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Abstract. The overarching structures like intuitionistic fuzzy sets, Pythagorean fuzzy sets, m-polar fuzzy sets,

and neutrosophic fuzzy sets etc. have their own inadequacies and impediments. These models are unable

to do work because of their impediments in many real life situations. To overcome these deficiencies, in this

paper, we introduce a set entitled Pythagorean m-polar fuzzy neutrosophic set (PmFNS), as a hybrid model of

Pythagorean fuzzy set, m-polar fuzzy set and single-valued neutrosophic set. We define some notions related to

PmFNS with the help of illustrations. We also present some concept of Pythagorean m-polar fuzzy neutrosophic

topology alongside its leading characteristics. We render two applications of PmFNS of scarcity of water and

uplifting economy ruined due to COVID-19 using TOPSIS.

Keywords: Pythagorean m-polar fuzzy neutrosophic set; Pythagorean m-polar fuzzy neutrosophic topology;

TOPSIS; COVID-19

—————————————————————————————————————————-

1. Introduction

The methods usually working in classical mathematics are not generally advantageous for the

reason that uncertainties and unclearness being there, to tackle real world difficulties. There

are numerous methods to handle such circumstances. Unfortunately, all these models have

their own restrictions and drawbacks. In 1965, the thought of fuzzy sets as an augmentation
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of the conventional crisp set was inaugurated by Zadeh [18], to overcome these deficiencies,

by associating the membership function µA : X → [0, 1]. Hence, in this new outline, we face

the problems relating to topology, the study on them form the subjects of fuzzy topology. In

1968, Chang explained fuzzy topology, as a branch merging ordered structure with topological

structure, on fuzzy set. Pao-Ming and Ying-Ming [10] defined the formation of neighborhood

of fuzzy-point. In 1983, Atanassov [2, 3] provided the idea of intuitionistic fuzzy sets (IFSs).

Later, intuitionistic fuzzy topological spaces via intuitionistic fuzzy sets were obtained by

Çoker et al. [5]. Lee and Lee [7] gave the outlook of intuitionistic fuzzy points accompanied

by the notion of intuitionistic fuzzy neighborhoods. They discovered the characteristics of

continuous, open and closed maps in the intuitionistic fuzzy topological spaces. In 2013,

Yager [15]- [17] presented Pythagorean fuzzy sets as an expansion of intuitionistic fuzzy sets

with a wider scope of applications and presented Pythagorean membership grades with their

practical implementations to the multi-criteria decision making (MCDM). Olgun et al. [9]

introduced the idea of Pythagorean fuzzy topological space.

In 2005, the model of neutrosophic sets, which is the broad view of intuitionistic fuzzy sets, for

handling with difficulties involving exaggeration, indeterminacy and irregularity was explored

by Smarandache [13]. The notion of fuzzy neutrosophic sets was presented by Arockiarani et

al. [1]. Recently, Jansi and Mohana [6] coined the notion of pairwise Pythagorean neutrosophic

bitopological spaces treating truth and falsity membership functions as dependent neutrosophic

components. Neutrosophic set was protracted to Plithogenic set [14] by Smarandache, which

is a collection whose each element is regarded as by many attribute values and every attribute

value has either a fuzzy, intuitionistic fuzzy or neutrosophic degree of appurtenance to the set.

Chen et al. [4] expanded the view of bipolar fuzzy sets to m-polar fuzzy sets and provided some

of its practical implementations in day-to-day situations. In 2019, Naeem et al. [8] explored

the notions of Pythagorean m-polar fuzzy sets (PmFSs) along with some of their foremost

features. They also gave an application of PmFSs in decision making difficulty of selection of

most suitable manner of the advertisement using the conventional tool TOPSIS (Technique

based on Order Preference by Similarity to Ideal Solution). Later, Riaz et al. [11] extended

the notion to corresponding soft sets.

The main aspiration behind this article is to study some features of Pythagorean m-polar

fuzzy neutrosophic sets and construct topology on it. There appear several circumstances

where data contains multi-polar facts and figures. Pythagorean m-polar fuzzy neutrosophic

sets (PmFNSs) is one of the utmost suitable tools for managing such conditions. It can be

used to illustrate the ambiguous facts further satisfactorily and exactly. It has been used in

many areas for example in aggregation operators, information measures, and decision making.

Because of such an evolution, we present an outline on Pythagorean m-polar fuzzy neutrosophic
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sets with goal of offering a clear outlook on the different tools, concepts and trends related to

their extensions. The rest of the paper is systemized as: Elementary notions are dealt with in

Section 2. Section 3 presents some notions of Pythagorean m-polar fuzzy neutrosophic sets.

The topological structure on our proposed model along with its prime attributes is presented

in Section 4. Two applications of decision making are rendered in Section 5.

2. Preliminaries

Definition 2.1. [18] A collection of orderly pairs (ℏ, TF (ℏ)), ℏ being an element of the

underlying universe X and TF (the affiliation, association or membership function) is a well-

defined map, that drives members of X to [0, 1], is entitled as a fuzzy set (FS) F over X. In

other words

T (ℏ) =











1, if ℏ ∈ F

0, if ℏ /∈ F

]0, 1[, if ℏ is partially in F

Definition 2.2. [2, 3] An intuitionistic fuzzy set (IFS) G in X is an object having the form

G = {〈ℏ, T (ℏ), F (ℏ)〉 : ℏ ∈ X}

where the membership function T (ℏ) : X → [0, 1] and the non-membership function F (ℏ) :

X → [0, 1] for every x ∈ X obey the constraint

0 ≤ T (ℏ) + F (ℏ) ≤ 1.

Definition 2.3. [15,16] A Pythagorean fuzzy set, shortened as PFS, is a collection defined by

P =
{

< ℏ, TP (ℏ), FP (ℏ) >: ℏ ∈ X
}

where TP and FP are mappings from a set X to [0, 1] obeying the restriction 0 ≤ T 2
P (ℏ) +

F 2
P (ℏ) ≤ 1, representing correspondingly the affiliation and dissociation grades of ℏ ∈ X to P .

The ordered pair p = (Tp, Fp) is accredited as Pythagorean fuzzy number (PFN). The quantity

`(ℏ) =
√

1 − {T 2(ℏ) + F 2(ℏ)} is famous as the hesitation margin.

Definition 2.4. [12, 13] A neutrosophic set N on the underlying set X is defined as

N = {< ℏ, TN(ℏ), IN(ℏ), FN(ℏ) >: ℏ ∈ X}

where T, I, F : X 7→]−0, 1+[ accompanied by the constraint −0 ≤ TN(ℏ) + IN(ℏ) +FN(ℏ) ≤ 3+.

Here TN(ℏ), IN(ℏ) and FN(ℏ) are the degrees of membership, indeterminacy and falsity (non-

membership) of members of the given set, respectively. T , I and F are acknowledged as the

neutrosophic components.
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Definition 2.5. [1] A fuzzy neutrosophic set (fn-set) over X is delineated as

A = {< ℏ, TA(ℏ), IA(ℏ), FA(ℏ) >: ℏ ∈ X}

where T, I, F : X 7→ [0, 1] in such a way that 0 ≤ TA(ℏ) + IA(ℏ) + FA(ℏ) ≤ 3.

Definition 2.6. [8] Suppose that m ∈ N. A Pythagorean m-polar fuzzy set (PmFS) P

over X is regarded as by the mappings T
(i)
P : X 7→ [0, 1] (the membership functions) and

F
(i)
P : X 7→ [0, 1] (the non-membership functions) with the limitation that

0 ≤
(

T
(i)
P (ℏ)

)2
+
(

F
(i)
P (ℏ)

)2
≤ 1

for integral values of i ranging from 1 to m.

A PmFS may be articulated as

P =
{

〈

ℏ,
(

(

T
(1)
P (ℏ), F

(1)
P (ℏ)

)

, · · · ,
(

T
(m)
P (ℏ), F

(m)
P (ℏ)

)

)

〉

: ℏ ∈ X
}

or more conveniently as

P =

{

ℏ
(

(

T
(1)
P

(ℏ), F (1)
P

(ℏ)
)

, · · · ,
(

T
(m)
P

(ℏ), F (m)
P

(ℏ)
)

) : ℏ ∈ X

}

=

{

ℏ
(

(

T
(i)
P

(ℏ), F (i)
P

(ℏ)
)

) : ℏ ∈ X; i = 1, 2, · · · ,m

}

The tabular materialization of P is

P

ℏ1
(

T
(1)
P

(ℏ1), F
(1)
P

(ℏ1)
)

· · ·
(

T
(m)
P

(ℏ1), F
(m)
P

(ℏ1)
)

ℏ2
(

T
(1)
P

(ℏ2), F
(1)
P

(ℏ2)
)

· · ·
(

T
(m)
P

(ℏ2), F
(m)
P

(ℏ2)
)

...
...

. . .
...

ℏk
(

T
(1)
P

(ℏk), F
(1)
P

(ℏk)
)

· · ·
(

T
(m)
P

(ℏk), F
(m)
P

(ℏk)
)

and in matrix format as

P =















(

T
(1)
P

(ℏ1), F
(1)
P

(ℏ1)
)

· · ·
(

T
(m)
P

(ℏ1), F
(m)
P

(ℏ1)
)

(

T
(1)
P

(ℏ2), F
(1)
P

(ℏ2)
)

· · ·
(

T
(m)
P

(ℏ2), F
(m)
P

(ℏ2)
)

...
. . .

...
(

T
(1)
P

(ℏk), F
(1)
P

(ℏk)
)

· · ·
(

T
(m)
P

(ℏk), F
(m)
P

(ℏk)
)















This matrix of order k ×m is reckoned as PmF-matrix.

Definition 2.7. Let X 6= φ be a crisp set. A family τ of subsets of X is called a topology on

X if

(i) φ and X itself belong to τ .

(ii) The union of any number of members of τ is again in τ .

(iii) The intersection of any finite number of members of τ belong to τ .

If τ is a topology on X, then (X, τ) is known as a topological space.
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Example 2.8. Let X = {s, f}, then τ1 = {φ,X}, τ2 = {φ, {s},X}, τ3 = {φ, {f},X} and

τ4 = {φ, {s}, {f},X} are topologies on X.

Likewise, if τ is the union of all open intervals in the set R of reals, then τ is a topology (called

real topology) on R. R with this topology is called the real line.

3. Pythagorean m-Polar Fuzzy Neutrosophic Sets

In this section, we introduce the notion of Pythagorean m-polar fuzzy neutrosophic set along

with its prime characteristics and illustrations.

Definition 3.1. A Pythagorean m-polar fuzzy neutrosophic set (PmFNS) ℑ over a basic set

X is marked by three mappings T
(i)
ℑ : X → [0, 1]m, I

(i)
ℑ : X → [0, 1]m and F

(i)
ℑ : X → [0, 1]m,

where m is a natural number, ∀i = 1, 2, · · · ,m, with the limitation that

0 ≤
(

T
(i)
ℑ (ℏ)

)2
+
(

I
(i)
ℑ (ℏ)

)2
+
(

F
(i)
ℑ (ℏ)

)2
≤ 2

for all ℏ ∈ X.

A PmFNS may be expressed as

ℑ =
{

(ℏ,
(

(T
(1)
ℑ (ℏ), I

(1)
ℑ (ℏ), F

(1)
ℑ (ℏ)), · · · , (T

(m)
ℑ (ℏ), I

(m)
ℑ (ℏ), F

(m)
ℑ (ℏ))

)

: ℏ ∈ X
}

=

{

ℏ

(T
(1)
ℑ (ℏ), I

(1)
ℑ (ℏ), F

(1)
ℑ (ℏ)), · · · , (T

(m)
ℑ (ℏ), I

(m)
ℑ (ℏ), F

(m)
ℑ (ℏ))

: ℏ ∈ X

}

=

{

ℏ

(T
(i)
ℑ (ℏ), I

(i)
ℑ (ℏ), F

(i)
ℑ (ℏ))

: ℏ ∈ X, i = 1, 2, · · · ,m

}

If cardinality of X is l, then tabular structure of ℑ is as in Table 1:

Table 1. Tabular representation of PmFNS ℑ

ℑ

ℏ1
(

T
(1)
ℑ

(ℏ1), I
(1)
ℑ

(ℏ1), F
(1)
ℑ

(ℏ1)
) (

T
(2)
ℑ

(ℏ1), I
(2)
ℑ

(ℏ1), F
(2)
ℑ

(ℏ1)
)

· · ·
(

T
(m)
ℑ

(ℏ1), I
(m)
ℑ

(ℏ1), F
(m)
ℑ

(ℏ1)
)

ℏ2
(

T
(1)
ℑ

(ℏ2), I
(1)
ℑ

(ℏ2), F
(1)
ℑ

(ℏ2)
) (

T
(2)
ℑ

(ℏ2), I
(2)
ℑ

(ℏ2), F
(2)
ℑ

(ℏ2)
)

· · ·
(

T
(m)
ℑ

(ℏ2), I
(m)
ℑ

(ℏ2), F
(m)
ℑ

(ℏ2)
)

...
...

...
. . .

...

ℏl
(

T
(1)
ℑ

(ℏl), I
(1)
ℑ

(ℏl), F
(1)
ℑ

(ℏl)
) (

T
(2)
ℑ

(ℏl), I
(2)
ℑ

(ℏl), F
(2)
ℑ

(ℏl)
)

· · ·
(

T
(m)
ℑ

(ℏl), I
(m)
ℑ

(ℏl), F
(m)
ℑ

(ℏl)
)

The corresponding matrix format is

ℑ =











(

T
(1)
ℑ

(ℏ1), I
(1)
ℑ

(ℏ1), F
(1)
ℑ

(ℏ1)
) (

T
(2)
ℑ

(ℏ1), I
(2)
ℑ

(ℏ1), F
(2)
ℑ

(ℏ1)
)

· · ·
(

T
(m)
ℑ

(ℏ1), I
(m)
ℑ

(ℏ1), F
(m)
ℑ

(ℏ1)
)

(

T
(1)
ℑ

(ℏ2), I
(1)
ℑ

(ℏ2), F
(1)
ℑ

(ℏ2)
) (

T
(2)
ℑ

(ℏ2), I
(2)
ℑ

(ℏ2), F
(2)
ℑ

(ℏ2)
)

· · ·
(

T
(m)
ℑ

(ℏ2), I
(m)
ℑ

(ℏ2), F
(m)
ℑ

(ℏ2)
)

...
...

. . .
...

(

T
(1)
ℑ

(ℏl), I
(1)
ℑ

(ℏl), F
(1)
ℑ

(ℏl)
) (

T
(2)
ℑ

(ℏl), I
(2)
ℑ

(ℏl), F
(2)
ℑ

(ℏl)
)

· · ·
(

T
(m)
ℑ

(ℏl), I
(m)
ℑ

(ℏl), F
(m)
ℑ

(ℏl)
)











This l ×m matrix is known as PmFN matrix. The assortment of each PmFNS characterized

over universe would be designated by PmFNS(X).
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Example 3.2. If X={e, f} be a crisp set, then

ℑ =
{ e

(0.57, 0.52, 0.91), (0.09, 0.37, 0.47), (0.00, 0.49, 0.81)
,

f

(0.79, 0.33, 0.67), (1.00, 0.00, 0.07), (0.77, 0.99, 1.00)

}

is a P3FNS defined over X. The tabular form of this set is as in Table 2:

Table 2. Tabular representation of P3FNS ℑ

ℑ

e (0.57, 0.52, 0.91) (0.09, 0.37, 0.47) (0.00, 0.49, 0.81)

f (0.79, 0.33, 0.67) (1.00, 0.00, 0.07) (0.77, 0.39, 1.00)

The matrix form of this set is

ℑ =

(

(0.57, 0.52, 0.91) (0.09, 0.37, 0.47) (0.00, 0.49, 0.81)

(0.79, 0.33, 0.67) (1.00, 0.00, 0.07) (0.77, 0.39, 1.00)

)

Definition 3.3. Let ℑ1 and ℑ2 be PmFNSs over X. ℑ1 is acknowledged as a subset of ℑ2,

written as ℑ1 ⊆ ℑ2, ∀ℑ ∈ X and each values of i ranging from 1 to m, if

1) T
(i)
ℑ1

(ℏ) ≤ T
(i)
ℑ2

(ℏ),

2) I
(i)
ℑ1

(ℏ) ≥ I
(i)
ℑ2

(ℏ),

3) F
(i)
ℑ1

(ℏ) ≥ F
(i)
ℑ2

(ℏ).

ℑ1 and ℑ2 are said to be equal if ℑ1 ⊆ ℑ2 ⊆ ℑ1 and is written as ℑ1 = ℑ2.

Example 3.4. Let

ℑ1 =







(0.41, 0.29, 1.00) (0.71, 0.09, 0.88) (0.49, 0.23, 0.00)

(0.39, 0.76, 0.97) (0.00, 1.00, 0.66) (0.01, 0.59, 0.77)

(0.5, 0.02, 0.03) (0.04, 0.43, 0.61) (0.82, 0.03, 0.2)







and

ℑ2 =







(0.58, 0.06, 0.00) (0.89, 0.04, 0.19) (1.00, 0.21, 0.00)

(0.92, 0.04, 0.11) (0.17, 0.00, 0.29) (1.00, 0.33, 0.23)

(0.73, 0.02, 0.01) (0.64, 0.22, 0.03) (0.91, 0.01, 0.06)







be PmFNSs over some set X, then ℑ1 ⊆ ℑ2.

Definition 3.5. A PmFNS ℑ over X is known as null PmFNS if T
(i)
ℑ (ℏ) = 0 , I

(i)
ℑ (ℏ) = 1 and

F
(i)
ℑ (ℏ) = 1, ∀ℏ ∈ X and all acceptable values of i. It is designated by Φ.
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Thus,

Φ =















(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)

(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)
...

...
. . .

...

(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)















.

Definition 3.6. A PmFNS ℑ over X is called an absolute PmFNS if T
(i)
ℑ (ℏ) = 1, I

(i)
ℑ (ℏ) = 0,

and F
(i)
ℑ (ℏ) = 0, ∀ℏ ∈ X. It is denoted by χ̆.

Thus,

χ̆ =















(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)

(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)
...

...
. . .

...

(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)















.

Definition 3.7. The complement of a PmFNS

ℑ =

{

ℏ

(T
(i)
ℑ (ℏ), I

(i)
ℑ (ℏ), F

(i)
ℑ (ℏ))

: ℏ ∈ X, i = 1, · · · ,m

}

over X is defined as

ℑc =

{

ℏ

(F
(i)
ℑ (ℏ), 1 − I

(i)
ℑ (ℏ), T

(i)
ℑ (ℏ))

: ℏ ∈ X, i = 1, · · · ,m

}

.

Example 3.8. The complement of the PmFNS ℑ given in example 3.2 is

ℑc =

(

(0.91, 0.48, 0.57) (0.47, 0.63, 0.09) (0.81, 0.51, 0.00)

(0.67, 0.67, 0.79) (0.07, 1.00, 1.00) (1.00, 0.01, 0.77)

)

.

Remark 3.9. It may be observed from the entry at (2, 2) position of the matrix given in

Example 3.8 that 0.072 + 1.002 + 1.002 � 2. Thus, we may infer that the complement of a

PmFNS is not always a PmFNS. Further, the complement of a PmFNS will be a PmFNS

iff the sum of squares of the three neutrosophic components does not exceed 2I(i) + 1 i.e.

(T (i))2 + (I(i))2 + (F (i))2 ≤ 2I(i) + 1.

Definition 3.10. The union of any PmFNSs ℑ1 and ℑ2 expressed over the same universe X

is represented as

ℑ1∪Mℑ2 =
{ ℏ

(max(T
(i)
ℑ1(ℏ), T

(i)
ℑ2 (ℏ)),min(I

(i)
ℑ1(ℏ), I

(i)
ℑ2(ℏ)),min(F

(i)
ℑ1(ℏ), F

(i)
ℑ2 (ℏ))

: ℏ ∈ X, i = 1, · · · ,m
}

Definition 3.11. The intersection of any PmFNSs ℑ1 and ℑ2 expressed over the same universe

X is represented as

ℑ1∩Mℑ2 =
{ ℏ

(min(T
(i)
ℑ1 (ℏ), T

(i)
ℑ2 (ℏ)),max(I

(i)
ℑ1(ℏ), I

(i)
ℑ2(ℏ),max(F

(i)
ℑ1 (ℏ), F

(i)
ℑ2 (ℏ))

: ℏ ∈ X, i = 1, · · · ,m
}
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Example 3.12. If

ℑ1 =







(0.57, 0.61, 0.19) (0.74, 0.61, 0.00) (0.00, 0.55, 0.22)

(0.11, 0.88, 1.00) (0.49, 0.99, 0.10) (0.92, 0.67, 0.80)

(0.00, 0.36, 0.29) (0.70, 0.20, 1.00) (1.00, 0.00, 0.46)







and

ℑ2 =







(1.00, 0.59, 0.32) (0.50, 0.72, 1.00) (0.33, 1.00, 0.70)

(0.78, 0.09, 0.50) (0.00, 0.66, 0.11) (0.54, 0.61, 0.00)

(0.60, 0.00, 0.85) (0.28, 0.43, 0.90) (0.83, 0.40, 0.14)







are two PmFNSs defined over the same universe of discourse X, then

ℑ1 ∪M ℑ2 =







(1.00, 0.59, 0.19) (0.74, 0.61, 0.00) (0.33, 0.55, 0.22)

(0.78, 0.09, 0.50) (0.49, 0.66, 0.10) (0.92, 0.61, 0.00)

(0.60, 0.00, 0.29) (0.70, 0.20, 0.90) (1.00, 0.00, 0.14)







and

ℑ1 ∩M ℑ2 =







(0.57, 0.61, 0.32) (0.50, 0.72, 1.00) (0.00, 1.00, 0.70)

(0.11, 0.88, 1.00) (0.00, 0.99, 0.11) (0.54, 0.67, 0.80)

(0.00, 0.36, 0.85) (0.28, 0.43, 1.00) (0.83, 0.40, 0.46)







Proposition 3.13. If ℑ,ℑ1,ℑ2,ℑ3 are PmFNSs over X, then

(1) Φ ∪M ℑ = ℑ

(2) Φ ∩M ℑ = Φ

(3) χ̆ ∪M ℑ = χ̆

(4) χ̆ ∩M ℑ = ℑ

(5) ℑ ∪M ℑ = ℑ

(6) ℑ ∩M ℑ = ℑ

(7) ℑ1 ∪M ℑ2 = ℑ2 ∪M ℑ1

(8) ℑ1 ∩M ℑ2 = ℑ2 ∩M ℑ1

(9) ℑ1 ∪M (ℑ2 ∪M ℑ3) = (ℑ1 ∪M ℑ2) ∪M ℑ3

(10) ℑ1 ∩M (ℑ2 ∩M ℑ3) = (ℑ1 ∩M ℑ2) ∩M ℑ3

(11) ℑ1 ∪M (ℑ2 ∩M ℑ3) = (ℑ1 ∪M ℑ2) ∩M (ℑ1 ∪M ℑ3)

(12) ℑ1 ∩M (ℑ2 ∪M ℑ3) = (ℑ1 ∩M ℑ2) ∪M (ℑ1 ∩M ℑ3)

Proof. Here, we prove only (11). We may assume, without losing the generality, that

max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)) = T
(i)
ℑ1

(ℏ), max(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)) = I
(i)
ℑ1

(ℏ) and max(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)) =
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F
(i)
ℑ1

(ℏ). Then, ∀ℏ ∈ X and i = 1, 2, · · · ,m.

ℑ2 ∩M ℑ3 =
{ ℏ
(

min(T
(i)
ℑ2

(ℏ), T
(i)
ℑ3

(ℏ)),max(I
(i)
ℑ2

(ℏ), I
(i)
ℑ3

(ℏ)),max(F
(i)
ℑ2

(ℏ), F
(i)
ℑ3

(ℏ))
)

}

=
{ ℏ
(

T
(i)
ℑ2

(ℏ), I
(i)
ℑ2

(ℏ), F
(i)
ℑ2

(ℏ)
)

}

∴ ℑ1 ∪M (ℑ2 ∩M ℑ3) =
{ ℏ
(

T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ)
)

}

∪M

{ ℏ
(

T
(i)
ℑ2

(ℏ), I
(i)
ℑ2

(ℏ), F
(i)
ℑ2

(ℏ)
)

}

=
{ ℏ
(

max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)),min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)),min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ))
)

}

=
{ ℏ
(

T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ)
)

}

and

ℑ1 ∪M ℑ2 =
{ ℏ
(

max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)),min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)),min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)
)

}

=
{ ℏ

(T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ))

}

ℑ1 ∪M ℑ3 =
{ ℏ
(

max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ3

(ℏ)),min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ3

(ℏ)),min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ3

(ℏ))
)

}

=
{ ℏ

(T
(i)
ℑ3

(ℏ), I
(i)
ℑ3

(ℏ), F
(i)
ℑ3

(ℏ))

}

∴ (ℑ1 ∪M ℑ2) ∩M (ℑ1 ∪M ℑ3) =
{ ℏ
(

min(T
(i)
ℑ1

(ℏ), T
(i)
ℑ3

(ℏ)),max(I
(i)
ℑ1

(ℏ), I
(i)
ℑ3

(ℏ)),max(F
(i)
ℑ1

(ℏ), F
(i)
ℑ3

(ℏ))
)

}

=
{ ℏ

(T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ))

}

0.1cm

Corollary 3.14. (1) Φ ∪M χ̆ = χ̆

(2) Φ ∩M χ̆ = Φ

Proposition 3.15. If ℑ1 and ℑ2 are PmFNSs over X, then

(1) ℑ1 ∩M ℑ2 ⊆ ℑ1 ⊆ ℑ1 ∪M ℑ2

(2) ℑ1 ∩M ℑ2 ⊆ ℑ2 ⊆ ℑ1 ∪M ℑ2

Proof. The results are easy consequences of properties of max and min. 0.1cm

Proposition 3.16. Let ℑ1, ℑ2 be PmFNSs over universe set X, then De Morgan laws hold

i.e.
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(1) (ℑ1 ∪M ℑ2)
c = ℑc

1 ∩M ℑc
2.

(2) (ℑ1 ∩M ℑ2)
c = ℑc

1 ∪M ℑc
2.

Proof. : Here, we demonstrate only (1). The verification of (2) perhaps provided in the same

way. We may assume, without losing the generality, that max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)) = T
(i)
ℑ1

(ℏ),

max(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)) = I
(i)
ℑ1

(ℏ) and max(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)) = F
(i)
ℑ1

(ℏ). Then, ∀ ℏ ∈ X and i =

1, 2, · · · ,m.

(ℑ1 ∪M ℑ2)
c =

{ ℏ

(max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ)),min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)),min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)))

}c

=
{ ℏ

(T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ))

}c

=
{ ℏ

(F
(i)
ℑ1

(ℏ), 1 − I
(i)
ℑ1

(ℏ), T
(i)
ℑ1

(ℏ))

}

and

ℑc
1 ∩M ℑc

2 =
{ ℏ

(T
(i)
ℑ1

(ℏ), I
(i)
ℑ1

(ℏ), F
(i)
ℑ1

(ℏ))

}c
∩M

{ ℏ

(T
(i)
ℑ2

(ℏ), I
(i)
ℑ2

(ℏ), F
(i)
ℑ2

(ℏ))

}c

=
{ ℏ

(F
(i)
ℑ1

(ℏ), 1 − I
(i)
ℑ2

(ℏ), T
(i)
ℑ1

(ℏ))

}

∩M

{ ℏ

(F
(i)
ℑ2

(ℏ), 1 − I
(i)
ℑ2

(ℏ), T
(i)
ℑ2

(ℏ))

}

=
{ ℏ

(min(F
(i)
ℑ1

(ℏ), F
(i)
ℑ2

(ℏ)), 1 − min(I
(i)
ℑ1

(ℏ), I
(i)
ℑ2

(ℏ)),max(T
(i)
ℑ1

(ℏ), T
(i)
ℑ2

(ℏ))

}

=
{ ℏ

(F
(i)
ℑ1

(ℏ), 1 − I
(i)
ℑ1

(ℏ), T
(i)
ℑ1

(ℏ))

}

0.1cm

Remark 3.17. Let ℑ is a PmFNS over universe set X. Then

(1) ℑ ∪M ℑc 6= χ̆

(2) ℑ ∩M ℑc 6= Φ

Proposition 3.18. (1) Φc = χ̆

(2) χ̆c = Φ

(3) (ℑc)c = ℑ

Proof. Straight forward. 0.1cm

Definition 3.19. The difference of two PmFNS ℑ1 and ℑ2 expressed over the same universe

X is represented as

ℑ1 \ ℑ2 =
{

ℏ
(min(T

(i)
ℑ1 (ℏ),F

(i)
ℑ2 (ℏ)),min(I

(i)
ℑ1(ℏ),I

(i)
ℑ2(ℏ)),max(F

(i)
ℑ1 (ℏ),T

(i)
ℑ2 (ℏ))

: ℏ ∈ X, i = 1, 2, · · · ,m
}
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Example 3.20. For ℑ1 and ℑ2 given in Example 3.12, we have

ℑ1 \ ℑ2 =







(0.32, 0.59, 1.00) (0.74, 0.61, 0.50) (0.00, 0.55, 0.33)

(0.11, 0.09, 1.00) (0.11, 0.66, 0.10) (0.00, 0.61, 0.80)

(0.00, 0.00, 0.60) (0.70, 0.20, 1.00) (0.14, 0.00, 0.83)







Definition 3.21. The symmetric difference of two PmFNSs ℑ1 and ℑ2 is set of elements

which are either in ℑ1 or in ℑ2 but not in both i.e.

ℑ1△ℑ2 = (ℑ1 \ ℑ2) ∪M (ℑ2 \ ℑ1)

Example 3.22. Let

ℑ1 =







(0.57, 0.61, 0.19) (0.74, 0.61, 0.00) (0.00, 0.55, 0.22)

(0.11, 0.88, 1.00) (0.49, 0.99, 0.10) (0.92, 0.67, 0.80)

(0.00, 0.36, 0.29) (0.70, 0.20, 1.00) (1.00, 0.00, 0.46)







and

ℑ2 =







(1.00, 0.59, 0.32) (0.50, 0.72, 1.00) (0.33, 1.00, 0.70)

(0.78, 0.09, 0.50) (0.00, 0.66, 0.11) (0.54, 0.61, 0.00)

(0.60, 0.00, 0.85) (0.28, 0.43, 0.90) (0.83, 0.40, 0.14)







so that

ℑ1 \ ℑ2 =







(0.32, 0.59, 1.00) (0.74, 0.61, 0.50) (0.00, 0.55, 0.33)

(0.11, 0.09, 1.00) (0.11, 0.66, 0.10) (0.00, 0.61, 0.80)

(0.00, 0.00, 0.60) (0.70, 0.20, 1.00) (0.14, 0.00, 0.83)







and

ℑ2 \ ℑ1 =







(0.19, 0.59, 0.57) (0.00, 0.61, 1.00) (0.22, 0.55, 0.70)

(0.78, 0.09, 0.50) (0.00, 0.66, 0.49) (0.54, 0.61, 0.92)

(0.29, 0.00, 0.85) (0.28, 0.20, 0.90) (0.46, 0.00, 1.00)







∴ (ℑ1 \ ℑ2) ∪M (ℑ2 \ ℑ1) =







(0.32, 0.59, 0.57) (0.74, 0.61, 0.50) (0.22, 0.55, 0.33)

(0.78, 0.09, 0.91) (0.11, 0.66, 0.10) (0.54, 0.61, 0.80)

(0.29, 0.00, 0.60) (0.70, 0.20, 0.90) (0.46, 0.00, 0.83)







= ℑ1△ℑ2

Definition 3.23. The sum of two PmFNSs ℑ1 and ℑ2 chosen from same universe X is

represented as

ℑ1 ⊕ℑ2 =
{ ℏ
(

√

(T
(i)
ℑ1

(ℏ))2 + (T
(i)
ℑ2

(ℏ))2 − (T
(i)
ℑ1

(ℏ)T
(i)
ℑ2

(ℏ))2, I
(i)
ℑ1

(ℏ)I
(i)
ℑ2

(ℏ), F
(i)
ℑ1

(ℏ)F
(i)
ℑ2

(ℏ)
)

}

where ℏ ∈ X and i runs from 1 to m.
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Example 3.24. For ℑ1 and ℑ2 given in Example 3.12, we have

ℑ1 ⊕ℑ2 =







(1.00, 0.36, 0.06) (0.81, 0.44, 0.00) (0.33, 0.55, 0.15)

(0.78, 0.08, 0.50) (0.49, 0.65, 0.01) (0.94, 0.41, 0.00)

(0.60, 0.00, 0.25) (0.73, 0.09, 0.90) (1.00, 0.00, 0.06)







Definition 3.25. The product of two PmFNSs ℑ1 & ℑ2 take off the same universe X is

explained as

ℑ1 ⊗ℑ2 =
{ ℏ

(T
(i)
ℑ1

(ℏ)T
(i)
ℑ2

(ℏ), I
(i)
ℑ1

(ℏ)I
(i)
ℑ2

(ℏ),
√

(F
(i)
ℑ1

(ℏ))2 + (F
(i)
ℑ2

(ℏ))2 − (F
(i)
ℑ1

(ℏ)Fℑ2(ℏ))2)

}

for ℏ ∈ X and i runs from 1 to m.

Example 3.26. For ℑ1 and ℑ2 given in Example 3.12, we have

ℑ1 ⊗ℑ2 =







(0.57, 0.36, 0.37) (0.37, 0.44, 1.00) (0.00, 0.55, 0.72)

(0.09, 0.08, 1.00) (0.00, 0.65, 0.15) (0.49, 0.41, 0.8)

(0.00, 0.00, 0.86) (0.19, 0.09, 1.00) (0.83, 0.00, 0.48)







Definition 3.27. If ℑ1 = ℑ2 in Definition 3.25, then we express ℑ1 ⊗ℑ1 by ℑ2
1. Thus,

ℑ2 =
{ ℏ
(

(T
(i)
ℑ (ℏ))2, (I

(i)
ℑ (ℏ))2,

√

2(F
(i)
ℑ (ℏ))2 − (F

(i)
ℑ (ℏ))4

)

: ℏ ∈ X; i = 1, 2, · · · ,m
}

=
{ ℏ
(

(T
(i)
ℑ (ℏ))2, (I

(i)
ℑ (ℏ))2,

√

1 − (1 − ((F
(i)
ℑ (ℏ))2)2)

)

: ℏ ∈ X; i = 1, 2, · · · ,m
}

The set ℑ2 is called as concentration of ℑ, written as con(ℑ). If k ∈ [0,∞), in general, then

ℑk =
{ ℏ
(

(T
(i)
ℑ (ℏ))k, (I

(i)
ℑ (ℏ))k,

√

1 − (1 − ((F
(i)
ℑ (ℏ))2)k)

)

: ℏ ∈ X; i = 1, 2, · · · ,m
}

The set

ℑ1/2 =
{ ℏ

(

√

T
(i)
ℑ (ℏ),

√

I
(i)
ℑ (ℏ),

√

1 −
√

(1 − (F
(i)
ℑ (ℏ))2)

)

: ℏ ∈ X; i = 1, 2, · · · ,m
}

is called as dilation of ℑ, denoted as dil(ℑ).

Example 3.28. For PmFNS ℑ1 given in Example 3.12, we have

con(ℑ) =







(0.32, 0.37, 0.27) (0.55, 0.37, 0.00) (0.00, 0.30, 0.31)

(0.01, 0.77, 1.00) (0.24, 0.98, 0.14) (0.85, 0.45, 0.93)

(0.00, 0.13, 0.40) (0.49, 0.04, 1.00) (1.00, 0.00, 0.62)







and

dil(ℑ) =







(0.75, 0.78, 0.13) (0.86, 0.78, 0.00) (0.00, 0.74, 0.16)

(0.33, 0.94, 1.00) (0.70, 0.99, 0.07) (0.96, 0.67, 0.63)

(0.00, 0.60, 0.21) (0.84, 0.45, 1.00) (1.00, 0.00, 0.33)







A. Siraj, T. Fatima, D. Afzal, K. Naeem and F.Karaaslan, PmFN Topology with Applications

Neutrosophic Sets and Systems, Vol. 48, 2022



    263

Definition 3.29. The Cartesian product of two PmFNSs ℑ1 and ℑ2 over X is characterized

as

ℑ1 ×ℑ2 =
{ (ℏ1, ℏ2)
(

T
(i)
ℑ1

(ℏ)T
(i)
ℑ2

(ℏ), I
(i)
ℑ1

(ℏ)I
(i)
ℑ2

(ℏ), F
(i)
ℑ1

(ℏ)F
(i)
ℑ2

(ℏ)
)

: ℏ1, ℏ2 ∈ X; i = 1, 2, · · · ,m
}

Example 3.30. For ℑ1 and ℑ2 given in Example 3.12, we have

ℑ1 ×ℑ2 =







































(0.57, 0.36, 0.06) (0.37, 0.44, 0.00) (0.00, 0.55, 0.15)

(0.44, 0.05, 0.10) (0.00, 0.40, 0.00) (0.00, 0.34, 0.00)

(0.34, 0.00, 0.16) (0.21, 0.26, 0.00) (0.00, 0.22, 0.03)

(0.11, 0.52, 0.32) (0.25, 0.71, 0.10) (0.30, 0.67, 0.56)

(0.09, 0.08, 0.50) (0.00, 0.65, 0.01) (0.50, 0.41, 0.00)

(0.07, 0.00, 0.85) (0.14, 0.43, 0.09) (0.76, 0.27, 0.11)

(0.00, 0.21, 0.09) (0.35, 0.14, 1.00) (0.33, 0.00, 0.32)

(0.00, 0.03, 0.15) (0.00, 0.13, 0.11) (0.54, 0.00, 0.00)

(0.00, 0.00, 0.25) (0.20, 0.09, 0.90) (0.83, 0.00, 0.06)







































3.1. Superiority of the proposed work

The superiority of our suggested work is exhibited in Table 3, which is self explanatory. The

same applies for the corresponding topology.

Table 3. Concise comparison of PmFNS set with some prevailing structures

Set Membership Indeterminacy Non-membership Multiple

function function membership function

Fuzzy set [18] X × × ×

Intuitionistic fuzzy set [2] X × X ×

Pythagorean fuzzy set [15, 16] X × X ×

m-polar fuzzy set [4] X × × X

Pythagorean m-polar fuzzy set [8] X × X X

PmFNS (proposed) X X X X

4. Pythagorean m-polar fuzzy neutrosophic topology

In this section, we present Pythagorean m-polar fuzzy neutrosophic topology on Pythagorean

m-polar fuzzy neutrosophic set and elongate numerous characteristics of crisp topology towards

Pythagorean m-polar fuzzy neutrosophic topology. Separation axioms in PmFNSs are also

discussed.

Definition 4.1. Let PmFNS(X
¯

) be the collection of all PmFN-subsets of the absolute PmFNS

X
¯A. For S

¯
, T

¯
⊆ A

¯
, a subcollection ג

¯pn
of PmFNS(X

¯
) is known as Pythagorean m-polar fuzzy

neutrosophic topology (PmFNT) on X
¯

if the following needs are satisfied:

(i) ∅
¯
, X

¯A ∈
¯
ג
¯pn

,
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(ii) S , T ∈
¯
ג
¯pn

then S ∩
¯
T ∈

¯
ג
¯pn

,

(iii) i ∈
¯
ג
¯pn

, ∀i ∈
¯

I
¯
, then ∪

¯ i∈I
¯
i ∈

¯
ג
¯pn

.

The doublet (X
¯
, ג

¯pn
) or simply ג

¯pn
, where X

¯
is a non-empty PmFNS and ג

¯pn
is a Pythagorean

m-polar fuzzy neutrosophic topology on X
¯

, is known as Pythagorean m-polar fuzzy neutrosophic

topological space (PmFNTS).

Example 4.2. Let X
¯

= {ℏ1, ℏ2} be a universal P3FNS with S
¯

and T
¯

be as shown in table 4

and table 5 below:

Table 4. P3FNS S
¯

S
¯
ℏ1 (0.401, 0.210, 0.216) (0.221, 0.100, 0.363) (0.632, 0.029, 0.216)

ℏ2 (0.626, 0.111, 0.162) (0.432, 0.000, 0.163) (0.221, 0.012, 0.108)

Table 5. P3FNS T
¯

T
¯
ℏ1 (0.126, 0.621, 0.623) (0.063, 0.920, 0.706) (0.276, 0.636, 0.591)

ℏ2 (0.168, 0.702, 0.668) (0.165, 0.761, 0.726) (0.149, 0.712, 0.561)

Then ג
¯pn5

= {∅
¯
,S
¯
,T
¯
,X

¯A} is a P3FNT on X
¯

.

Definition 4.3. The members of ג
¯pn

are called Pythagorean m-polar fuzzy neutrosophic open

sets (PmFN-open sets). The complements of Pythagorean m-polar fuzzy neutrosophic open

sets are called Pythagorean m-polar fuzzy neutrosophic closed sets (PmFN-closed sets) and

PmFN-open set as well as PmFN-closed set is called Pythagorean m-polar fuzzy neutrosophic

clopen sets (PmFN-clopen sets).

Example 4.4. For the P3FNTS ג
¯pn5

given in Example 4.2, we have ∅
¯
,S
¯
,T
¯
,X

¯A are P3FN-

open sets because they are members of ג
¯pn5

, (X
¯A)c = ∅

¯
∈
¯
ג
¯pn

is a P3FN-closed set and ∅
¯
,X
¯A

are P3FN−clopen sets as ∅
¯
c = X

¯A − ∅
¯

= X
¯A and X

¯
c
A = X

¯A − X
¯A = ∅

¯

Example 4.5. Consider the P3FNSs X
¯
,S
¯

and T
¯

given in Example 4.2 and

Table 6. P3FNS U
¯

U
¯
ℏ1 (0.221, 0.561, 0.524) (0.172, 0.603, 0.367) (0.307, 0.633, 0.336)

ℏ2 (0.267, 0.623, 0.201) (0.380, 0.529, 0.419) (0.162, 0.560, 0.333)
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We have,

ג
¯pn1

= {∅
¯
,X

¯A}

ג
¯pn2

= {∅
¯
,S
¯
,X

¯A}

ג
¯pn3

= {∅
¯
,T

¯
,X

¯A}

ג
¯pn4

= {∅
¯
,U

¯
,X

¯A}

ג
¯pn5

= {∅
¯
,S
¯
,T
¯
,X

¯A}

ג
¯pn6

= {∅
¯
,T

¯
,U

¯
,X

¯A}

ג
¯pn7

= {∅
¯
,S
¯
,U

¯
,X

¯A}

ג
¯pn8

= {∅
¯
,S
¯
,T
¯
,U

¯
,X

¯A}

are Pythagorean 3-polar fuzzy neutrosophic topologies over X
¯

. Here, both ∅
¯

& X
¯A are P3FN-

open set as well as P3FN-closed set so it is a P3FN-clopen set.

Definition 4.6. Let (X
¯
, ג
¯pn1

) and (X
¯
, ג
¯pn2

) be two PmFNTSs on X
¯

. ג
¯pn2

is contained in ג
¯pn1

i.e ג
¯pn2

⊆ ג
¯pn1

if κ
¯
∈
¯

ג
¯pn1

for every κ
¯
∈
¯

ג
¯pn2

. In such case, ג
¯pn2

is known as Pythagorean

m−polar fuzzy neutrosophic coarser or weaker (PmFN-coaser/weaker) than ג
¯pn1

and ג
¯pn1

is

called Pythagorean m−polar fuzzy neutrosophic finer or stronger PmFN-finer/stronger than

ג
¯pn2

. ג
¯pn1

and ג
¯pn2

in such a case are known as comparable. In Example 4.5, ג
¯pn2

is PmFN-

coarser than ג
¯pn5

and ג
¯pn5

is PmFN-stronger than ג
¯pn2

. Hence ג
¯pn2

and ג
¯pn5

are comparable.

Definition 4.7. The PmFNT ג
¯pn(indiscrete)

= {∅
¯
,X

¯A} is known as indiscrete Pythagorean

m-polar fuzzy neutrosophic topology (indiscrete-PmFNT) & ג
¯pn(discrete)

= P
¯

(X
¯A) (power set of

X
¯A) is known as discrete Pythagorean m-polar fuzzy neutrosophic topology (discrete-PmFNT)

over X
¯

.

Remark 4.8. On X
¯

, the smallest PmFNT is ג
¯pn(indiscrete)

whereas the largest PmFNT is

ג
¯pn(discrete)

.

Definition 4.9. Suppose that (X
¯
, ג
¯pnX

) be a PmFNTS. A few Y
¯
⊆ X

¯
and PmFN-open sets

are S
¯
⋆
n = S

¯n∩¯
Y
¯A of PmFNT ג

¯pnY
on Y

¯
where S

¯n are PmFN-open sets of ג
¯pnX

& Y
¯A is absolute

PmFNS on Y
¯

then ג
¯pnY

is reserved as the Pythagorean m-polar fuzzy neutrosophic subspace

(PmFN-subspace) of ג
¯pnX

. It can be written as:

ג
¯pnY

= {S
¯
⋆
n : S

¯
⋆
n = S

¯n∩¯
Y
¯A,S¯n∈¯

ג
¯pnX

}

Example 4.10. Let ג
¯pnX

= {∅
¯
,S
¯
,T
¯
,X

¯A}, then ג
¯pnX

is a P3FNT on X
¯

. P3FNS on Y
¯

= {S
¯
} ⊆

X
¯

is
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Table 7. P3FNS Y
¯A

Y
¯A

ℏ1 (1.000, 0.000, 0.000) (1.000, 0.000, 0.000) (1.000, 0.000, 0.000)

Since

Y
¯A ∩

¯
∅
¯

= ∅
¯

Y
¯A ∩

¯
S
¯

= S
¯

Y
¯A ∩

¯
T
¯

= T
¯

Y
¯A ∩

¯
X
¯A = Y

¯A

So, ג
¯pnY

= {∅
¯
,S
¯
,T

¯
,Y

¯A} is a Pythagorean 3-polar fuzzy neutrosophic subtopology (P3FN-

subtopology) of ג
¯pnX

(i.e ג
¯pnY

⊆ ג
¯pnX

).

Remark 4.11. (1) A PmFN-subtopology i.e. ג
¯pnZ

of a PmFN-subtopology ג
¯pnY

of a

PmFNTS ג
¯pnX

is also a PmFN-subtopology of ג
¯pnX

.

(2) Every PmFN-subspace of a discrete-PmFNTS is always discrete-PmFNTS. Similarly, every

PmFN-subspace of indiscrete-PmFNTS ia also an indiscrete-PmFNTS.

Definition 4.12. Let (X
¯
, ג
¯pn

) be a PmFNTS and V
¯

⊆ PmFNS(X
¯

). The Pythagorean m-

polar fuzzy neutrosophic interior (PmFN-interior) V.̄ of V
¯

is PmFNS which is the union of all

PmFNS-open subsets (i.e that are contained in V
¯

) of X
¯

.

Example 4.13. If

Table 8. P3FNS V
¯

V
¯
ℏ1 (0.233, 0.449, 0.496) (0.276, 0.507, 0.365) (0.332, 0.501, 0.312)

ℏ2 (0.314, 0.416, 0.308) (0.389, 0.501, 0.402) (0.267, 0.517, 0.223)

and ג
¯pn8

= {∅
¯
, S

¯
, T

¯
, U

¯
, X

¯A}, then V.̄ = T
¯
∪
¯

U
¯

= U
¯

or

Table 9. P3FN-interior V.̄

V.̄

ℏ1 (0.221, 0.561, 0.524) (0.172, 0.603, 0.367) (0.307, 0.633, 0.336)

ℏ2 (0.267, 0.623, 0.401) (0.380, 0.529, 0.419) (0.162, 0.560, 0.333)
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Definition 4.14. Let (X
¯

, ג
¯pn

) be a PmFNTS and V
¯

⊆ PmFN(X
¯

). Then the Pythagorean

m-polar fuzzy neutrosophic closure (PmFN-closure) V̇
¯

of V
¯

is the PmFNS which is intersection

of all PmFN-closed supersets (i.e that contain V
¯

) of V
¯

.

Example 4.15. Let ג
¯pn8

= {∅
¯
,S
¯
,T

¯
,U

¯
,X

¯A}, then first of all we’ve to find ∅
¯
c,S

¯
c,T

¯
c,U

¯
c,

X
¯
c
A.

∅
¯
c = X

¯A,S¯
c = S

¯1,T¯
c = T

¯1,U¯
c = U

¯ 1,X¯
c
A = ∅

¯
where

Table 10. P3FNS S
¯
c/S

¯1

S
¯
c=S

¯1

ℏ1 (0.216, 0.790, 0.401) (0.363, 0.900, 0.221) (0.216, 0.971, 0.632)

ℏ2 (0.162, 0.889, 0.626) (0.163, 1.000, 0.432) (0.108, 0.988, 0.221)

Table 11. P3FNS T
¯
c/T

¯1

T
¯
c=T

¯1

ℏ1 (0.623, 0.379, 0.126) (0.706, 0.080, 0.063) (0.591, 0.364, 0.276)

ℏ2 (0.368, 0.298, 0.368) (0.726, 0.239, 0.165) (0.561, 0.288, 0.149)

and

Table 12. P3FNS U
¯
c/U

¯ 1

U
¯
c=U

¯ 1

ℏ1 (0.524, 0.439, 0.221) (0.367, 0.397, 0.172) (0.336, 0.367, 0.307)

ℏ2 (0.401, 0.377, 0.267) (0.419, 0.471, 0.380) (0.333, 0.440, 0.162)

As X
¯A is the only P3FN-closed supersets of V

¯
i.e V

¯
is contained only in X

¯A. Thus, V̇
¯

= X
¯A

Remark 4.16. Largest PmFN-open subset of V
¯

is V.̄ whereas the smallest PmFN-closed

superset of V
¯

is V̇
¯

.

Definition 4.17. Let (X
¯
, ג
¯pn

) be a PmFNTS and V
¯

⊆ PmFN(X
¯

). Then the Pythagorean

m-polar fuzzy neutrosophic frontier or boundary (PmFN-frontier/boundary) F ⋄(V
¯

) of V
¯

is

defined as:

F ⋄(V
¯

) = V̇
¯
∩
¯

V̇
¯

c

Example 4.18. For the P3FNS V
¯

given in Example 4.13, we have
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Table 13. P3FNS V
¯
c

V
¯
c

ℏ1 (0.496, 0.551, 0.233) (0.365, 0.493, 0.276) (0.312, 0.499, 0.332)

ℏ2 (0.308, 0.584, 0.314) (0.402, 0.499, 0.389) (0.223, 0.483, 0.267)

V̇
¯

= ∅
¯
c∩
¯

T
¯
c∩
¯

U
¯
c = U

¯
c

V̇
¯

= X
¯
∩
¯

T
¯1∩¯

U
¯1 = U

¯ 1

⇒ F ⋄(V
¯

) = X
¯
∩
¯

U
¯ 1 = U

¯ 1

Definition 4.19. Let (X
¯
, ג
¯pn

) be a PmFNTS and V
¯

⊆ PmFN(X
¯

). Then the Pythagorean

m-polar fuzzy neutrosophic exterior (PmFN-exterior) E⋄(V
¯

) of V
¯

is defined as:

E⋄(V
¯

) = V.̄
c

From Example 4.5 and 4.15, we get V.̄
c = S

¯
c∪
¯
∅
¯

= S
¯
c = S

¯1

Example 4.20. For the P3FNSs S
¯
,T
¯
,U

¯
,V

¯
given in Examples 4.5,4.13, and

Table 14. P3FNS W
¯

W
¯
ℏ1 (0.721, 0.110, 0.116) (0.662, 0.100, 0.265) (0.621, 0.010, 0.116)

ℏ2 (0.765, 0.011, 0.062) (0.571, 0.000, 0.006) (0.795, 0.002, 0.008)

(i) V.̄ ⊆ V
¯
⊆ V̇

¯
(See Table 8 and Table 9) and as we know

Table 15. P3FNS X
¯

X
¯
ℏ1 (1.000, 0.000, 0.000) (1.000, 0.000, 0.000) (1.000, 0.000, 0.000)

ℏ2 (1.000, 0.000, 0.000) (1.000, 0.000, 0.000) (1.000, 0.000, 0.000)

(ii) V.̄.
= V.̄

V.̄.
= T

¯
∪
¯

U
¯

= U
¯

V.̄ = U
¯

From above equations we get, V.̄.
= V.̄

(iii) ˙̇V
¯

= V̇
¯˙̇V

¯
= X

¯
and V̇

¯
= X

¯
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(iv) X.̄.
= X

¯
X.̄.

= S
¯
∪
¯

T
¯
∪
¯

U
¯
∪
¯

X
¯

= X
¯

(v) ∅̇
¯

= ∅
¯

As ∅
¯

is superset of itself only.

(vi) V
¯
⊆ W

¯
⇒ V.̄ ⊆ W.̄ and V̇

¯
⊆ Ẇ

¯
We know that, V.̄ = U

¯
and W.̄ = S

¯
∪
¯

T
¯
∪
¯

U
¯

= S
¯
⇒ V.̄ ⊆ W.̄ (∵ U

¯
⊆ S

¯
)

Now, V̇
¯

= X
¯

also Ẇ
¯

= X
¯
⇒ V̇

¯
⊆ Ẇ

¯
(∵ X

¯
⊆ X

¯
)

(vii) (V∩
¯

W)
.̄

= V.̄ ∩¯
W.̄

Table 16. P3FNS V
¯
∩
¯

W
¯

V
¯
∩
¯

W
¯

ℏ1 (0.233, 0.449, 0.496) (0.276, 0.507, 0.365) (0.332, 0.501, 0.312)

ℏ2 (0.314, 0.416, 0.308) (0.389, 0.501, 0.402) (0.267, 0.517, 0.223)

(V∩
¯

W)
.̄

= T
¯
∪
¯

U
¯

= U
¯

and V.̄ ∩¯
W.̄ = S

¯
∩
¯

U
¯

= U
¯

From above equations, we get the result, (V∩
¯

W)
.̄

= V.̄ ∩¯
W.̄

Proposition 4.21. Let (X
¯
, ג
¯ pn) be a PmFNTS and Q

¯
⊆ X

¯
, then

(i) (Q
.̄

)c = Q̇
¯

c

(ii) (Q̇
¯

)c = Q
.̄
c

Proof. (i) Q
¯

=

{

ℏ1
(T (i)(ℏ1),I(i)(ℏ1),F (i)(ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m

}

Let PmFN-open sets contained in Q
¯

be indexed by the collection
{

ℏ1

(T
(i)
j (ℏ1), I

(i)
j (ℏ1), F

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

.

By definition,

Q
.̄

=

{

ℏ1

(max T
(i)
j (ℏ1),min I

(i)
j (ℏ1),min F

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

and

(Q
.̄
)c =

{

ℏ1

(min F
(i)
j (ℏ1), 1 − min I

(i)
j (ℏ1),max T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

∵ Q
¯

c =

{

ℏ1
(F (i)(ℏ1), 1 − I(i)(ℏ1), T (i)(ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m

}

Also, T
(i)
j (ℏ1) ≤ T (i)(ℏ1), 1 − (I

(i)
j (ℏ1)) ≥ 1 − (I(i)(ℏ1)), F

(i)
j (ℏ1) ≥ F (i)(ℏ1),∀ values of

i & j ∈
¯

J
¯
, so it develops that
{

ℏ1

(F
(i)
j (ℏ1), 1 − I

(i)
j (ℏ1), T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}
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is the entire of PmFN-closed sets contained contained Q
¯

c i.e.

Q̇
¯

c
=

{

ℏ1

(min F
(i)
j (ℏ1), 1 − (min I

(i)
j (ℏ1)),max T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

which completes the proof.

(ii) Q
¯

=

{

ℏ1
(T (i)(ℏ1),I(i)(ℏ1),F (i)(ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m

}

Let PmFN-closed supersets of Q
¯

be indexed by the collection
{

ℏ1

(T
(i)
j (ℏ1), I

(i)
j (ℏ1), F

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

By definition,

Q̇
¯

=

{

ℏ1

(min T
(i)
j (ℏ1),max I

(i)
j (ℏ1),max F

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

and

(Q̇
¯

)c =

{

ℏ1

(max F
(i)
j (ℏ1), 1 − (max I

(i)
j (ℏ1)),min T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

Now,

∵ Q
¯

c =

{

ℏ1
(F (i)(ℏ1), 1 − I(i)(ℏ1), T (i)(ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m

}

and T
(i)
j (ℏ1) ≤ T (i)(ℏ1), 1− (I

(i)
j (ℏ1)) ≥ 1− (I(i)(ℏ1)), F

(i)
j (ℏ1) ≥ F (i)(ℏ1),∀ values of i

and j∈
¯

J
¯

so it follows that

Q
.̄
c =

{

ℏ1

(max F
(i)
j (ℏ1), 1 − (max I

(i)
j (ℏ1)),min T

(i)
j (ℏ1))

: ℏ1∈
¯

X
¯
, i = 1, 2, · · · ,m; j∈

¯
J
¯

}

which completes the proof.

0.1cm

Proposition 4.22.

(i) Q
.̄
6= Q

¯
− Q̇
¯

c

(ii) E⋄(Q
¯

)c = Q
.̄

(iii) E⋄(Q
¯

) = Q
.̄
c

(iv) E⋄(Q
¯

)∪
¯
F ⋄(Q

¯
)∪
¯
Q
.̄
6= X

¯ A

(v) F ⋄(Q
¯

) = F ⋄(Q
¯

c)

(vi) Q
.̄
∩
¯
F ⋄(Q

¯
) 6= ∅

¯
(vii) Q̇

¯
6= Q

¯
∪
¯
F ⋄(Q

¯
)

(viii) Q̇
¯

6= Q
.̄
∪
¯
F ⋄(Q

¯
)

Proof. Follows directly from definition. 0.1cm
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Proposition 4.23. Let (X
¯
, ג
¯ pn) be a PmFNTS and Q

¯
⊆ X

¯
, then F ⋄(Q

¯
)=F ⋄(Q

¯

c)

Proof. By definition; F ⋄(Q
¯

) = Q̇
¯
∩
¯

Q̇
¯

c
= Q̇

¯

c
∩
¯

Q̇
¯

= Q̇
¯

c
∩
¯

(Q̇
¯

c
)c = F ⋄(Q

¯

c) 0.1cm

Remark 4.24. The intersection of two or more PmFNTSs is always a PmFNTS but it is not

necessary that their union is also a PmFNTS.

Example 4.25. Let X
¯

= {ℏ1, ℏ2} be a universal non-empty P3FNS and let

Table 17. P3FNS O
¯ 1

O
¯ 1

ℏ1 (0.211, 0.301, 0.451) (0.251, 0.321, 0.420) (0.021, 0.567, 0.481)

ℏ2 (0.100, 0.500, 0.256) (0.257, 0.421, 0.000) (0.424, 0.567, 0.291)

Table 18. P3FNS O
¯ 2

O
¯ 2

ℏ1 (0.312, 0.217, 0.111) (0.171, 0.367, 0.582) (0.361, 0.272, 0.391)

ℏ2 (0.111, 0.421, 0.156) (0.167, 0.568, 0.721) (0.321, 0.666, 0.382)

be P3FNSs over X
¯

, then ג
¯pno1

= {∅
¯
,O

¯ 1,X¯A} and ג
¯pno2

= {∅
¯
,O

¯ 2,X¯A} are two P3FNTs over X
¯

.

However, ג
¯pno1

∪
¯
ג
¯pno2

= {∅
¯
,O

¯ 1,O¯ 2,X¯A} fails to be P3FNT on X
¯

and intersection of P3FNT

over X
¯

, ג
¯pno1

∩
¯
ג
¯pno2

= {∅
¯
,X

¯A} is also a P3FNT.

Theorem 4.26. Let (X
¯
, ג
¯ pn) be a PmFNTS then the following conditions are satisfied:

(1) ∅
¯
, X
¯ A are PmFN−open sets.

(2) Union of any number of PmFN−open sets is PmFN−open set.

(3) Intersection of any number of PmFN−closed sets is PmFN−closed set.

(4) The intersection of any two PmFN−open sets (and hence of any finite number of

PmFN−open sets) is PmFN−open set.

(5) The union of any two PmFN−closed sets (and hence of any finite number of

PmFN−closed sets) is PmFN−closed set.

(6) ∅
¯
, X
¯ A are PmFN−closed set.

Proof. (1) The proof is obvious.

(2) Let {< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >: ℏ ∈

¯
X
¯
} be a collection of PmFN-open sets.

Also, Y̧ =
⋃

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >}
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Let ℏ†∈
¯

Y̧ implies that ℏ†∈
¯
{< ℏ, (k

¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >} for some ℏ ∈

¯
X
¯

and

B̧(y
¯
, r
¯
) ⊆ {< ℏ, (k

¯
(i)
1 (ℏ), Ï

¯

(i)

1 (ℏ),̥
¯

(i)
1 (ℏ)) >} ⊆

⋃

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)

1 (ℏ),̥
¯

(i)
1 (ℏ)) >} = Y̧

⇒ Y̧ is PmFN-open set.

(3) Let {< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >: ℏ ∈

¯
X
¯
} be any number of PmFN-closed sets.

We shall show that
⋂

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >}, is PmFN-closed set, by

proving that its complement is PmFN-open set.

By De Morgan’s law,

[
⋂

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)

1 (ℏ),̥
¯

(i)
1 (ℏ)) >}]c =

⋃

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)

1 (ℏ),̥
¯

(i)
1 (ℏ)) >}c

Since each < ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) > is PmFN-closed set, each {< ℏ, (k

¯
(i)
1 (ℏ),

Ï
¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >}c is a PmFN-open set ( by definition of PmFN-closed set).

So,
⋃

ℏ ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >}c is PmFN-open set.

Hence
⋂

ℏ∈
¯

X
¯

{< ℏ, (k
¯
(i)
1 (ℏ), Ï

¯

(i)
1 (ℏ),̥

¯

(i)
1 (ℏ)) >} is PmFN-closed set.

(4) and (5) may be established in the similar way.

(6) The complement of X
¯A is the PmFN-open set ∅

¯
and the complement of ∅

¯
is the PmFN-

open set X
¯A. So, X

¯A and ∅
¯

are PmFN-closed sets.

0.1cm

Definition 4.27. Let (X
¯
, ג
¯pn

) be a PmFNTS and let ℏ be a PmFN-point of X
¯

. ℵ† ⊆ X
¯

is

called a neighborhood of ℏ iff there exists a PmFN-open set  L† s.t. ℏ∈
¯

 L† and  L†∈
¯
ℵ† (or, for

short, ℏ ∈
¯

 L† ⊆ ℵ†). In other words, ℵ† is a neighborhood of ℏ, iff it contains some PmFN-open

set to which ℏ belongs.

Example 4.28. Let X = {e
¯
, f
¯
, g
¯
} be a universal P3FNS and ג

¯pn
= {∅

¯
,D1,D2,XA} where,

Table 19. P3FNS D1

D1

e
¯

(0.672, 0.421, 0.221) (0.567, 0.420, 0.111) (0.242, 0.121, 0.199)

f
¯

(0.211, 0.467, 0.520) (0.562, 0.721, 0.221) (0.444, 0.333, 0.111)

g
¯

(0.167, 0.437, 0.561) (0.466, 0.167, 0.321) (0.252, 0.467, 0.490)

and,
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Table 20. P3FNS D2

D2

f
¯

(0.115, 0.226, 0.421) (0.462, 0.621, 0.221) (0.555, 0.222, 0.001)

g
¯

(0.267, 0.337, 0.461) (0.366, 0.017, 0.421) (0.452, 0.376, 0.241)

XA is the only P3FN−open set of

Table 21. P3FNS ℏ∗1

ℏ∗1

e
¯

(1.000, 0.000, 0.000) (1.000, 0.000, 0.000) (1.000, 0.000, 0.000)

So, XA is the only neighborhood of ℏ∗1.

The P3FN−point

Table 22. P3FNS ℏ∗2

ℏ∗2

f
¯

(0.111, 0.562, 0.621) (0.461, 0.921, 0.178) (0.321, 0.642, 0.316)

has three neighborhoods, namely, D1,D2 and XA.

Similarly, the P3FN−point

Table 23. P3FNS ℏ∗3

ℏ∗3

e
¯

(0.462, 0.562, 0.398) (0.367, 0.572, 0.192) (0.120, 0.499, 0.400)

has two neighborhoods D1 and XA.

Remark 4.29. In an indiscrete−PmFNTS, each PmFN-point has a single neighborhood which

is the ground PmFNS itself.

The following example illustrate the PmFN-point that a neighborhood of a PmFN-point may

not be PmFN-open set.

Example 4.30. Let X = {e
¯
, f
¯
, g
¯
} be an universal non-empty P3FNS and ג

¯pn
= {∅

¯
,D4,XA}

where,
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Table 24. P3FNS D4

D4

f
¯

(0.315, 0.226, 0.421) (0.162, 0.621, 0.221) (0.555, 0.222, 0.001)

g
¯

(0.267, 0.337, 0.461) (0.366, 0.017, 0.421) (0.452, 0.376, 0.241)

clearly the P3FNS

Table 25. P3FNS D3

D3

e
¯

(0.672, 0.421, 0.221) (0.567, 0.420, 0.111) (0.242, 0.121, 0.199)

f
¯

(1.000, 0.000, 0.000) (0.715, 0.421, 0.226) (1.000, 0.000, 0.000)

g
¯

(0.452, 0.421, 0.324) (1.000, 0.210, 0.000) (0.667, 0.210, 0.140)

is a neighborhood of D4, but it is not P3FN-open set because it is not an element of ג
¯pn

.

The following theorem enables us to recognize PmFN-open sets by knowing all the neigh-

borhoods of a point and conversely. Thus, knowledge about PmFN-open sets enables us to

determine the neighborhood of a point and conversely.

Theorem 4.31. If (X
¯
, ג
¯ pn) is a PmFNTS, then a PmFN-subset A of X

¯
is PmFN-open set,

iff A is a neighborhood of each of its PmFN-points.

Proof. Assume that A is PmFN-open set. We shall show that A is a neighborhood of each of

its PmFN-points. Let κ
¯

be any PmFN-point of A, then A itself can play the role of the PmFN-

open set, whose existence qualifies A to be a neighborhood of κ
¯

. Symbolically, κ
¯
∈
¯
A ⊆ A where

A is PmFN-open set. It follows that A is neighborhood of each of its PmFN-points.

Conversely, if A is a neighborhood of every PmFN-point belonging to it, then for each κ
¯
∈
¯
A

there exists a PmFN-open set χ such that κ
¯
∈
¯
χ ⊆ A. Then

A = ∪
¯
{< ℏ, (k

¯
(i)
A1(ℏ), Ï

¯

(i)
A1(ℏ),̥

¯

(i)
A1(ℏ)) >: ℏ ∈

¯
A}

⊆ ∪
¯
{< ℏ, (k

¯
(i)
A2(ℏ), Ï

¯

(i)
A2(ℏ),̥

¯

(i)
A2(ℏ)) >: ℏ ∈

¯
A} ⊆ A

The simultaneous validity of

A ⊆ ∪
¯
{< ℏ, (k

¯
(i)
A2(ℏ), Ï

¯

(i)
A2(ℏ),̥

¯

(i)
A2(ℏ)) >: ℏ ∈

¯
A}

and

∪
¯
{< ℏ, (k

¯
(i)
A2(ℏ), Ï

¯

(i)
A2(ℏ),̥

¯

(i)
A2(ℏ)) >: ℏ∈

¯
A} ⊆ A

⇒ A = ∪
¯
{< ℏ, (k

¯
(i)
A2(ℏ), Ï

¯

(i)
A2(ℏ),̥

¯

(i)
A2(ℏ)) >: ℏ ∈

¯
A}
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Since the union of PmFN-open sets is also PmFN-open set, it follows that A is PmFN-open

set. 0.1cm

The most important properties of neighborhoods in a PmFNTS are established in the following:

Definition 4.32. Let κ
¯

be a PmFN-point in a PmFNTS (X
¯
, ג
¯pn

). Then the set of all neigh-

borhoods of κ
¯

is called the neighborhood system of the PmFN-point κ
¯

and is denoted by

ℵ†(κ
¯

).

Definition 4.33. Let (X
¯
, ג
¯pn

) be a PmFNTS and A is a PmFN−subset of X
¯

. A point

κ
¯
∈
¯

X
¯

is known as Pythagorean m-polar fuzzy neutrosophic limit point (PmFN-limit point) or

Pythagorean m-polar fuzzy neutrosophic cluster point or Pythagorean m−polar fuzzy neutro-

sophic accumulation point A if every PmFN-open set,containing κ
¯

contains a PmFN-point of

A different from κ
¯

.

Example 4.34. Let (X
¯
, ג
¯pn

) is a P3FNTS, X = {e
¯
, f
¯
, g
¯
} be an universal non-empty P3FNS

and

Table 26. P3FNS C

C

e
¯

(0.000, 1.000, 1.000) (0.000, 1.000, 1.000) (0.000, 1.000, 1.000)

f
¯

(0.511, 0.062, 0.211) (0.312, 0.270, 0.137) (0.921, 0.266, 0.152)

g
¯

(0.232, 0.101, 0.431) (0.466, 0.352, 0.121) (0.368, 0.572, 0.400)

Table 27. P3FNS ℏ∗4

ℏ∗4

e
¯

(0.417, 0.312, 0.356) (0.312, 0.270, 0.137) (0.012, 0.374, 0.436)

f
¯

(0.412, 0.117, 0.362) (0.333, 0.672, 0.491) (0.068, 0.772, 0.221)

and,

Table 28. P3FNS ℏ∗5

ℏ∗5

e
¯

(0.324, 0.467, 0.576) (0.247, 0.657, 0.421) (0.001, 0.476, 0.891)

then,
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Table 29. P3FNS ℏ∗4 − ℏ∗5

ℏ∗4 − ℏ∗5

e
¯

(0.417, 0.312, 0.356) (0.312, 0.270, 0.247) (0.012, 0.374, 0.436)

f
¯

(0.000, 0.117, 1.000) (0.000, 0.672, 1.000) (0.000, 0.772, 1.000)

Table 30. P3FNS (ℏ∗4 − ℏ∗5) ∩
¯
C

(ℏ∗4 − ℏ∗5) ∩
¯
C

e
¯

(0.000, 1.000, 1.000) (0.000, 1.000, 1.000) (0.000, 1.000, 1.000)

f
¯

(0.000, 0.117, 1.000) (0.000, 0.672, 1.000) (0.000, 0.772, 1.000)

As (ℏ∗4 − ℏ∗5) ∩
¯
C 6= ∅

¯
. So, ℏ∗5 is the P3FN-limit point of C.

Definition 4.35. Let (X
¯
, ג
¯pn

) be a PmFNTS then Pythagorean m-polar fuzzy neutrosophic

basis (PmFN-basis) B
¯
⊚ ⊆ ג

¯pn
for ג

¯pn
if for each U

¯
∈
¯
ג
¯pn

,∃
¯
∈
¯
B
¯

such that U
¯

= ∪
¯̄

.

4.1. Separation Axioms in Pythagorean m-Polar Fuzzy Neutrosophic Sets

Definition 4.36. A PmFNTS (X
¯
, ג
¯pn

) is known as a Pythagorean m-polar fuzzy neutrosophic

T0 space (PmFNT0S) if for every pair of distinct PmFN-points ð1,ð2∃ at any rate 1 PmFN-

open set ð
¯

including precisely one of the PmNF-points.

Example 4.37. Each discrete PmFNTS is a PmFNT0S for ∃ a PmFN-open set {ð1} that

clearly contains ð1 but not ð2.

Remark 4.38. Each PmFN-subspace of a PmFNT0S is PmFNT0S means property of being

a PmFNT0S of any PmFNTS (X
¯
, ג
¯pn

) is innate.

Definition 4.39. A PmFNTS (X
¯
, ג
¯pn

) is Pythagorean m-polar fuzzy neutrosophic T1 space

(PmFNT1S), Pythagorean m-polar fuzzy Tychonoff space or Pythagorean m-polar fuzzy acces-

sible space if for any two unique PmFN-points ð1,ð2 of (X
¯
, ג
¯pn

),∃ two PmFN-open sets ð
¯

and

Υ s.t. ð1∈
¯
ð
¯
,ð2 /∈

¯
ð
¯

and ð2∈
¯

Υ,ð1 /∈
¯

Υ.

Example 4.40. Every discrete PmFNTS is a PmFNT1S if ð1 and ð2 are two distinct PmFN-

points then there are PmFN-open points {ð1} and {ð2} in (X
¯
, ג
¯pn

) s.t. ð1∈
¯
{ð1} whereas

ð2 /∈
¯
{ð1}.

Theorem 4.41. The following assertions about a PmFNTS (X
¯
, ג
¯ pn) are equivalent:

(1) (X
¯
, ג
¯ pn) is a PmFNT1S.
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(2) Every PmFN singleton subset of X
¯

is PmFN-closed.

(3) Every PmFN-subset ð
¯

of X
¯

is the intersection of all its PmFN-open supersets.

Proof. The proof is obvious. 0.1cm

Remark 4.42. Every subspace of a PmFNT1S is PmFNT1S means property of being a

PmFNT1S of any PmFNTS (X
¯
, ג
¯pn

) is innate.

Definition 4.43. A PmFNTS (X
¯
, ג
¯pn

) is called a Pythagorean m-polar fuzzy neutrosophic T2

space (PmFNT2S), Pythagorean m-polar fuzzy neutrosophic Hausdorff space or Pythagorean

m-polar fuzzy neutrosophic separated space if for any two unique PmFN-points ð1 & ð2 of

(X
¯
, ג
¯pn

),∃ two PmFN-open sets ð
¯

& Υ in such a way ð1∈
¯
ð
¯
,ð2∈

¯
Υ and ð

¯
∩
¯

Υ = ∅.

Example 4.44. Consider the discrete PmFNTS (X
¯
, ג
¯pn

). If ð1 and ð2 are two distinct PmFN-

points in X
¯

, then clearly {ð1} and {ð2} are disjoint PmFN-open sets such that ð1∈
¯
{ð1} and

ð2∈
¯
{ð2}. Thus, (X

¯
, ג

¯pn
) is a PmFN2⊳גS.

Theorem 4.45. A PmFNTS (X
¯
, ג
¯ pn) is a PmFNT2S iff for any two distinct PmFN-points ð1

and ð2, there are PmFN-closed sets ð
¯

and Υ such that ð1∈
¯
ð
¯
,ð2 /∈

¯
ð
¯
,ð1 /∈

¯
Υ,ð2∈

¯
Υ and ð

¯
∪
¯

Υ =

X
¯ A.

Proof. Assume that (X
¯
, ג
¯pn

) is a PmFNT2S and let ð1 and ð2 be two distinct PmFN-

points of (X
¯
, ג
¯pn

). Then, by definition, there must exists two PmFN-open sets ð
¯

and Υ

such that ð1∈
¯
ð
¯
,ð2 /∈

¯
ð
¯

and ð1 /∈
¯

Υ,ð2∈
¯

Υ and ð
¯

∩
¯

Υ = ∅
¯
. But then, ð

¯
c ∪

¯
Υc = X

¯A and

ð1 /∈
¯
ð
¯
c,ð2∈

¯
ð
¯
c,ð1∈

¯
Υc,ð2 /∈

¯
Υc.

Conversely, assume that for any two distinct PmFN-points ð1,ð2∈
¯

(X
¯
, ג
¯pn

), there are PmFN-

closed sets ð
¯

and Υ such that ð1∈
¯
ð
¯
,ð2 /∈

¯
ð
¯
,ð1 /∈

¯
Υ,ð2∈

¯
Υ and ð

¯
∪
¯

Υ = X
¯A. Then ð

¯
c and Υc are

PmFN-open sets such that ð1 /∈
¯
ð
¯
c,ð2∈

¯
ð
¯
c,ð1∈

¯
Υc,ð2 /∈

¯
Υc and ð

¯
c ∩

¯
Υc = X

¯A
c = ∅

¯
. So, (X

¯
, ג
¯pn

)

is a PmFNT2S. 0.1cm

Remark 4.46. Each PmFN-subspace of a PmFNT2S is also a PmFNT2S means property of

being a PmFNT2S of any PmFNTS (X
¯
, ג
¯pn

) is innate.

Definition 4.47. A PmFNTS (X
¯
, ג
¯pn

) is called a Pythagorean m-polar fuzzy neutrosophic

regular space (PmFN-regular space) if unspecified PmFN-closed set ð
¯

& any PmFN-point

ð1 /∈
¯
ð
¯

and here PmFN-open sets Υ & Υ
¯
∗ such that ð1 ∈ Υ,ð

¯
⊆ Υ

¯
∗ and Υ∩

¯
Υ
¯
∗ = ∅

¯
.

Definition 4.48. A PmFNTS (X
¯
, ג
¯pn

) is called Pythagorean m-polar fuzzy neutrosophic T3

space (PmFNT3S) if it is a PmFN regular T1 space.
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Definition 4.49. A PmFNTS (X
¯
, ג
¯pn

) is called Pythagorean m-polar fuzzy neutrosophic nor-

mal space if unspecified two PmFN-closed disjoint subsets ð
¯

& Υ of (X
¯
, ג
¯pn

) and here PmFN-

open sets Υ
¯
∗ and Υ

¯
• such that ð

¯
⊆ Υ

¯
∗,Υ ⊆ Υ

¯
• and Υ

¯
∗∩
¯

Υ
¯
• = ∅

¯
. A PmFN-normal T1 space is

called a Pythagorean m-polar fuzzy neutrosophic T4 space (PmFNT4S).

Remark 4.50. We have the following chain for different PmFNTSs studied above:

Te ⊇ Te+1

for 0 ≤ e ≤ 3. The reverse chain, however, may not hold. The forthcoming Example 4.51

supports our claim.

Example 4.51. Let (X
¯
, ג
¯pn

) be a PmFNTS, where X
¯

= {ℏ1, ℏ2}, ג
¯pn

= {∅
¯
,B
¯
,X

¯A}. Then

Table 31. P3FNS B
¯

B
¯
ℏ1 (0.000, 0.423, 0.801) (0.167, 0.210, 0.562) (0.472, 0.421, 0.301)

ℏ2 (0.162, 0.423, 0.004) (0.000, 0.409, 0.210) (0.100, 0.432, 0.720)

is a P3FNT0S but it is not a P3FNT1S.

Theorem 4.52. Each PmFNT4S is a PmFN regular means each PmFN normal T1 space is

PmFN regular.

Proof. Let (X
¯
, ג
¯pn

) be a PmFNT4S. Let ð1 be a PmFN-point in X
¯

. Then, by Theorem 4.41,

{ð1} is a closed PmFNS in (X
¯
, ג
¯pn

). Suppose that ð
¯

be a PmFN-closed set not contain-

ing ð1. Since (X
¯
, ג
¯pn

) is PmFN normal, there are PmFN-open set namely Υ,Υ
¯
∗ such that

{ð1} ⊆ Υ,ð
¯
⊆ Υ

¯
∗ and Υ∩

¯
Υ
¯
∗ = ∅

¯
. But then, {ð1}∈

¯
Υ,ð

¯
⊆ Υ

¯
∗ and Υ∩

¯
Υ
¯
∗∅
¯
. So, (X

¯
, ג
¯pn

) is a

Pythagorean m-polar fuzzy neutrosophic regular topological space. 0.1cm

5. Intelligent Decision Making using PmFNS TOPSIS

In this section, we present an application of PmFNS in decision making.

Case Study:

A desert is a desolate region of land with hardly any rainfall and, as a result, unhealthy living

conditions for flora and fauna. The absence of habitat reveals the ground’s vulnerable surface

to geomorphic activities. Around 33% of the world’s land surface is sandy or semi-arid. The

piece of land that attains fewer than 25 cm of rainfall per annum is considered a desert. Deserts

are part of a broader class of regions named dry lands. Pakistan has five significant deserts
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comprising Cholistan, Katpana, Thar, Thal and Kharan deserts.

Figure 1. Deserts of Pakistan

About 85% of the Thar desert, also called the Great Indian Desert, is situated inside India,

with the excess 15% in Pakistan. It covers around 170,000 km2, and the leftover 30,000 km2

of the desert is inside Pakistan. Thar desert is the world’s seventeenth biggest desert, and

the world’s ninth biggest subtropical desert. During different periods of predominant breeze

is the dry northeast storm. May and June are the most sweltering a long time of the year,

with mercury ascending to 500 C. In January, considered to be the coldest month there, the

average minimum temperature drops down to 100 C, and frost is frequent. Dust storms and

dust-raising winds, often blow with a speed of 140 to 150 km per hour, are frequent in the

months of May and June. The amount of annual rainfall in the desert is generally low, ranging

from about less in the west to about 20 inches (500 mm) in the east or 4 inches (100 mm),

mostly decreasing from July to September.

The desert of Kharan is situated in Balochistan. It makes a nature limit among Pakistan, Iran

and Afghanistan. It is situated in Kharan region. The Kharan desert is a sandiest desert in

Pakistan. It is particular from the remainder of the province’s landscape because of its sandy

nature and all the more even ter. The desert was utilized for atomic testing by the Pakistan

military, making it the most renowned of the five deserts. In altitude these central deserts
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slope from about 1,000 m in the north to about 250 m on in the southwest. Maximum, average

and minimum temperatures of kharan desert are 420 C, 380 C and 260 C respectively. Average

annual rainfall throughout these deserts is well under 100 mm. The desert includes areas of

inland drainage and dry lakes.

The Cold Desert, otherwise called the Katpana Desert or Biama Nakpo, is a high-elevation

desert situated close Skardu, northern Gilgit-Baltistan area of Pakistan controlled Jammu and

Kashmir. The desert contains costs of huge sand rises that are once in a while shrouded in

snow during winter. Situated at an elevation of 2,226 m (7,303 feet) above ocean level, the

Katpana Desert is one of the most noteworthy deserts in the world. The desert actually ex-

tends from the Khaplu Valley to Nubra in Ladakh, yet the biggest desert area is found in

Skardu and Shigar Valley. The part most visited is situated close Skardu Airport. Temper-

atures range from a maximum of 270 C and a minimum (in October) 80 C which can drop

further to beneath −170 C in December and January. The temperature infrequently drops as

low as −250 C.

The Thal Desert is situated in Bhakkar area of Pakistan between the Indus and Jhelum rivers.

A huge canal-building venture is in progress to flood the land. Water system will make a large

portion of the desert appropriate for cultivating. In the north of the Thal Desert there are salt

reaches, in the east the Jhelum and Chenab streams and toward the west the Indus waterway.

The maximum temperature is 340 C and minimum temperature is 250 C in Thal desert. The

average annual temperature for Thal is 290 C. It is dry for 207 days a year with an average

humidity of 36%. The average annual rainfall varies from 385 mm in the north-east to 170

mm in the south. Approximately three-fourth of annual rainfall is received during monsoon.

Cholistan Desert is locally known as Rohi. It abuts the Thar Desert, stretching out over to

Sindh and into India. Cholistan desert hosts an yearly Jeep rally, known as Cholistan Desert

Jeep Rally which is the greatest engine game in Pakistan. Cholistan’s atmosphere is described

as a bone-dry and semi-dry Tropical desert, with exceptionally low yearly dampness. The

mean temperature in Cholistan is 28.330 C, with most smoking month being July with a mean

temperature of 38.50 C. Summer temperatures can outperform 460 C and now and then as-

cents more than 500 C during times of dry season. Winter temperatures infrequently dip to

00 C. Normal precipitation in Cholistan is up to 180mm, with July and August being the

wettest months, despite the fact that dry seasons are normal. Water is gathered occasionally

in an arrangement of normal pools called Toba, or man made pools called Kund. Earth water

is found at a profundity of 30-40 meters, yet is commonly bitter, and unacceptable for most

plant development.
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Figure 2. Temperature of Deserts of Pakistan

These deserts contains an extremely dry part, the Marusthali area in the west, and a semi

desert locale in the east with less sand hills and somewhat more precipitation. For the most

vital problem and the main hinderance, in the way of progress. Government considers that

issue of lack of water in desert has to solve as early as possible.

The basic need-water, has greatly affected the lives of residents of desert. It can be said that

water has not only changed their social life style but also economy has affected badly. Inade-

quate sanitary conditions have invited many diseases which can be said epidemic like cholera,

typhoid etc. These disaster ruin the human race as well as their cattle.

Cultivation also wiped away due to scarcity of water. Indirectly water is the primary source

of food also people face the horrible face of famine. Specially children, represent the reflection

of poor humanity. Their body, without any health, you may say their skeletons cry for help

or for water.

Scarcity of water has also a deep impact on the psyche of residents of desert. Their temper-

ament, attitudes and behaviors indirectly affected by this vital problem. Tolerance, courtesy,

desire, for progress, achievements, dreams and all ways leading to bright future are cover in

mist. They cannot see or even have the eagerness for better living style. Their struggle only

moves around the availability of water. So it is the need of the time that all the possible steps

should be taken at all levels for the sake of humanity.

A city named Nagarparkar in Thar is consist upon 1 lac population people use under ground

clean and clear water for the necessities of life but it is very hard to get it in summer.

In summary the level of underground water decreases at the lowest level and to get water be-

comes impossible by hand pump. For the last many years no proper planning has been made

to provide water. In city water is brought far from areas. In this age of dearness to getting
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water is difficult. The fare of a cane is 20 to 25 rupees. The people are compelled to drink

that kind of water which is jot acceptable to the animals of Lahore. Animals and human drink

water from the same place there is no distinguish of camel, goat and the king of all races.

It is a hot issue, so a commission has established in which all the concerning problem experts

were included. This commission visited the desert and collected all eye bared witness.

First of all they prepare a report in which they point out the problems facing towards water

supply.

Poor decision making: The commission strongly condemned that decision making policies

are not harmonized to the circumstances.

Economically costs: In Thar with boring a place of water is served 8 to 9 villages approxi-

mately water is available to 7 km distance. Government do not take solid steps only visits are

arranged and due to lack of budgets, no attention is given for this reason people are deprived

of water. It has also observed that which projects had passes in past they were very costly.

Government could not afford them.

Environmental and social problem: Desert environment needs something special which

can appropriate to its hottest environment and social settlement.

Encouragement of local persons: A reason which is also very important is that people

do not have much facilities that they can bore or drill the land and can make it easily to get

water because they are illiterate and cannot drive correct solution by correct strategy. It is

also necessary to take help from the local persons and encouraged them to solve this problem

with the help of government.

Figure 3. Environmental and social problem

For all these issues, they suggested some positive and skilled opinions.
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(i) Government should take solid decisions. And the motto of these decisions should be

welfare and progress because if the start is good then the end will be best.

(ii) Those projects should be of low cost and much beneficial.

(iii) It should be keep in mind that the trust of local persons is very necessary for their

welfare because the negativity of being ignore has been kept its place in their minds.

(iv) Government should start small projects as they would be called tribal units or tribal

beneficiary projects.

Figure 4. Lack of water

We clarify the procedure bit by bit as follows:

Algorithm:

Stage 1: Firstly analyze the issue to see that what we have and actually what we have need to

do: Suppose that R = {σi : i = 1, 2, · · · , n} is the finite aggregate of alternatives under

consideration and G = {gj : j = 1, 2, · · · ,m} is the family of captains. So the (i, j)th

entry of the PmFNS matrix represents weight given by jth Captains to ith options.
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Stage 2: Develop weighted parameter matrix P as

P = [wij ]n×m =

























w11 w12 · · · w1m

w21 w22 · · · w2m

...
...

. . .
...

wi1 wi2 · · · wim

...
...

. . .
...

wn1 wn2 · · · wnm

























where wij is the fuzzy weight given by the Captains gj to the options σi by thinking

about the phonetic entitle are given (for example) in Table 32.

Table 32. Phonetic terms for benefits of projects

Phonetic Terms Fuzzy Weights

Not fruitful (NF) [0.00, 0.25]

Fruitful (F) (0.25, 0.50]

More or less fruitful (MF) (0.50, 0.75]

Extremely fruitful (EF) (0.75, 1.00]

Stage 3: Develop normalized weighted matrix

N = [ŵij ]n×m =

























ŵ11 ŵ12 · · · ŵ1m

ŵ21 ŵ22 · · · ŵ2m

...
...

. . .
...

ŵi1 ŵi2 · · · ŵim

...
...

. . .
...

ŵn1 ŵn2 · · · ŵnm

























where ŵij =
wij

√

∑n
i=1 w

2
ij

and obtaining the weighted vector W = (wj : j = 1, 2, · · · ,m),

where wj =
∑n

i=1 ŵij

n
∑m

k=1 ŵik

Step 4: Develop PmFNS decision matrix Gi = [ςijk]n×m, where ςijk = (τ ijk, υ
i
jk, ω

i
jk). Then

obtain the mean proportional matrix

X = n
√

G1G2 · · ·Gn = [ς̇jk]n×m =

[(

n

√

√

√

√

n
∏

i=1

τ ijk,
n

√

√

√

√

n
∏

i=1

υijk,
n

√

√

√

√

n
∏

i=1

ωi
jk

)]

n×m

Stage 5: Compute weighted PmFNS decision matrix Y = [ς̈jk]n×m, where ς̈jk = wk × ς̇jk =

(τjk, υjk, ωjk).
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Stage 6: Get PmFNSV-PIS (PmFNS- valued positive ideal solution) and PmFNSV-NIS

(PmFNS- valued negative ideal solution), by using

PmFNS − PIS = {ς̈+1 , ς̈+2 , · · · , ς̈+m}

= {(max
k

τjk,min
k

υjk,min
k

ωjk) : k = 1, 2, · · · ,m}

= {(τ+k , υ+k , ω
+
k ) : k = 1, 2, · · · ,m}

and

PmFNS −NIS = {ς̈−1 , ς̈−2 , · · · , ς̈−m}

= {(min
k

τjk,max
k

υjk,max
k

ωjk) : k = 1, 2, · · · ,m}

= {(τ−k , υ−k , ω
−
k ) : k = 1, 2, · · · ,m}

respectively.

Stage 7: Find PmFNS-Euclidean separations of every other option from PmFNS-PIS and

PmFNS-NIS respectively, by making use of

g+j =

√

√

√

√

m
∑

k=1

(τjk − τ+k )2 + (υjk − υ+k )2 + (ωjk − ω+
k )2

g−j =

√

√

√

√

m
∑

k=1

(τjk − τ−k )2 + (υjk − υ−k )2 + (ωjk − ω−
k )2

for j = 1, 2, · · · , n.

Step 8: Compute the relative closeness using

C∗
j =

g−j

g+j + g−j

Stage 9: So as to get the inclination request of the other options, rank the options in descending

(or ascending) order.

The procedural steps of above Algorithm are portrayed in Figure 5:
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Figure 5. Flow chart of Algorithm

Example 5.1. Assume that experts wishes to determine the most vital problems and the

main hinderance facing by desert. The experts establish a committee of four members.

Stage 1: Analyze the problem: Assume that R = {σi : i = 1, 2, · · · , 4} is the set of choices viable

and G = {gj : j = 1, 2, 3, 4} is the family of experts, where

σ1 = Poor decision making,

σ2 = Economic costs,

σ3 = Environmental and social problem, and

σ4 = Encouragement of local persons.
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Stage 2: The weighted parameter matrix, by selecting phonetic terms from Table 32, is

P = [wij ]4×4

=













F NF MF EF

NF F EF MF

MF NF F EF

EF MF NF F













=













0.50 0.25 0.75 1.00

0.25 0.50 1.00 0.75

0.75 0.25 0.50 1.00

1.00 0.75 0.25 0.50













Where wij is the weight given by the decision maker gj to the choices σi.

Stage 3: The normalized weighted matrix is

N = [ŵij ]4×4

=













0.37 0.26 0.55 0.60

0.18 0.52 0.73 0.45

0.55 0.26 0.37 0.60

0.73 0.77 0.18 0.30













and thus the weight vector is

W = (0.25, 0.24, 0.25, 0.26)

Stage 4: Suppose that the four experts give the following PmFNS matrix in which the (i, j)th

elements shows the PFN (τ, υ, ω), where choices are showed by row-wise and the PFN

assigned by experts are showed by column-wise.

G1 =













(0.61, 0.22, 0.39) (0.73, 0.52, 0.11) (0.66, 0.42, 0.33) (0.36, 0.15, 0.49)

(0.38, 0.17, 0.50) (0.48, 0.29, 0.30) (0.61, 0.00, 0.18) (0.46, 0.24, 0.17)

(0.54, 0.29, 0.32) (0.46, 0.35, 0.45) (0.24, 0.18, 0.59) (0.78, 0.55, 0.12)

(0.08, 0.37, 0.88) (1.00, 0.00, 0.00) (0.34, 0.63, 0.35) (0.69, 0.13, 0.04)













G2 =













(0.52, 0.19, 0.22) (0.39, 0.52, 0.35) (0.43, 0.61, 0.50) (0.66, 0.57, 0.14)

(0.43, 0.54, 0.29) (0.48, 0.25, 0.40) (0.76, 0.10, 0.22) (0.45, 0.53, 0.41)

(0.24, 0.26, 0.30) (0.37, 0.06, 0.19) (0.00, 0.48, 0.71) (0.33, 0.41, 0.28)

(0.36, 0.17, 0.29) (0.62, 0.28, 0.00) (0.05, 0.18, 0.77) (0.23, 0.64, 0.59)













G3 =













(0.54, 0.58, 0.38) (1.00, 0.00, 0.00) (0.52, 0.44, 0.39) (0.23, 0.10, 0.11)

(0.30, 0.59, 0.20) (0.52, 0.22, 0.33) (0.13, 0.14, 0.04) (0.51, 0.06, 0.44)

(0.41, 0.28, 0.51) (0.29, 0.64, 0.39) (0.78, 0.02, 0.16) (0.31, 0.13, 0.64)

(0.57, 0.55, 0.37) (0.36, 0.88, 0.14) (0.40, 0.00, 0.53) (0.05, 0.27, 0.77)












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G4 =













(0.37, 0.55, 0.30) (0.43, 0.58, 0.19) (0.35, 0.28, 0.44) (0.59, 0.56, 0.17)

(0.35, 0.73, 0.12) (0.41, 0.27, 0.39) (0.67, 0.37, 0.21) (0.64, 0.16, 0.20)

(0.00, 0.28, 0.72) (0.58, 0.06, 0.41) (0.40, 0.51, 0.31) (0.35, 0.10, 0.57)

(0.47, 0.40, 0.26) (0.44, 0.51, 0.38) (0.44, 0.64, 0.26) (0.28, 0.31, 0.60)













Thus, the mean proportional matrix X is

X = [ς̇jk]4×4

=













(0.50, 0.34, 0.31) (0.59, 0.00, 0.00) (0.48, 0.42, 0.41) (0.42, 0.26, 0.19)

(0.36, 0.45, 0.24) (0.47, 0.26, 0.35) (0.45, 0.00, 0.14) (0.51, 0.19, 0.28)

(0.00, 0.28, 0.43) (0.41, 0.17, 0.34) (0.00, 0.17, 0.38) (0.41, 0.23, 0.33)

(0.30, 0.34, 0.40) (0.56, 0.00, 0.00) (0.23, 0.00, 0.44) (0.22, 0.29, 0.32)













where ς̈jk = wk × ς̇jk

Stage 5: The weighted PmFN matrix is

Y = [ς̈jk]4×4

=













(0.13, 0.09, 0.08) (0.14, 0.00, 0.00) (0.12, 0.11, 0.10) (0.11, 0.07, 0.05)

(0.09, 0.11, 0.06) (0.11, 0.06, 0.08) (0.11, 0.00, 0.04) (0.13, 0.05, 0.07)

(0.00, 0.07, 0.11) (0.10, 0.04, 0.08) (0.00, 0.04, 0.10) (0.11, 0.06, 0.09)

(0.08, 0.09, 0.10) (0.13, 0.00, 0.00) (0.06, 0.00, 0.11) (0.06, 0.08, 0.08)













Stage 6: Thus, PmFNS-PIS and PmFNS-NIS, are respectively

PmFNSV-PIS = {ς̈+1 , · · · , ς̈+4 }

= {(0.13, 0.07, 0.06), (0.14, 0.00, 0.00), (0.12, 0.00, 0.04), (0.13, 0.05, 0.05)}

and

PmFNSV-NIS = {ς̈−1 , · · · , ς̈−4 }

= {(0.00, 0.11, 0.11), (0.10, 0.06, 0.08), (0.00, 0.11, 0.11), (0.06, 0.08, 0.09)}

Stage 7 and 8: The Euclidean separation of every issue from PmFNS-PIS and PmFNS-NIS and cor-

responding relative coefficients of closeness are given in Table 33:

Table 33. Separation and coefficient of closeness of each issue

Issue (ς̈i) g+i g−i C∗
i

ς̈1 0.13 0.22 0.63

ς̈2 0.12 0.78 0.87

ς̈3 0.23 0.10 0.30

ς̈4 0.14 0.18 0.56
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Stage 9: Thus, the preference ranking of the issues is

ς̈2 ≻ ς̈1 ≻ ς̈4 ≻ ς̈3

This ranking is portrayed in Figure 6:

Figure 6. Ranking of alternatives

Hence, in view of above ranking, it may be concluded that poor decision making is the core

issue.

6. Conclusion

We reviewed fuzzy set theory along with its tabular illustration and examples briefly. We

established the axiomatic definitions of Pythagorean m-polar fuzzy neutrosophic set. We pre-

sented some fundamental properties of Pythagorean m-polar fuzzy neutrosophic topological

space (PmFNTS) by numerous characteristics of crisp topology on the way to the PmFNTS.

We defined Pythagorean m-polar fuzzy separation axioms. T0, T1, T2, T3 and T4 spaces are

modified in the aspects of PmFNS.

We presented example of decision making from real world situations based on TOPSIS ac-

companied by case study. We presented algorithm and flowcharts of method for comfort. We

also showed 3D bar chart with application to make the contrast between different alternatives

effectively.

These above mentioned concepts can be used in several real world difficulties such as in econom-

ics, business, robotics, medical sciences, water management, electoral systems, transportation

problems and much more. We hope that this paper will gives new ideas to the researchers to

promote research work in this field.

The notions presented in this article may be extended to define other sorts of topological

structures like nano topology and pentapartitioned topology etc.
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