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Abstract. Interval neutrosophic set (INS) is a generaliza-

tion of interval valued intuitionistic fuzzy set (IVIFS), 

whose the membership and non-membership values of el-

ements consist of fuzzy range, while single valued neutro-

sophic set (SVNS) is regarded as extension of intuition-

istic fuzzy set (IFS). In this paper, we extend the hierar-

chical clustering techniques proposed for IFSs and IVIFSs 

to SVNSs and INSs respectively. Based on the traditional 

hierarchical clustering procedure, the single valued neu-

trosophic aggregation operator, and the basic distance 

measures between SVNSs, we define a single valued neu-

trosophic hierarchical clustering algorithm for clustering 

SVNSs. Then we extend the algorithm to classify an inter-

val neutrosophic data. Finally, we present some numerical 

examples in order to show the effectiveness and availabil-

ity of the developed clustering algorithms.
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1 Introduction 

Clustering is an important process in data mining, pat-

tern recognition, machine learning and microbiology analy-

sis [1, 2, 14, 15, 21]. Therefore, there are various types of 
techniques for clustering data information such as numerical 

information, interval-valued information, linguistic infor-
mation, and so on. Several of them are clustering algorithms 

such as partitional, hierarchical, density-based, graph-based, 

model-based. To handle uncertainty, imprecise, incomplete, 
and inconsistent information which exist in real world, 

Smarandache [3, 4] proposed the concept of neutrosophic 
set (NS) from philosophical point of view. A neutrosophic 

set [3] is a generalization of the classic set, fuzzy set [13], 
intuitionistic fuzzy set [11] and interval valued intuitionistic 

fuzzy set [12]. It has three basic components independently 

of one another, which are truht-membership, indeterminacy-
membership, and falsity-membership. However, the neutro-

sophic sets is be diffucult to use in real scientiffic or engi-
neering applications. So Wang et al. [5, 6] defined the con-

cepts of single valued neutrosophic set (SVNS) and interval 

neutrosophic set (INS) which is an instance of a neutro-
sophic set. At present, studies on the SVNSs and INSs is 

progressing rapidly in many different aspects [7, 8, 9, 10, 16, 
18]. Yet, until now there has been little study on clustering 

the data represented by neutrosophic information [9]. There-
fore, the existing clustering algorithms cannot cluster the 

neutrosophic data, so we need to develop some new tech-

niques for clustering SVNSs and INSs. 

2 Preliminaries 

In this section we recall some definitions, operations and 
properties regarding NSs, SVNSs and INSs, which will be 

used in the rest of the paper. 

 

2.1 Neutrosophic sets 

Definition 1. [3] Let 𝑋 be a space of points (objects) and 

𝑥 ∈  𝑋 . A neutrosophic set 𝑁  in 𝑋  is characterized by a 
truth-membership function 𝑇𝑁, an indeterminacy-member-

ship function 𝐼𝑁  and a falsity-membership function 𝐹𝑁 , 
where 𝑇𝑁(𝑥) , 𝐼𝑁(𝑥)  and 𝐹𝑁(𝑥)  are real standard or non-

standard subsets of ]0−, 1+[. That is, 𝑇𝑁 ∶ 𝑈 →]0−, 1+[, 𝐼𝑁 ∶
𝑈 →]0−, 1+[ and 𝐹𝑁 ∶ 𝑈 →]0−, 1+[. 

There is no restriction on the sum of 𝑇𝑁(𝑥), 𝐼𝑁(𝑥) and 

𝐹𝑁(𝑥), so 
 0−  ≤ sup 𝑇𝑁(𝑥)  + sup  𝐼𝑁(𝑥)  + sup 𝐹𝑁(𝑥)  ≤  3+. 

Neutrosophic sets is difficult to apply in real scientific 
and engineering applications [5]. So Wang et al. [5] pro-

posed the concept of SVNS, which is an instance of neutro-

sophic set. 

2.2 Single valued neutrosophic sets 

A single valued neutrosophic set has been defined in [5] 
as follows: 

 

Definition 2. Let 𝑋 be a universe of discourse. A single val-
ued neutrosophic set 𝐴 over 𝑋 is an object having the form: 

𝐴 =  {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉 ∶ 𝑥 ∈ 𝑋}, 

where 𝑢𝐴: 𝑋 →  [0,1] , 𝑤𝐴: 𝑋 → [0,1]  and 𝑣𝐴: 𝑋 → [0,1] 
with the condition 

0 ≤ 𝑢𝐴(𝑥) + 𝑤𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 3,   ∀𝑥 ∈ 𝑋. 

The numbers 𝑢𝐴(𝑥) , 𝑤𝐴(𝑥)  and 𝑣𝐴(𝑥) denote the de-

gree of truth-membership, indeterminacy membership and 
falsity-membership of 𝑥 to 𝑋, respectively. 

Definition 3. Let 𝐴  and 𝐵  be two single valued neutro-
sophic sets, 
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 𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉 ∶ 𝑥 ∈  𝑋} 
𝐵 = {〈𝑥, 𝑢𝐵 (𝑥), 𝑤𝐵 (𝑥), 𝑣𝐵 (𝑥)〉 ∶ 𝑥 ∈ 𝑋} 

Then we can give two basic operations of 𝐴 and 𝐵 as fol-

lows: 

     1.      𝐴 + 𝐵 = {< 𝑥, 𝑢𝐴(𝑥) + 𝑢𝐵(𝑥) − 𝑢𝐴(𝑥). 𝑢𝐵(𝑥), 

𝑤𝐴(𝑥). 𝑤𝐵(𝑥), 𝑣𝐴(𝑥). 𝑣𝐵(𝑥) >∶ 𝑥 ∈ 𝑋}; 

     2.      𝜆𝐴 = {< 𝑥, 1 − (1 − 𝑢𝐴(𝑥))
𝜆

 , (𝑤𝐴(𝑥))
𝜆

 , (𝑣𝐴(𝑥))
𝜆

>: 

                           𝑥 ∈ 𝑋 and 𝜆 > 0} 

Definition 4. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a universe of dis-
course. Consider that the elements 𝑥𝑖  (i = 1,2,...,n) in the 

universe 𝑋  may have different importance, let 𝜔 =
(𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇 be the weight vector of 𝑥𝑖  (i = 1,2,...,n), 
with 𝜔𝑖 ≥ 0, i = 1,2,...,n, ∑ 𝜔𝑖𝑛

𝑖=1 = 1. Assume that  

       𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} and 
𝐵 = {〈𝑥, 𝑢𝐵(𝑥), 𝑤𝐵(𝑥), 𝑣𝐵(𝑥)〉: 𝑥 ∈ 𝑋} 

be two SVNSs. Then we give the following distance 

measures: 
The weighted Hamming distance and normalized Hamming 

distance [9] 

            𝑒1
𝜔(𝐴, 𝐵) = (

1

3
∑ 𝜔𝑖(|𝑢𝐴(𝑥𝑖) − 𝑢𝐵(𝑥𝑖)| + |𝑤𝐴(𝑥𝑖) − 𝑤𝐵(𝑥𝑖)| +𝑛

𝑖=1

|𝑣𝐴(𝑥𝑖) − 𝑣𝐵(𝑥𝑖)|)).                                                                 (1)                              

Assume that 𝜔 = (1 𝑛⁄ , 1 𝑛⁄ , . . . , 1 𝑛⁄ )𝑇, then Eq. (1) is re-

duced to the normalized Hamming distance 

    𝑒2
𝑛(𝐴, 𝐵) = (

1

3𝑛
∑ (|𝑢𝐴(𝑥𝑖) − 𝑢𝐵(𝑥𝑖)| + |𝑤𝐴(𝑥𝑖) − 𝑤𝐵(𝑥𝑖)| +𝑛

𝑖=1

|𝑣𝐴(𝑥𝑖) − 𝑣𝐵(𝑥𝑖)|))                                                                  (2) 

The weighted Euclidean distance and normalized Euclidean 
distance [7] 

  𝑒3
𝜔(𝐴, 𝐵) = (

1

3
∑ 𝜔𝑖(|𝑢𝐴(𝑥𝑖) − 𝑢𝐵(𝑥𝑖)|)2 + (|𝑤𝐴(𝑥𝑖) − 𝑤𝐵(𝑥𝑖)|)2 +𝑛

𝑖=1

(|𝑣𝐴(𝑥𝑖) − 𝑣𝐵(𝑥𝑖)|)2)

1

2
                                                                       (3) 

Assume that ω = (1/n,1/n,...,1/n)T, then Eq. (3) is reduced to 
the normalized Euclidean distance         

 𝑒4
𝑛(𝐴, 𝐵) = (

1

3𝑛
∑ (|𝑢𝐴(𝑥𝑖) − 𝑢𝐵(𝑥𝑖)|)2 + (|𝑤𝐴(𝑥𝑖) −𝑛

𝑖=1

𝑤𝐵(𝑥𝑖)|)2 + (|𝑣𝐴(𝑥𝑖) − 𝑣𝐵(𝑥𝑖)|)2)

1

2
                                         (4) 

2.3 Interval neutrosophic sets  

Definition 5. [3] Let 𝑋 be a set and Int[0,1] be the set of all 
closed subsets of [0,1]. An INS �̃� in 𝑋 is defined with the 

form 

�̃� = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉 ∶ 𝑥 ∈ 𝑋} 

where 𝑢𝐴: 𝑋 → Int[0,1] , 𝑤𝐴: 𝑋 → Int[0,1]  and 𝑣𝐴: 𝑋 →

Int[0,1] with the condition  

0 ≤ sup 𝑢𝐴(𝑥) + sup 𝑤𝐴(𝑥) + sup 𝑣𝐴(𝑥) ≤ 3, 
for all 𝑥 ∈ 𝑋. 

The intervals 𝑢𝐴(𝑥), 𝑤𝐴(𝑥) and 𝑣𝐴(𝑥) denote the truth-

membership degree, the indeterminacy membership degree 
and the falsity-membership degree of 𝑥 to �̃�, respectively. 

For convenience, if let  

𝑢�̃�(𝑥) = [𝑢�̃�
+(𝑥), 𝑢�̃�

−(𝑥)] 

𝑤�̃�(𝑥) = [𝑤�̃�
+(𝑥), 𝑤�̃�

−(𝑥)] 

𝑣�̃�(𝑥) = [𝑣�̃�
+(𝑥), 𝑣�̃�

−(𝑥)] 

then 

�̃� = {〈𝑥, [𝑢�̃�
−(𝑥), 𝑢�̃�

+(𝑥)], [𝑤�̃�
−(𝑥), 𝑤�̃�

+(𝑥)], [𝑣�̃�
−(𝑥), 𝑣�̃�

+(𝑥)]〉}: 𝑥 ∈ 𝑋} 

with the condition  

0 ≤ sup 𝑢𝐴
+(𝑥) + sup 𝑤𝐴

+(𝑥) + sup 𝑣𝐴
+(𝑥) ≤ 3, 

for all 𝑥 ∈  𝑋 . If 𝑤𝐴(𝑥) = [0,0]  and sup 𝑢𝐴
+(𝑥) +

sup 𝑣𝐴
+ ≤ 1 then �̃� reduces to an interval valued intuition-

istic fuzzy set.  

Definition 6. [20] Let �̃� and �̃� be two interval neutrosophic 

sets, 

�̃� = {〈𝑥, [𝑢�̃�
−(𝑥), 𝑢�̃�

+(𝑥)], [𝑤�̃�
−(𝑥), 𝑤�̃�

+(𝑥)], [𝑣�̃�
−(𝑥), 𝑣�̃�

+(𝑥)]〉: 𝑥 ∈ 𝑋}, 

�̃� = {〈𝑥, [𝑢�̃�
−(𝑥), 𝑢�̃�

+(𝑥)], [𝑤�̃�
−(𝑥), 𝑤�̃�

+(𝑥)], [𝑣�̃�
−(𝑥), 𝑣�̃�

+(𝑥)]〉: 𝑥 ∈ 𝑋}. 

Then two basic operations of �̃� and �̃� are given as follows: 

1.     �̃� + �̃� = {< 𝑥, [𝑢�̃�
−(𝑥) + 𝑢�̃�

−(𝑥)−, 𝑢�̃�
+(𝑥) ⋅ 𝑢�̃�

−(𝑥), 𝑢�̃�
+(𝑥) +

                         𝑢�̃�
+(𝑥) − 𝑢�̃�

+(𝑥) ⋅ 𝑢�̃�
+(𝑥)], [𝑢�̃�

−(𝑥) ⋅ 𝑤�̃�
−(𝑥), 𝑤�̃�

+(𝑥) ⋅ 𝑤�̃�
+(𝑥)],  

                      [𝑣�̃�
−(𝑥) ⋅ 𝑣�̃�

−(𝑥), 𝑣�̃�
+(𝑥) ⋅ 𝑣�̃�

+(𝑥)]: 𝑥 ∈ 𝑋} 

2.     𝜆�̃� = {< 𝑥, [, 1 − (1 − 𝑢�̃�
−(𝑥))

𝜆
, 1 − (1 − 𝑢�̃�

+(𝑥))
𝜆

] , 

                  [(𝑤�̃�
−(𝑥))

𝜆
, (𝑤�̃�

+(𝑥))
𝜆

] , [(𝑣�̃�
−(𝑥))

𝜆
, (𝑣�̃�

+(𝑥))
𝜆

] >: 𝑥 ∈ 𝑋 and 𝜆 > 0}. 

Definition 7. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a universe of dis-

course. Consider that the elements 𝑥𝑖  (i = 1,2,...,n) in the uni-
verse 𝑋  may have different importance, let 𝜔 =
(𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇  be the weight vector of 𝑥𝑖  (i = 1,2,...,n), 
with 𝜔𝑖 ≥ 0, i = 1,2,...,n, ∑ 𝜔𝑖

𝑛
𝑖=1 = 1. Suppose that �̃� and 

�̃� are two interval neutrosophic sets. Ye [6] has defined the 

distance measures for INSs as follows: 
The weighted Hamming distance and normalized Hamming 

distance: 

𝑑1
𝜔(�̃�, �̃�) = (

1

6
∑ 𝜔𝑖(|𝑢�̃�

−(𝑥) − 𝑢𝐵
−(𝑥)|𝑛

𝑖=1 + |𝑢�̃�
+(𝑥) − 𝑢𝐵

+(𝑥)|                     

+|𝑤�̃�
+(𝑥) − 𝑤𝐵

+(𝑥)| + |𝑣�̃�
−(𝑥) − 𝑢𝐵

−(𝑥)| + |𝑣�̃�
+(𝑥) − 𝑢𝐵

+(𝑥)|)            (5) 

Assume that 𝜔 = (1 𝑛⁄ , 1 𝑛⁄ , . . . , 1 𝑛⁄ )𝑇, then Eq. (5) is re-
duced to the normalized Hamming distance 

𝑑2
𝜔(�̃�, �̃�) = (

1

6𝑛
∑ (|𝑢�̃�

−(𝑥) − 𝑢�̃�
−(𝑥)|𝑛

𝑖=1 +  

|𝑢�̃�
+(𝑥) − 𝑢�̃�

+(𝑥)| + |𝑤�̃�
+(𝑥) − 𝑤�̃�

+(𝑥)| + |𝑣�̃�
−(𝑥) − 𝑢�̃�

−(𝑥)| +
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|𝑣�̃�
+(𝑥) − 𝑢�̃�

+(𝑥)|)                                                                                    (6) 

The weighted Euclidean distance and normalized Hamming 
distance 

𝑑3
𝜔(�̃�, �̃�) = (

1

6
∑ 𝜔𝑖(|𝑢�̃�

−(𝑥) − 𝑢�̃�
−(𝑥)|

2𝑛
𝑖=1 + |𝑢�̃�

+(𝑥) − 𝑢�̃�
+(𝑥)|

2
+

|𝑤�̃�
−(𝑥) − 𝑤�̃�

−(𝑥)|
2

+ |𝑤�̃�
+(𝑥) − 𝑤�̃�

+(𝑥)|
2

+ |𝑣�̃�
−(𝑥) − 𝑢�̃�

−(𝑥)|
2

+

|𝑣𝐴
+(𝑥) − 𝑢𝐵

+(𝑥)|2))

1

2
                                                                     (7)                               

Assume that 𝜔 =  (1/𝑛, 1/𝑛, . . . ,1/𝑛)𝑇, then Eq. (7) is re-

duced to the normalized Hamming distance 

𝑑4
𝑛(�̃�, �̃�) = (

1

6𝑛
∑ (|𝑢�̃�

−(𝑥) − 𝑢�̃�
−(𝑥)|

2𝑛
𝑖=1 + |𝑢�̃�

+(𝑥) − 𝑢�̃�
+(𝑥)|

2
+

|𝑤�̃�
−(𝑥) − 𝑤�̃�

−(𝑥)|
2

+ |𝑤�̃�
+(𝑥) − 𝑤�̃�

+(𝑥)|
2

+ |𝑣�̃�
−(𝑥) − 𝑢�̃�

−(𝑥)|
2

+

|𝑣�̃�
+(𝑥) − 𝑢�̃�

+(𝑥)|
2
))

1

2
                                                                     (8) 

Definition 8. [20] Let  

�̃�𝑘 = 〈[𝑢�̃�
−(𝑥), 𝑢�̃�

+(𝑥)], [𝑤�̃�
−(𝑥), 𝑤�̃�

+(𝑥)], [𝑣�̃�
−(𝑥), 𝑣�̃�

+(𝑥)]〉 

𝑘 = 1,2, … , . 𝑛) be a collection of interval neutrosophic sets. 
A mapping �̃�𝜔 ∶  𝐼𝑁𝑆𝑛  →  𝐼𝑁𝑆 is called an interval neutro-

sophic weighted averaging operator of dimension 𝑛 if it is 

satisfies 

�̃�𝜔(�̃�1, �̃�2, … , �̃�𝑛) = ∑ 𝜔𝑘�̃�𝑘
𝑛
𝑘=1   

where 𝜔 =  (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇  is the weight vector of �̃�𝑘  (𝑘 =

 1,2, . . . , 𝑛), 𝜔𝑘  ∈ [0,1] and ∑ 𝜔𝑘 = 1𝑛
𝑘=1 . 

Theorem 1. [20] Suppose that  

�̃�𝑘 = 〈[𝑢𝐴
−(𝑥), 𝑢𝐴

+(𝑥)], [𝑤𝐴
−(𝑥), 𝑤𝐴

+(𝑥)], [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)]〉 

𝑘 = 1,2, … , . 𝑛) are interval neutrosophic sets. Then the ag-
gregation result through using the interval neutrosophic 

weighted averaging operator Fω is an interval neutrosophic 
set and 

�̃�𝜔(�̃�1, �̃�2, … , �̃�𝑛) = �̃�𝑘 

=< [1 − ∏ (1 − 𝑢�̃�𝑘

− (𝑥))
𝜔𝑘

, 1 − ∏ (1 − 𝑢�̃�𝑘

+ (𝑥))
𝜔𝑘

𝑛
𝑘=1

𝑛
𝑘=1 ],   

       [∏ (𝑤�̃�𝑘

− (𝑥))
𝜔𝑘

, ∏ (𝑤�̃�𝑘

+ (𝑥))
𝜔𝑘

𝑛
𝑘=1

𝑛
𝑘=1 ],  

       [∏ (𝑣�̃�𝑘

− (𝑥))
𝜔𝑘

, ∏ (𝑣�̃�𝑘

+ (𝑥))
𝜔𝑘

𝑛
𝑘=1

𝑛
𝑘=1 ] >                                        (9) 

where 𝜔 =  (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇  is the weight vector of �̃�𝑘  

(𝑘 =  1,2, . . . , 𝑛), 𝜔𝑘  ∈ [0,1] and ∑ 𝜔𝑘 = 1.𝑛
𝑘=1  

Suppose that 𝜔 =  (1/𝑛, 1/𝑛, . . . ,1/𝑛)𝑇  then the �̃�𝜔  is 
called an arithmetic average operator for INSs.  

Since INS is a generalization of SVNS, according to Defi-
nition 8 and Theorem 1, the single valued neutrosophic 

weighted averaging operator can be easily obtained as fol-
lows. 

Definition 9. Let 
𝐴𝑘  = 〈𝑢𝐴𝑘

, 𝑤𝐴𝑘
, 𝑣𝐴𝑘

〉 

 (𝑘 =  1,2, . . . , 𝑛)  be a collection single valued neutro-

sophic sets. A mapping 𝐹𝜔 ∶  𝑆𝑉𝑁𝑆𝑛  →  𝑆𝑉𝑁𝑆 is called a 

single valued neutrosophic weighted averaging operator of 

dimension 𝑛 if it is satisfies 

𝐹𝜔 (𝐴1, 𝐴2, . . . , 𝐴𝑛) = ∑ 𝜔𝑘𝐴𝑘
𝑛
𝑘=1   

where 𝜔 =  (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇  is the weight vector of 

𝐴𝑘(𝑘 =  1,2, . . . , 𝑛), 𝜔𝑘  ∈  [0,1] and ∑ 𝜔𝑘 = 1𝑛
𝑘=1 . 

Theorem 2. Suppose that 

𝐴𝑘  = 〈𝑢𝐴𝑘
, 𝑤𝐴𝑘

, 𝑣𝐴𝑘
〉 

(𝑘 =  1,2, . . . , 𝑛) are single valued neutrosophic sets. Then 

the aggregation result through using the single valued neu-
trosophic weighted averaging operator 𝐹𝜔 is single neutro-

sophic set and 

𝐹𝜔 (𝐴1, 𝐴2, . . . , 𝐴𝑛) = 𝐴𝑘     

             =< 1 − ∏ (1 −  𝑢𝐴𝑘
(𝑥))

𝜔𝑘

,𝑛
𝑘=1   

                     ∏ (𝑤𝐴𝑘
(𝑥))

𝜔𝑘

,𝑛
𝑘=1 ∏ (𝑣𝐴𝑘

(𝑥))
𝜔𝑘

>𝑛
𝑘=1              (10) 

where 𝜔 =  (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇  is the weight vector of 
𝐴𝑘(𝑘 =  1,2, . . . , 𝑛), 𝜔𝑘  ∈  [0,1] and ∑ 𝜔𝑘 = 1𝑛

𝑘=1 . 

Suppose that 𝜔 =  (1/𝑛, 1/𝑛, … ,1/𝑛)𝑇 , then the 𝐹𝜔  is 

called an arithmetic average operator for SVNSs.  

3 Neutrosophic hierarchical algorithms 

The traditional hierarchical clustering algorithm [17, 
19] is generally used for clustering numerical information. 

By extending the traditional hierarchical clustering algo-

rithm, Xu [22] introduced an intuitionistic fuzzy hierar-
chical clustering algorithm for clustering IFSs and extended 

it to IVIFSs. However, they fail to deal with the data infor-
mation expressed in neutrosophic environment. Based on 

extending the intuitionistic fuzzy hierarchical clustering al-

gorithm and its extended form, we propose the neutrosophic 
hierarchical algorithms which are called the single valued 

neutrosophic hierarchical clustering algorithm and interval 
neutrosophic hierarchical clustering algorithm.  

Algorithm 1. Let us consider a collection of n SVNSs 

𝐴𝑘(𝑘 =  1,2, . . . , 𝑛). In the first stage, the algorithm starts 
by assigning each of the n SVNSs to a single cluster. Based 

on the weighted Hamming distance (1) or the weighted Eu-
clidean distance (3), the SVNSs 𝐴𝑘(𝑘 =  1,2, . . . , 𝑛)  are 

then compared among themselves and are merged them into 
a single cluster according to the closest (with smaller dis-

tance) pair of clusters. The process are continued until all 

the SVNSs 𝐴𝑘  are merged into one cluster i.e., clustered into 
a single cluster of size n. In each stage, only two clusters can 

be merged and they cannot be separated after they are 
merged, and the center of each cluster is recalculated by us-

ing the arithmetic average (from Eq. (10)) of the SVNSs 

proposed to the cluster. The distance between the centers of 
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 each cluster is considered as the distance between two clus-

ters. 

      However, the clustering algorithm given above cannot 

cluster the interval neutrosophic data. Therefore, we need 

another clustering algorithm to deal with the data repre-
sented by INSs. 

Algorithm 2. Let us consider a collection of n INSs 
�̃�𝑘(𝑘 =  1,2, . . . , 𝑛). In the first stage, the algorithm starts 

by assigning each of the n INSs to a single cluster. Based on 

the weighted Hamming distance (5) or the weighted Euclid-
ean distance (7), the INSs �̃�𝑘(𝑘 =  1,2, . . . , 𝑛)  are then 

compared among themselves and are merged them into a 
single cluster according to the closest (with smaller dis-

tance) pair of clusters. The process are continued until all 
the INSs �̃�𝑘  are merged into one cluster i.e., clustered into a 

single cluster of size n. In each stage, only two clusters can 

be merged and they cannot be separated after they are 
merged, and the center of each cluster is recalculated by us-

ing the arithmetic average (from Eq. (9)) of the INSs pro-
posed to the cluster. The distance between the centers of 

each cluster is considered as the distance between two clus-

ters. 

3.1 Numerical examples.  

      Let us consider the clustering problem adapted from 
[21]. 

 Example 1. Assume that five building materials: sealant, 
floor varnish, wall paint, carpet, and polyvinyl chloride 

flooring, which are represented by the SVNSs 𝐴𝑘(𝑘 =
 1,2, . . . ,5) in the feature space 𝑋 =  {𝑥1, 𝑥2, . . . , 𝑥8}.   
𝜔 =  (0.15,0.10,0.12,0.15,0.10,0.13,0.14,0.11)  is the 

weight vector of 𝑥𝑖(𝑖 =  1,2, . . . ,8), and the given data are 
listed as follows: 

𝐴1 = {(𝑥1 ,0.20,0.05,0.50), (𝑥2, 0.10,0.15,0.80), 
           (𝑥3 ,0.50,0.05,0.30), (𝑥4, 0.90,0.55,0.00), 
           (𝑥5 ,0.40,0.40,0.35), (𝑥6, 0.10,0.40,0.90), 
           (𝑥7 ,0.30,0.15,0.50), (𝑥8, 1.00,0.60,0.00), } 
 

𝐴2 = {(𝑥1, 0.50,0.60,0.40), (𝑥2, 0.60,0.30,0.15)}, 
           (𝑥3, 1.00,0.60,0.00), (𝑥4, 0.15,0.05,0.65), 
           (𝑥5, 0.00,0.25,0.80), (𝑥6, 0.70,0.65,0.15), 
           (𝑥7, 0.50,0.50,0.30), (𝑥8, 0.65,0.05,0.20)} 
 

𝐴3 = {(𝑥1, 0.45,0.05,0.35), (𝑥2, 0.60,0.50,0.30)}, 
           (𝑥3, 0.90,0.05,0.00), (𝑥4, 0.10,0.60,0.80), 
           (𝑥5, 0.20,0.35,0.70), (𝑥6, 0.60,0.40,0.20), 
           (𝑥7, 0.15,0.05,0.80), (𝑥8, 0.20,0.60,0.65)} 

 

𝐴4 = {(𝑥1, 1.00,0.65,0.00), (𝑥2, 1.00,0.25,0.00)}, 
           (𝑥3, 0.85,0.65,0.10), (𝑥4, 0.20,0.05,0.80), 
           (𝑥5, 0.15,0.30,0.85), (𝑥6, 0.10,0.60,0.70), 
           (𝑥7, 0.30,0.60,0.70), (𝑥8, 0.50,0.35,0.70)} 

 

𝐴5 = {(𝑥1, 0.90,0.20,0.00), (𝑥2, 0.90,0.40,0.10), 
           (𝑥3, 0.80,0.05,0.10), (𝑥4, 0.70,0.45,0.20), 
           (𝑥5, 0.50,0.25,0.15), (𝑥6, 0.30,0.30,0.65), 
           (𝑥7, 0.15,0.10,0.75), (𝑥8, 0.65,0.50,0.80)} 

 
Now we utilize Algorithm 1 to classify the building ma-

terials 𝐴𝑘(𝑘 =  1,2, . . . ,5): 
 

Step1 In the first stage, each of the SVNSs 𝐴𝑘(𝑘 =
 1,2, . . . ,5)  is considered as a unique cluster 
{𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5}. 

 
Step2 Compare each SVNS 𝐴𝑘  with all the other four 

SVNSs by using Eq. (1): 
 

𝑒1
𝜔(𝐴1, 𝐴2) = 𝑑1 (𝐴2, 𝐴1) = 0.6403 

𝑒1
𝜔(𝐴1, 𝐴3) = 𝑑1 (𝐴3, 𝐴1) = 0.5191 

𝑒1
𝜔(𝐴1, 𝐴4) = 𝑑1 (𝐴4, 𝐴1) = 0.7120 

𝑒1
𝜔(𝐴1, 𝐴5) = 𝑑1 (𝐴5, 𝐴1) = 0.5435 

𝑒1
𝜔(𝐴2, 𝐴3) = 𝑑1 (𝐴3, 𝐴2) = 0.5488 

𝑒1
𝜔(𝐴2, 𝐴4) = 𝑑1 (𝐴4, 𝐴2) = 0.4546 

𝑒1
𝜔(𝐴2, 𝐴5) = 𝑑1 (𝐴5, 𝐴2) = 0.6775 

𝑒1
𝜔(𝐴3, 𝐴4) = 𝑑1 (𝐴4, 𝐴3) = 0.3558 

𝑒1
𝜔(𝐴3, 𝐴5) = 𝑑1 (𝐴5, 𝐴3) = 0.2830 

𝑒1
𝜔(𝐴4, 𝐴5) = 𝑑1 (𝐴5, 𝐴4) = 0.3117 

and hence  
𝑒1

𝜔(𝐴1, 𝐴3) = 
min{𝑒1

𝜔(𝐴1, 𝐴2), 𝑒1
𝜔(𝐴1, 𝐴3) , 𝑒1

𝜔(𝐴1, 𝐴4), 𝑒1
𝜔(𝐴1, 𝐴5)} 

     = 0.5191, 

     𝑒1
𝜔(𝐴2, 𝐴4) = 

     min{𝑒1
𝜔(𝐴2, 𝐴1), 𝑒1

𝜔(𝐴2, 𝐴3) , 𝑒1
𝜔(𝐴2, 𝐴4), 𝑒1

𝜔(𝐴2, 𝐴5)} 
     = 0.4546, 

     𝑒1
𝜔(𝐴3, 𝐴5) = 

     min{𝑒1
𝜔(𝐴3, 𝐴1), 𝑒1

𝜔(𝐴3, 𝐴2) , 𝑒1
𝜔(𝐴3, 𝐴4), 𝑒1

𝜔(𝐴3, 𝐴5)} 
     = 0.2830. 

 
Then since only two clusters can be merged in each stage, 

the SVNSs 𝐴𝑘(𝑘 =  1,2, . . . ,5) can be clustered into the fol-
lowing three clusters at the second stage 
{𝐴1}, {𝐴2, 𝐴4}, {𝐴3, 𝐴5 }. 

 
Step3 Calculate the center of each cluster by using Eq. (10) 

 
𝑐{𝐴1} = 𝐴1 

𝑐{𝐴2, 𝐴4} = 𝐹𝜔(𝐴2, 𝐴4) 
= {(𝑥1, 1.00,0.62,0.00), (𝑥2, 1.00,0.27,0.00), 

                      (𝑥3, 1.00,0.62,0.00), (𝑥4, 0.17,0.05,0.72), 
                      (𝑥5, 0.07,0.27,0.82), (𝑥6, 0.48,0.62,0.32), 
                      (𝑥7, 0.40,0.54,0.45), (𝑥8, 0.58,0.13,0.37)}  

𝑐{𝐴3, 𝐴5} = 𝐹𝜔(𝐴3, 𝐴5) 
= {(𝑥1, 0.76,0.10,0.00), (𝑥2, 0.80,0.44,0.17), 

                      (𝑥3, 0.85,0.05,0.00), (𝑥4, 0.48,0.51,0.40), 
                      (𝑥5, 0.36,0.29,0.32), (𝑥6, 0.47,0.34,0.36), 
                      (𝑥7, 0.15,0.07,0.77), (𝑥8, 0.47,0.54,0.72)}. 
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and then compare each cluster with the other two clus-

ters by using Eq. (1): 

𝑒1
𝜔(𝑐{𝐴1}, 𝑐{𝐴2, 𝐴4}) = 𝑒1

𝜔(𝑐{𝐴2, 𝐴4}, 𝑐{𝐴1}) = 0.7101, 

𝑒1
𝜔(𝑐{𝐴1}, 𝑐{𝐴3, 𝐴5}) = 𝑒1

𝜔(𝑐{𝐴3, 𝐴5}, 𝑐{𝐴1}) = 5266, 

𝑒1
𝜔(𝑐{𝐴2, 𝐴4}, 𝑐{𝐴3, 𝐴5}) = 𝑒1

𝜔(𝑐{𝐴3, 𝐴5}, 𝑐{𝐴2, 𝐴4}) 

= 0.4879. 

Subsequently, the SVNSs 𝐴𝑘(𝑘 =  1,2, . . . ,5)  can be 

clustered into the following two clusters at the third 

stage {𝐴1}, {𝐴2, 𝐴3, 𝐴4, 𝐴5 }. 

Finally, the above two clusters can be further clustered 

into a unique cluster {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 }.  

All the above processes can be presented as in Fig. 1. 

 

 

 

 

 

 

 

FIGURE 1: Classification of the building materi-

als 𝐴𝑘(𝑘 =  1,2, . . . ,5) 

Example 2. Consider four enterprises, represented by 

the INSs �̃�𝑘(𝑘 =  1,2,3,4)  in the attribute set 𝑋 =

 {𝑥1, 𝑥2, . . . , 𝑥6} , where (1)  𝑥1−the ability of sale; (2) 

𝑥2−the ability of management; (3)  𝑥3−the ability of 

production; (4)  𝑥4 −the ability of technology; (5) 

𝑥5−the ability of financing; (6) 𝑥6−the ability of risk 

bearing (the weight vector of 𝑥𝑖(𝑖 =  1,2, . . . ,6) is 𝜔 =

 (0.25,0.20,15,0.10,0.15,0.15) . The given data are 

listed as follows. 

�̃�1 = {(𝑥1, [0.70,0.75], [0.25,0.45], [0.10,0.15]), 

            (𝑥2, [0.00,0.10], [0.15,0.15], [0.80,0.90]), 

            (𝑥3, [0.15,0.20], [0.05,0.35], [0.60,0.65]), 

            (𝑥4, [0.50,0.55], [0.45,0.55], [0.30,0.35]), 

            (𝑥5, [0.10,0.15], [0.40,0.60], [0.50,0.60]),  

            (𝑥6, [0.70,0.75], [0.20,0.25], [0.10,0.15])} 

�̃�2 = (𝑥1, [0.40,0.45], [0.00,0.15], [0.30,0.35]), 

           (𝑥2, [0.60,0.65], [0.10,0.25], [0.20,0.30]), 

           (𝑥3, [0.80,1.00], [0.05,0.75], [0.00,0.00]), 

           (𝑥4, [0.70,0.90], [0.35,0.65], [0.00,1.00]), 

           (𝑥5, [0.70,0.75], [0.15,0.55], [0.10,0.20]), 

           (𝑥6, [0.90,1.00], [0.30,0.35], [0.00,0.00])}. 

�̃�3 = (𝑥1, [0.20,0.30], [0.85,0.60], [0.40,0.45), 

            (𝑥2, [0.80,0.90], [0.10,0.25], [0.00,0.10]), 

            (𝑥3, [0.10,0.20], [0.00,0.05], [0.70,0.80]), 

            (𝑥4, [0.15,0.20], [0.25,0.45], [0.70,0.75]), 

            (𝑥5, [0.00,0.10], [0.25,0.35], [0.80,0.90]), 

            (𝑥6, [0.60,0.70], [0.15,0.25], [0.20,0.30])}. 

�̃�4 = (𝑥1, [0.60,0.65], [0.05,0.10], [0.30,0.35]), 

           (𝑥2, [0.45,0.50], [0.45,0.55], [0.30,0.40]), 

           (𝑥3, [0.20,0.25], [0.05,0.25], [0.65,0.70]), 

           (𝑥4, [0.20,0.30], [0.35,0.45], [0.50,0.60]), 

           (𝑥5, [0.00,0.10], [0.35,0.75], [0.75,0.80]), 

           (𝑥6, [0.50,0.60], [0.00,0.05], [0.20,0.25])}. 

 

Here Algorithm 2 can be used to classify the enter-

prises�̃�𝑘(𝑘 =  1,2,3,4): 

Step 1 In the first stage, each of the INSs �̃�𝑘(𝑘 =

 1,2,3,4)   is considered as a unique cluster 

{�̃�1}, {�̃�2}, {�̃�3}, {�̃�4} 

Step 2 Compare each INS �̃�𝑘  with all the other three 

INSs by using Eq. (5) 

𝑑1
𝜔(�̃�1, �̃�2) = 𝑑1

𝜔(�̃�2, �̃�1) = 0.3337, 

𝑑1
𝜔(�̃�1, �̃�3) = 𝑑1

𝜔(�̃�3, �̃�1) = 0.2937, 

𝑑1
𝜔(�̃�1, �̃�4) = 𝑑1

𝜔(�̃�4, �̃�1) = 0.2041, 

𝑑1
𝜔(�̃�2, �̃�3) = 𝑑1

𝜔(�̃�3, �̃�2) = 0.3508, 

𝑑1
𝜔(�̃�2, �̃�4) = 𝑑1

𝜔(�̃�4, �̃�2) = 0.2970, 

𝑑1
𝜔(�̃�3, �̃�4) = 𝑑1

𝜔(�̃�4, �̃�3) = 0.2487, 

then the INSs �̃�𝑘(𝑘 =  1,2,3,4)  can be clustered into 

the following three clusters at the second stage  

{�̃�1, �̃�4}, {�̃�2}, {�̃�3}. 

Step 3 Calculate the center of each cluster by using Eq. 

(9) 

𝑐{�̃�2} = {�̃�2}, 𝑐{�̃�3} = {�̃�3}, 

𝑐{�̃�1, �̃�4} = 𝐹𝜔(�̃�1, �̃�4) = 

                      (𝑥1, [0.60,0.70], [0.11,0.21], [0.17,0.22]), 

                      (𝑥2, [0.25,0.32], [0.25,0.28], [0.48,0.60]), 

                      (𝑥3, [0.17,0.22], [0.05,0.29], [0.62,0.67]), 

                      (𝑥4, [0.36,0.43], [0.39,0.49], [0.38,0.45]), 

                      (𝑥5, [0.05,0.12], [0.37,0.67], [0.61,0.69]), 

                      (𝑥6, [0.61,0.68], [0.00,0.011], [0.14,0.19])}. 

and then compare each cluster with the other two clus-

ters by using Eq. (5) 

  

  
  

  

  
    

 
 

 
 {A1}        {A2}         {A4}    {A3}          {A5}   

  

  

{A2,A3,A4,A5} 
} 

{A1,A2,A3,A4,A5} 

} 

{A2,A4} 
} 

{A3,A5} 

} 
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 𝑑1
𝜔(𝑐{�̃�2}, 𝑐{�̃�3}) = 𝑑1

𝜔(𝑐{�̃�3}, 𝑐{�̃�2}) = 0.3508 

𝑑1
𝜔(𝑐{�̃�2}, 𝑐{�̃�1, �̃�4}) = 𝑑1

𝜔(𝑐{�̃�4, �̃�1}, 𝑐{�̃�2}) = 0.3003 

𝑑1
𝜔(𝑐{�̃�3}, 𝑐{�̃�1, �̃�4}) = 𝑑1

𝜔(𝑐{�̃�4, �̃�1}, 𝑐{�̃�3}) = 0.2487. 

then the INSs �̃�𝑘(𝑘 =  1,2,3,4)  can be clustered into 

the following two clusters in the third stage 

{�̃�2}, {�̃�1, �̃�3, �̃�4}. 

In the final stage, the above two clusters can be further 

clustered into a unique cluster {�̃�1, �̃�2, �̃�3, �̃�4}. 

Note that the clustering results obtained in Example 1 

and 2 are different from ones in [21]. 

All the above processes can be presented as in Fig. 2. 

 FIGURE 2: Classification of the enterprises �̃�𝑘(𝑘 =

 1,2,3,4)   

Interval neutrosophic information is a generalization of 
interval valued intuitionistic fuzzy information while the 

single valued neutrosophic information extends the intui-
tionistic fuzzy information. In other words, The components 

of IFS and IVIFS are defined with respect to 𝑇 and 𝐹, i.e., 

membership and nonmembership only, so they can only 
handle incomplete information but not the indetermine in-

formation. Hence INS and SVNS, whose components are 
the truth membership, indeterminacy-membership and fal-

sity membership functions, are more general than others that 

do not include the indeterminacy-membership. Therefore, it 
is a natural outcome that the neutrosophic hierarchical clus-

tering algorithms developed here is the extension of both the 
intuitionistic hierarchical clustering algorithm and its extend 

form. The above expression clearly indicates that clustering 
analysis under neutrossophic environment is more general 

and more practical than existing hierarchical clustering al-

gorithms. 

4 Conclusion 

To cluster the data represented by neutrosophic infor-
mation, we have discussed on the clustering problems of 

SVNSs and INSs. Firstly, we have proposed a single valued 

neutrosophic hierarchical algorithm for clustering SVNSs, 

which is based on the traditional hierarchical clustering pro-

cedure, the single valued neutrosophic aggregation operator, 
and the basic distance measures between SVNSs. Then, we 

have extented the algorithm to INSs for clustering interval 

neutrosophic data. Finally, an illustrative example is pre-
sented to demonstrate the application and effectiveness of 

the developed clustering algorithms. Since the NSs are a 
more general platform to deal with uncertainties, the pro-

posed neutrosophic hierarchical algorithms are more prior-

ity than the other ones. In the future we will focus our atten-
tion on the another clustering methods of neutrosophic in-

formation. 
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