z-y) = Ar(z - y) 2 Ar(z - ((y - 2) - y))
then A is a neutrosophic comparative UP-filter of X.

Proof. Assume that A is a neutrosophic UP-filter of X satisfying the condition . Then A
satisfies the conditions , , and . Next, let z,y,2 € X. Then

Ar(y) > min{Ar(z - y), Ar(z)} by
> min{Ar(z - ((y - 2) - y)), Ar(2)}, by (B8) for Ar
A1(y) < max{Ar(z-y), A\r(z)} by
< max{Az(z- ((y-2)-y), Ar(2)}, by (B8) for Ar
Ar(y) > min{Ap(z - y), Ar(z)} by
> min{Ap(z - ((y-2) - y)), Ar(2)}. by (B8) for Ap

Hence, A is a neutrosophic comparative UP-filter of X.

Theorem 3.27. If A is a neutrosophic UP-filter of X satisfying the following condition:
Ar(z) = Ar(z - (((z-y) - y) - 2))

= Ar(z- (((z-y)-y)-2)) 2 Ar(z- (y-2))
Ar(@) < Ar(@- (((z-y) - y) - 2))

(Vz,y,z € X) ) (59)
= M@ (((z-y) y)-2) < Ar(z- (y-2))
Ar(@) = Ap(z - (((z-y) - y) - 2))
= Ap(z-(((z-y)-y)-2) = Ar(z-(y-2))

then A is a neutrosophic shift UP-filter of X.

Proof. Assume that A is a neutrosophic UP-filter of X satisfying the condition . Then A
satisfies the conditions , , and . Next, let z,y,z € X. Then

Ar(((z-y) - y) - z) 2 min{Ar(z - (((z-y) - y) - 2), Ar(@)} by
> min{Ar(z - (y - 2)), Ar(2)}, by for A
M(((z-9) - y) - 2) <max{ir(@- (((z-y) - y) - 2), A (@)} by
<max{Ar(z- (y-2)),A\1(z)}, by for A;
Ar(((z-y) - y) - 2) 2 min{Ap(z - (((z-y) - y) - 2)), Ar(2)} by
> min{Ap(z - (y - 2)), Ar(2)}- by for Ap

Hence, A is a neutrosophic shift UP-filter of X.
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Theorem 3.28. If A is a NS in X satisfying the following condition:
Ar(x - z) > min{Ap(a), \p(x - y)}
(Va,r,y,z€ X) |a<x-(y-2) = { A(x-2) <max{\(a), \;(z-y)} ; (60)
Ap(x - z) > min{Ap(a), \p(x - y)}
then A is a meutrosophic implicative UP-filter of X.

Proof. Assume that A is a NS in X satisfying the condition . Let z € X. By , we have
z-(0-(x-0)) =0, that is, x < 0- (- 0). It follows from that

Ar(0) = Ar(0-0) > min{Ap(z), A\r(0 - x)}

= min{Ar(z), Ar(z)} = Ar(z), by (2)
A1(0) = A7(0-0) < max{Az(z), Ar(0- )}

= max{Ar(z), Ar(z)} = Ar(z), by (2)
Ap(0) = Ap(0-0) = min{Ap(z), A\p(0- 2)}

= min{Ap(z), Ar(2)} = Ap(z). by

Next, let z,y,z € X. By (6]), we have (z- (y-2))-(z-(y-2)) =0, that is, z- (y-z) <z (y- 2).
It follows from that

Ar(z - z) =2 min{Ar(z - (y - 2), Ar(z - y)},

Ar(z - z) <max{Ar(z - (y-2)), A1z - y)},

Ap(x - z) > min{Ar(z - (y - 2)), Ar(z - y)}-

Hence, A is a neutrosophic implicative UP-filter of X.

Theorem 3.29. If A is a NS in X satisfying the following condition:
Ar(y) = min{Ar(a), Ar(2)}
(Va,z,y,z€ X) [a<z-((y-2) y) =  Ar(y) <max{A;(a), Ar(2)} , o (61)
Ar(y) 2 min{Ap(a), Ap(z)}
then A is a neutrosophic comparative UP-filter of X.
Proof. Assume that A is a NS in X satisfying the condition . Let z € X. By , we have
z-(x-((0-2)-0)) =0, that is, z <z - ((0- z) - 0). It follows from that
A7(0) > min{Ar(x), Ar(x)} = Ar(x),
Ar(0) < max{Ar(z), Ar(2)} = Ar(z),
Ar(0) > min{Ap(z), Ap(z)} = Ap(x).
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Next, let #,y,z € X. By (6), we have (z - ((y-2)-¥)) - (x- ((y-2)-y)) = 0, that is,
z-((y-2)-y)<z-((y-2)-y). It follows from that

Ar(y) = min{Ar(z - ((y - 2) - y)), Ar(z)},

A1(y) < max{Ar(z- ((y - 2) - y)), Ar(2)},

Ap(y) = min{Ap(z - ((y - 2) - y)), Ar(2)}-

Hence, A is a neutrosophic comparative UP-filter of X.

Theorem 3.30. If A is a NS in X satisfying the following condition:
a<a-(y-2)
Ar(((z-y) - y) - 2) =2 min{Ar(a), Ar(z)}
= A(((z-y) - y) - 2) < max{Ar(a), Ar(x)}
Ar(((z-y) ) - 2) 2 min{Ap(a), Ar ()}
then A is a neutrosophic shift UP-filter of X.

(Va,z,y,z € X)

Proof. Assume that A is a NS in X satisfying the condition (62)). Let € X. By (3], we have
z-(x-(x-0)) =0, that is, z <z - (z-0). It follows from that

Ar(0) = Ar(((0-z) - x) - 0) > min{\p(z), \p(x)} = Ap(), by
A7(0) = Ar(((0-z) - z) - 0) <max{A;(z), A\(z)} = A\ (), by
Ar(0) = Arp(((0- ) - x) - 0) > min{Ar(z), A\p(x)} = Ar(z). by

Next, let z,y,z € X. By (6]), we have (z- (y-2))-(z-(y-2)) =0, that is, z- (y- 2) <z (y- 2).
It follows from that
Ar(((z-y) - y) - 2) =2 minfAr(z - (y - 2)), Ar(@)},
Ar(((z-y) - y) - 2) <max{Ar(z - (y - 2)), Ar(2)},
Ar(((z-y) - y) - 2) 2 min{Ap(z - (y - 2)), Ar(2)}-

Hence, A is a neutrosophic shift UP-filter of X.

For any fixed numbers a™, o™, 87, 37,vT,7~ € [0,1] such that ot > a™, 8T > 7,77 >~
and a nonempty subset G of X, a NS AG[O‘+ 57’“] = (X, A¢[*1], )\?[g;], /\g[ﬂ]) in X where

a8ty
2 [gt], N [g;], and A% [zt] are functions on X which are given as follows:

at ifzeq,
2G5 (2) =

o~ otherwise,
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_ - ifzxed,
A () =
BT otherwise,
+ .
+ ~t ifzed,
X0 (@) =

v~ otherwise.

Lemma 3.31. 25/ If the constant 0 of X is in a nonempty subset G of X, then a NS
AG[a ’/5+ ] in X satisfies the conditions (36), (37), and (38).

Lemma 3.32. (23] If a NS AG[ ’ ,] in X satisfies the condition (36) (resp., (37), (38)),
then the constant 0 of X is in a nonempty subset G of X.

Theorem 3.33. A NS A® [at g+”,] in X is a neutrosophic implicative UP-filter of X if and

only if a nonempty subset G of X is an implicative UP-filter of X.

Proof. Assume that AG[ ’B - ] is neutrosophic implicative UP-filter of X.  Since
AC [a*’ng’r] satisfies the condition (36), it follows from Lemma [3.32 that 0 € G. Next,

let z-(y-2),z-y € G. Then )\g[gf](x (y-2)=at = A%[gf](x -y). Thus, by (48], we have

M55 - 2) = min{AZT ) (- 2) AN p)} = o 2 MR 2)
and so )\G[ "](x-2) =a’. Thus z - z € G. Hence, G is an implicative UP-filter of X.

Conversely, assume that G is an implicative UP-filter of X. Since 0 € G, it follows from
Lemma, [3.31f that AG[* _,g+,«/—] satisfies the conditions , , and . Next, let z,y,2 €
X.

Case 1: -(y-2), -y € G. Then X[t I(a-(5-2)) = Ml N ) = o M - (-2)) =
)\G[ (zy) =37, and )\G[ﬁ]( (y-2)) = )\G[ _](xy) = ~T. Since G is an implicative UP-filter
of X, we have z - z € G and so )\G[ Jz-2)=at )\G[B+](x z) =, and )\g[yyi](xz) =t.
Thus

min{AZ[3")(z - (y- ), A3 )@ 9)} = o > o =M@ 2),
max{AF [ )@ (y-2), A{ )z y)} = B~ <87 = ¢
min{AZ[ ]z (- 2), AF0 )@ )} = > 9" = AE0 (@ 2),

Case 2: z-(y-2)€Gor x-y ¢ G. Then

M@ (y-2)=a" o M )@ y) =a,
M@ (y-2) =1 or AF[G,](2 - y) = B,
M (y-2) =7 or A Nz y) =
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Thus
min{AZ[2 ] (@ (v 2), A2 )@ y)} = a,
max{Af[].](z - (- 2), A{ [5:) (= - )} = BT,
min{AZ[ )@ (y- ), MG )@ y) b =7
Therefore,

M (- 2) 2 a7 = min{A5 (2 - (y- 2) A (@ 9)s
M@ 2) < BT = max{AF[5.)(z - (- 2), AF 5 ) - )},
ML (- 2) > 4~ = min{AG[ (@ - (y - 2)), AF (2 - )

+ —
Hence, AG[Z,’g N zt] is a neutrosophic implicative UP-filter of X.

Theorem 3.34. A NS AG[Zi g;zf] in X is a neutrosophic comparative UP-filter of X if and

only if a nonempty subset G of X is a comparative UP-filter of X.

Proof. Assume that AG[zt g;ﬁ] is a neutrosophic comparative UP-filter of X. Since
AG[ztglzf] satisfies the condition (36]), it follows from Lemma [3.32( that 0 € G. Next,

let ,y € X be such that z- ((y-2)-y),z € G. Then XZ[*"|(z- ((y-2) - y)) = a* = AZ[*"](2).
Thus, by , we have
A7) > minAF(] (@ (v 2) - 9) AFET) @)} = ot > A1)
and so )\g[gf](y) = aT. Thus y € G. Hence, G is a comparative UP-filter of X.
Conversely, assume that G is a comparative UP-filter of X. Since 0 € G, it follows from

Lemma [3.31| that AG[ztg;j;] satisfies the conditions , , and . Next, let z,y,2 €
X.

Case 1: z-((y-2)-y) € G and z € G. Then
M@ ((y-2) - y) = ot = AZ[7 (@),
MG ((y-2)-9) =8 =2 [ @),
M@ (g 2) - w) =" = 2E0(w).
Since G is a comparative UP-filter of X, we have y € G and so AZ[2)(y) = o, A[J. ](y) = B,
and AG[""](y) =*. Thus
M) =at > ot =min{(AZ[3 (@ (v 2) - 1)), AZ[ (@)},
M Gw) =87 < B =max{AF 5] (- 2) - ), AZ [ ](2)},
M) =7 =" = min DG )@ (v 2) - 9), MG @)}
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Case 2: z-((y-2)-y) € Gor x ¢ G. Then
MET @ ((y-2) y) =a” or A (@) = a7,
M@ (y-2) ) = BT or A7 [5:](2) = BT,

M@ (v 2) ) =7 o MG (@) =7

Thus
min{AZ[27 ] (@ ((y-2) ), AC[3 ] (@)} = a7,
max{AF[5.](z - (y-2) - ), AP [ (@)} = BT,
min{ G ] (@ (v 2) - ), AEL ) (@)} =77
Therefore,

AEE(y) > a7 = min{AE[)(z ((y - 2) - ), AC 0] (@)},
M) < 8% = max{ A7 (5, ](2 - ((y - 2) - ), AF [ )(@)},

ML) > 77 = minQAG0 )@ (v 2) - 9) A0 (@)}

+ —
Hence, AG[Z,’g n 'WYJ:] is a neutrosophic comparative UP-filter of X.

Theorem 3.35. A NS AG[giglzf] in X is a neutrosophic shift UP-filter of X if and only if

a nonempty subset G of X s a shift UP-filter of X.

Proof. Assume that AG[giL g;zt] is a neutrosophic shift UP-filter of X. Since AG[ztg;:’;]
satisfies the condition , it follows from Lemma that 0 € G. Next, let x,y,z € X be
such that z- (y- z) € G and € G. Then )\g[gf](:ﬁ (y-2)=at = /\g[gf](az) Thus, by (54)),

we have

AELT(((z-y) - y) - 2) 2 min{AF S (2 - (y - 2)), MG ()} = ot 2 MG (2 y) - y) - 2)
and so )\%[gf](((zy) y)-z) =at. Thus ((z2-y)-y) -z € G. Hence, G is a shift UP-filter of X.

Conversely, assume that G is a shift UP-filter of X. Since 0 € G, it follows from Lemma
3.31| that AG[Q+’67’V+] satisfies the conditions (36]), (37), and (38). Next, let z,y,z € X.

a=,Bt ™
Case 1: z-(y-2) € G and x € G. Then

M@ (y-2)) = at = A¢[7 (@),
MG (y-2) =8 =20 ](),
M@ (g 2) =7 = AG0](@).
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Thus
min{AF 3]z - (y - 2)), AE [ )(2)} = o™,
max{\?[5,](z - (y-2)), 2[5, )(x)} = 87,
min{AZ[ )z (y- 2)), MG ) (@)} =+

Since G is a shift UP-filter of X, we have ((z-y)-y) -z € G and so )\g[gt](((z “Y)ry) - z) =
o NF(((2 ) y) - 2) = B, and AZ)((2 ) - y) - 2) =T Thus

MET(z ) y)-2) =at > a" =min M@ (v 2), M) (@)},
MGz ) y)-2) =87 < B =max{A7[5,] (2 (y- 2), AF [ ](@)},

MOz y) ) - 2) =" > 9" =min{AG0 (@ (v 2)), AE00)(@)}-
Case 2: z-(y-2) € G or x ¢ G. Then

MG (@ (y- 2)) = o~ or AF[]](z) = a7,

Thus
min{AZ[37)(z - (y - 2)), A3 )(2)} = a7,
max{A7 5. )(@ - (y - ), A7 (5 )(@)} = 87,
min{AE[")(@ - (- 2)), AF[ ) (@)} =7
Therefore,

M2 y) - y) - 2) = a7 = min{AZ[ (@ - (y - 2)), AG[21 ) (2)},
Mz y)  y) - 2) < BT =max{DF L] (2 (- ), AT (@)}

MOz ) ) 2) = =min{AG (@ (v 2)), AEL ] (@)}

IN

Hence, AG[ng;ﬁ] is a neutrosophic shift UP-filter of X.

4. Level subsets of a NS

In this section, we discuss the relationships between neutrosophic implicative UP-filters
(resp., neutrosophic comparative UP-filters, neutrosophic shift UP-filters) of UP-algebras and

their level subsets.
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Definition 4.1. [21] Let f be a fuzzy set in A. For any t € [0, 1], the sets

U(fit) ={z e X[ f(z) > t},
L(f;t) ={z € X | f(z) < t},
E(fit) ={r e X | f(z) =t}

are called an upper t-level subset, a lower t-level subset, and an equal t-level subset of f,

respectively.

Theorem 4.2. A NS A in X is a neutrosophic implicative UP-filter of X if and only if for
all a, B,y € [0,1], the sets U(Ar; ), L(Ar; B), and U(Ap;7y) are implicative UP-filters of X if
U(Ar;a), L(Ar; B), and U(Ap;y) are nonempty.

Proof. Assume that A is a neutrosophic implicative UP-filter of X. Let «, 3, € [0, 1] be such
that U(Ar; «), L(Ar; 8), and U(Ap;y) are nonempty.

Let z € U(Ar;a). Then Ap(z) > a. By (36), we have Ap(0) > Ap(z) > a. Thus
0 € U(Ar;a). Next, let - (y-2),z-y € UAr;a). Then Ap(z- (y-2)) > aand Ap(z-y) > «a.
By ([48), we have Ap(z - z) > min{Ap(z- (y - 2)), Ap(z - y)} > a. Thus z- 2z € U(Ap; ).

Let € L(Ar; 8). Then Af(z) < 8. By (37), we have A;(0) < Af(z) < 8. Thus 0 € L(As; ).
Next, let z - (y - z),z -y € L(Ar; 8). Then A\f(z - (y-2)) < B and A\j(z-y) > 8. By (H9), we
have A\f(z - z) < max{A;(z - (y-2)),\r(z-y)} <. Thus z -z € L(A;;B).

Let # € U(Ap;7). Then Ap(z) > 7. By (38), we have Ap(0) > Ap(z) > 7. Thus
0€ U(Ap;7). Next, let - (y-2),z-y € UAp;7y). Then Ap(x - (y-2)) > v and Ap(z-y) > 7.
By (50), we have Ap(z - z) > min{Ap(z - (y - 2)), Ap(z - y)} > 7. Thus z - z € U(Ap;7).

Hence, U(Ar; ), L(Ar; 8), and U(Ap;~y) are implicative UP-filters of X.

Conversely, assume that for all «, 8,7 € [0,1], the sets U(Ar; @), L(Ar; 8), and U(Ap;7y) are
implicative UP-filters of X if U(Ar; ), L(Ar; 8), and U(Ap; ) are nonempty.

Let z € X. Then Ap(z) € [0,1]. Choose o = Ap(x). Thus Ap(z) > a, so x € U(Ap; a) # 0.
By assumption, we have U(Ap;a) is an implication UP-filter of X and so 0 € U(Ar; «).
Thus A\r(0) > o = Ap(z). Next, let z,y,2 € X. Then Ap(z - (y - 2)), M\r(z - y) € [0,1].
Choose o = min{Ap(x - (y - 2)), \p(z - y)}. Thus Ap(z - (y-2)) > a and Ap(z - y) > «, so
z-(y-z),x-y € UlApr;a) # 0. By assumption, we have U(Ap; ) is an implication UP-filter
of X and so x -z € U(Ap; ). Thus Ap(x-2) > a=min{Ar(z- (y - 2)), \r(z-y)}.

Let z € X. Then A\;(z) € [0,1]. Choose 8 = A;(z). Thus A\;(z) < 3, so x € L(\j;8) # 0.
By assumption, we have L(Ar; ) is an implicative UP-filter of X and so 0 € L(Ar;3). Thus
Ar(0) < B = Ar(x). Next, let z,y,z € X. Then Ar(z - (y - 2)),A\r(zx -y) € [0,1]. Choose
B =max{Ar(z-(y-2)), \r(z-y)}. Thus A\p(z-(y-2)) < fand A\p(z-y) < B,s0z-(y-z),x-y €
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L(A\r;B8) # 0. By assumption, we have L(Ap; /) is an implication UP-filter of X and so
x -z € L(Ap;B). Thus Ap(x - 2) < B =max{\p(x-(y-2)), A\r(z-y)}.

Let z € X. Then Ap(x) € [0,1]. Choose v = Ap(z). Thus Ap(z) > v, so x € U(Ap;7) # 0.
By assumption, we have U(Ap;7) is an implicative UP-filter of X and so 0 € U(Ap;7).
Thus Ap(0) > v = Ap(z). Next, let z,y,2 € X. Then Ap(z - (y - 2)), M\r(z - y) € [0,1].
Choose v = min{Ar(z - (y - 2)), Ar(x - y)}. Thus Ap(z - (y-2)) > v and Ap(z-y) > 7, so
x-(y-2),z-y € U(Ap;y) # (0. By assumption, we have U(Ap;+) is an implication UP-filter of
X and so z -z € U(Ap;y). Thus Ap(x - 2) > v =min{Ap(z- (v - 2)), \r(z-y)}.

Therefore, A is a neutrosophic implicative UP-filter of X.

Theorem 4.3. A NS A in X is a neutrosophic comparative UP-filter of X if and only if for
all a, B,y € [0, 1], the sets U(Ar; ), L(Ar; B), and U(Ap;7y) are comparative UP-filters of X if
U(Ar;a), L(Ar; ), and U(Ap;y) are nonempty.

Proof. Assume that A is a neutrosophic comparative UP-filter of X. Let a,3,v € [0,1] be
such that U(Ar; «), L(Ar; ), and U(Ap;y) are nonempty.

Let « € U(Ap;a). Then Ap(z) > a. By , we have Ap(0) > Ap(z) > «. Thus
0 € U(Ar; ). Next, let z,y,z € X be such that - ((y-2) - y),z € U(Apr; ). Then Ap(z- ((y -
z)-y)) > a and Ap(z) > a, so a is an lower bound of {Ar(z- ((y-2)-y)), \r(z)}. By (51)), we
have Ar(y) > min{Ar(z- ((y - 2) - v)), \r(z)} > a. Thus y € U(Ar; ).

Let © € L(Ar; 8). Then A7(z) < 8. By , we have A\7(0) < A\f(z) < B. Thus 0 € L(Az; 5).
Next, let x,y,z € X be such that x - ((y - 2) - y),z € L(Ar;8). Then A\f(z- ((y - 2) - y)) < B
and A7(z) < S, so B is a upper bound of {A;(z - ((y - 2) - y)),A\i(z)}. By (62), we have
A1(y) < max{Ar(z- ((y-2)-y)), Ar(z)} < B Thus y € L(Ar; 8).

Let # € U(Ap;7). Then Ap(z) > 7. By (38), we have Ap(0) > Ap(z) > 7. Thus
0 € U(Ap;7y). Next, let x,y,2z € X be such that x- ((y-2) - y),x € U(Ap;7). Then Ap(z - ((y -
z)-y)) > v and Ap(z) > 7, so 7 is an lower bound of {Ap(z- ((y-2)-y)), Ar(z)}. By (53)), we
have Ap(y) > min{Ar(z- ((v - 2) - y)), Ar(z)} > . Thus y € U(Ap;7).

Hence, U(Ar; «), L(Ar; 8), and U(Ap; ) are comparative UP-filters of X.

Conversely, assume that for all a, 8,7 € [0,1], the sets U(Ar; @), L(Ar; 8), and U(Ap;7y) are
UP-filters of X if U(Ap; ), L(Ar; 8), and U(Ap;7y) are nonempty.

Let z € X. Then Ap(z) € [0,1]. Choose o = Ap(x). Thus Ap(z) > a, so x € U(Ap; a) # 0.
By assumption, we have U(Ar; «) is a comparative UP-filter of X and so 0 € U(Ap; «). Thus
Ar(0) > o = Ap(x). Next, let z,y,z € X. Then Ap(z- ((y - 2) - y)), A\r(z) € [0,1]. Choose
a = min{Ar(z - ((y - 2) - y)), Ar(x)}. Thus Ap(z - ((y - 2) - y)) > « and Ap(z) > «, so
z-((y-2)-y),z € UApr;a) # 0. By assumption, we have U(Ar; @) is a comparative UP-filter
of X and so y € U(Ap; ). Thus Ap(y) > o =min{Ap(z - ((y- 2) - y)), Ar(z)}.
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Let z € X. Then Ar(x) € [0,1]. Choose 8 = Ar(x). Thus Ar(x) < B, so x € L(Ar;B8) #
(. By assumption, we have L(Ar;3) is a comparative UP-filter of X and so 0 € L(As;f).
Thus A7(0) < B = Ar(x). Next, let z,y,2 € X. Then A\;(z - ((y - 2) - y)), A\r(z) € [0,1].
Choose 8 = max{Ar(z- ((y-2)-y)),Ar(z)}. Thus A\r(z- ((y-2)-y)) < B and Af(z) < S, so
z-((y-2)-y),x € L(A\1;8) # (0. By assumption, we have L(\j; ) is a comparative UP-filter
of X and so y € L(Ar; 8). Thus A\;(y) < 8 =max{A;(z- ((y-2)-y)), \r(z)}.

Let z € X. Then Ap(x) € [0,1]. Choose v = Ap(z). Thus Ap(z) >, so xz € U(Ap;7) # 0.
By assumption, we have U(Ap;+y) is a comparative UP-filter of X and so 0 € U(Ap;~y). Thus
Ar(0) > v = Ap(z). Next, let z,y,z € X. Then Ap(z - ((y - 2) - y)), Ar(z) € [0,1]. Choose
v = min{Ap(z - ((y - 2) - y)),\p(x)}. Thus Ap(x - ((y - 2) -y)) > v and Ap(z) > 7, so
z-((y-2)-y),z € UAp;7v) # 0. By assumption, we have U(Ap;~) is a comparative UP-filter
of X and so y € U(Ap;7). Thus Ap(y) > v =min{A\r(z- ((y-2) - y)), Ar(z)}.

Therefore, A is a neutrosophic comparative UP-filter of X.

Theorem 4.4. A NS A in X is a neutrosophic shift UP-filter of X if and only if for all o, B,y €
[0,1], the sets U(Ar; «), L(Ar; B), and U(Ap;7y) are shift UP-filters of X if U(Ap; ), L(Ar; 5),
and U(Ap;7y) are nonempty.

Proof. Assume that A is a neutrosophic shift UP-filter of X. Let «, 8,7y € [0, 1] be such that
U(Ar;a), L(Ar; B), and U(Ap;7y) are nonempty.

Let © € U(Ar;a). Then Ap(z) > a. By , we have Ap(0) > Ap(z) > «. Thus
0 € U(Ar; ). Next, let z,y,z € X be such that - (y-z) € U(Ap; ) and x € U(Ap; ). Then
Mr(z - (y-2)) > aand Ap(z) > a, so a is an lower bound of {Ar(z - (y - 2)), Ar(z)}. By (54),
we have A\p(((z-y) - y) - z) > min{Ap(z - (y-2)), Ap(x)} > a. Thus ((z-y) -y) -z € U(Ap; ).

Let € L(A;;a). Then Af(z) < 8. By (37), we have A;(0) < Af(z) < 8. Thus 0 €
L(Ar;B). Next, let z,y,z € X be such that = - (y-2) € L(Ar;5) and x € L(Ar;3). Then
Mz (y-2)) < B and A\j(z) < B, so B is a upper bound of {\;(z - (y-2)), A\r(z)}. By (55)), we
have A\1(((z-y) - y) - z) <max{\;(z- (v 2)),A\r(x)} < B. Thus ((z-y) -y) -z € L(A1; B).

Let # € U(Ap;7). Then Ap(z) > 7. By (38), we have Ap(0) > Ap(z) > 7. Thus
0 € U(Ap;7y). Next, let z,y,z € X be such that z - (y-z) € U(Ap;v) and « € U(Ap;7). Then

Ap(z - (y-2)) >~ and Ap(y) > v, so v is an lower bound of {Ap(z - (y - 2)), Ar(z)}. By (56)),
we have A\p(((z-y) - y) - 2) > min{A\p(z- (y- 2)), Ar(x)} >~. Thus ((z-y) - y) -z € U(Ap;7).
Hence, U(Ar; ), L(Ar; B), and U(Ap;y) are shift UP-filters of X.

Conversely, assume that for all a, 8,7 € [0,1], the sets U(Ar; @), L(Ar; 8), and U(Ap;7y) are
shift UP-filters of X if U(Ar; ), L(Ar; 8), and U(Ap;y) are nonempty.

Let x € X. Then Ap(z) € [0,1]. Choose a = Ap(z). Thus Ap(z) > a, so z € U(Ar; o) #
(. By assumption, we have U(Ap;a) is a shift UP-filter of X and so 0 € U(Ap; ). Thus
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Ar(0) > a = Ap(z). Next, let z,y,z € X. Then Ap(z - (y - 2)), Ar(z) € [0,1]. Choose a =
min{ Ay (z-(y-2)), \r(z)}. Thus Ap(z-(y-2)) > aand A\p(z) > «a, so x-(y-2),z € U(Ar; ) # 0.
By assumption, we have U(Ar; «) is a shift UP-filter of X and so ((z-y) -y) - z € U(Ar; ).
Thus A\p(((z-y) - y) - 2) > a=min{Ap(z - (y-2)), A\p(x)}.

Let z € X. Then Ar(x) € [0,1]. Choose 8 = Ar(x). Thus Ar(xz) < B, so x € L(Ar; ) #
(. By assumption, we have L(\;[3) is a shift UP-filter of X and so 0 € L(A7;3). Thus
Ar(0) < B8 = Ar(z). Next, let x,y,z € X. Then \;(z- (v - 2)), \r(x) € [0,1]. Choose =
max{\;(z-(y-2)),\r(z)}. Thus A\j(z-(y-2)) < Band Aj(x) < B,s0x-(y-2),z € L(Ar; 8) # 0.
By assumption, we have L(\; 3) is a shift UP-filter of X and so ((z-y) -y) - 2 € L(\r; 5).
Thus A\;(((z-y) - y) - 2) < B =max{\;(z- (y-2)), \r(z)}.

Let x € X. Then Ap(x) € [0,1]. Choose v = Ap(x). Thus Ap(x) > 7, so © € U(Ar;7y) #
(. By assumption, we have U(Ap;~) is a shift UP-filter of X and so 0 € U(Ap;7). Thus
Ar(0) > v = Ap(z). Next, let z,y,z € X. Then Ap(z - (y - 2)), Ar(y) € [0,1]. Choose v =
min{Ap(z-(y-2)), \p(x)}. Thus Ap(x-(y-z)) > v and Ap(x) > v,s0x-(y-2),x € U(Ap;7y) # 0.
By assumption, we have U(Ap;7y) is a shift UP-filter of X and so ((z-y) -y) -z € U(Ar;7).
Thus Ap(((z-y) - y) - 2) 2 v = min{Ar(z - (y - 2)), Ar(2)}.

Therefore, A is a neutrosophic shift UP-filter of X.

Definition 4.5. [23] Let A be a NS in X. For a, 8,7 € [0, 1], the sets
ULUp (o, B,y) ={x € X | A\p > a,\; < B, Ap > 7},
LULA(a,B,7) ={z € X | Adr S, A1 = B,Ap <7},

Ex(o,B,7v) ={z e X | \r=a,\1 =B, Ar =7}

are called a ULU-(av, 8,7)-level subset, a LUL-(«av, 3,7)-level subset, and an E-(«a, 3,7)-level

subset of A, respectively.
The following corollary is straightforward by Theorems and

Corollary 4.6. A NS A in X is a neutrosophic implicative UP-filter (resp., neutrosophic
comparative UP-filter, neutrosophic shift UP-filter) of X if and only if for all o, 8,7 € [0, 1],
ULUp (v, B,7) is a implicative UP-filter (resp., comparative UP-filter, shift UP-filter) of X
where ULUA (v, B,7) is nonempty.

5. Conclusions

In this paper, we have introduced the notions of neutrosophic implicative UP-filters, neu-
trosophic comparative UP-filters, and neutrosophic shift UP-filters of UP-algebras and inves-
tigated some of their important properties. Then, we get the diagram of generalization of NSs

in UP-algebras as shown in Figure
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Neutrosophic UP-subalgebra

Neutrosophic near UP-filter

T

Neutrosophic UP-filter

T

Neutrosophic UP-ideal

T

Neutrosophic comparative UP-filter =~ Neutrosophic implicative UP-filter =~ Neutrosophic shift UP-filter

\ Neutrosophic s[rong UP-ideal /
!

Constant neutrosophic set

FIGURE 1. NSs in UP-algebras

In our future study, we will study the soft set theory/cubic set theory of neutrosophic

implicative UP-filters, neutrosophic comparative UP-filters, and neutrosophic shift UP-filters
of UP-algebras.
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