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Abstract: Operations on neutrosophic numbers generalize operations on crisp numbers. In this
way, the neutrosophic approach quantifies data ambiguity and enables the generalization of the
existing statistical model. This study presents an extension of the conventional exponential
distribution in a neutrosophic context. Neutrosophic generalization is restricted to characterize the
properties of the neutrosophic exponential distribution (NED); however, related results can

to other stochastic models for handling the situations involving uncertainties or vagueness in
processing data. All essential features of the proposed NED, such as neutrosophic moments,
neutrosophic distribution function, and other related quantities, are explored. The mathematical
results in this work lay the groundwork for using the exponential distribution to produce drivers
for other generalized models. The neutrosophic logic of the proposed model is illustrated with
examples. The estimation technique for treating the imprecision in the unknown parameter is
established. The performance of the estimator neutrosophic estimator has been evaluated through
Monte Carlo simulation. Simulation findings reveal that a larger sample size provides reliable
estimation results.
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1. Introduction

Probability distributions are now an essential part of every scientific research. Several real-
world random events are described by these probability models [1]. A basic statistical probability
model is commonly applicable to problems encountered by researchers. One of the most common
continuous distributions is the exponential distribution [2]. The exponential model is considerably
connected with the Poisson distribution [3]. It is commonly utilized as a model to measure the time
between events occurrence. Some examples of its application include measuring the time associated
with obtaining a faulty component on an assembling line in an engineering framework, predicting
the risk of a portfolio of financial assets on next default and calculating radioactive decay in physics
[4]. It is also used to estimate the probability of a certain number of defaults occurring during a
particular time period [5]. The exponential distribution is an adequate failure model for describing
the failure patterns of many components and devices with constant hazard rates in reliability
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analysis [6]. In hydrology, the exponential distribution is frequently used to examine extreme
values of yearly or monthly maximum river flow and total rainfall [7]. A DNA strand length
between mutations or the distance between roads fatalities are examples of situations where
exponential variables may also be used to describe the likelihood of events occurring at a constant
rate per unit distance [8-9].

In this study, a novel generalization of the NED has been described with the primary goal of
incorporating vague information about the study variables. The exponential distribution is
considered a neutrosophic version because it is a versatile model that can reflect a wide range of
distribution forms. This extension provides a broader and clear analysis of the studied variables
under consideration. The neutrosophic extension of the exponential model paves the path for
working with other classical probability models established for the precisely described datasets.
This study presents the NED in a way that the conventional logic of the exponential model cannot
handle the many applied data problems. This generalization is based on the notion of neutrosophy
presented by Smarandache [10]. The analysis of false or true statements, but indeterminate, neutral,
inconsistent, or something in between, is oriented by Neutrosophic logic [11]. Every area has its
neutrosophic component, namely the indeterminacy part, on the mathematical side. Smarandache
made the first effort to use the neutrosophic approach in statistics, precalculus, and calculus to cope
with imprecision in study variables [12]. As a result, neutrosophic statistics have given rise to
research topics that deal with the effect of indeterminacy in statistical modeling. Some recent
literature has recently made the first step toward describing the neutrosophic principle of statistical
modeling [13-16]. Neutrosophic measures probability and descriptive statistical are discussed in
[17]. Neutrosophic decision-making applications in quality control seem to be very efficient [18].
Alhabib et al. first looked at the neutrosophic algebraic structures of probability distributions [19].
Some recent work on neutrosophical probabability distributions can be seen in [20-23].
Nevertheless, works focusing on neutrosophic statistics have always relied on the applications side
of the neutrosophic logic, and algebraic structures of probability distributions have rarely been
addressed.

The work is structured as follows: The NED and algebraic framework of the neutrosophic
numbers are given in section 2. Mathematical properties of the proposed NED are provided in
section 3. Section 4 demonstrates some examples of the NED. The estimation approach for the
imprecise parameter of NED is established in section 5. A simulation study for demonstrating the
performance of the NML estimator is carried out in section 6. A real application of the proposed
model is given in section 7. Lastly, section 8 summarizes the research findings.

2. Preliminaries

All essential features of the proposed NED, such as moments, shape coefficients, and the
moment generating function, are based on the algebraic framework of the neutrosophic numbers. Let
M= (ty,in fn) and N=(t,,i,f,) are two single-valued neutrosophic numbers with
tms to, ims i fno £y € [0,1], 0 <t i, £y <3 and 0 < ty,,1,,f, < 3 then the following operation are
commonly employed in the framework of the neutrosophic algebra [16]:

M®N = (t,, +t, — tyty, ini, + £y ) (1)
MQ®N = (tyty,ip+i, =ty fm + fo —fn £ ) (2)
oM =(1-1—-t,)%t,°,,"); 3)
M® = (t,*—1-(1-1i,)%1- (1 -£,)*), 4)

where the scalar w > 0,and w € R.

Equations (1), (2), (3) and (4) represent neutrosophic summation, neutrosophic multiplication, scalar
multiplication and neutrosophic power respectively. Likewise, the single-valued neutrosophic
operations can be extended to neutrosophic sets.
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Definition 2.1 Neutrosophic data extends the classic data that contain some imprecise, vague or
indeterminacy in some or all values. In general terms, it can be represented as:

X = constant + I,

where I € [u,1]; for example, 7 + I where I € [3,3.5].

Definition 2.2 The neutrosophic random variable W, which equals the distance between successive
events in a Poisson process, follows the NED model with the following neutrosophic density
function (PDFy).

@y (W) = Byexp(—wBy); w>0, and z > 0, (5)

where 0y € {6),0,}. Figure 1 shows the form of the distribution with neutrosophic parameter
0y = {0.25,0.50},{1.00,1.50} and {2.00, 2.50} if the data are believed to be NED.
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Figure 1 Neutrosophic density graph of the NED
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Figure 1 shows the neutrosophic area because of the indeterminate value of the failure rate parameter
Oy. It is clearly demonstrated from Figure 1 that parameter settings may be changed to create a variety

of neutrosophic exponential curves.

3. Some useful functions of the proposed NED

In this section, some widely used properties of the NED can be established in the form of the

following theorems:

Theorem 1. Show that r'™ moment of the NED is r(;:rl)
N

Proof By definition the r'" moment of the NED can define as:

Moy =f w Oy exp(—wby)dw
0

- f W [Biexp(—w8), B, exp(—w8,)]dw
0

= [f: w'8,exp(—w8,)dw, f: w'8,exp(—w8,)dw] (6)
By substituting y = w8y, we get from (6)

- 'e+1
f w'0,exp(—w0,)dw = %
= I'( -11-1)
r
f Wrﬂlexp(—wel)dw = e—r
0 u
Thus (6) provides
_ I'r+1) I'r+1)
1 el o,
Hence,
m = r(;gl) wherer = 1,2,3, (7)

Thus first four raw moments can be derived as:

’ 1 ' 1 ’ 1 ' 1
= — = = and =

HiN on’ HaN 203 H3N 503 HaN 240%

Theorem 2. The distribution function ®y(w) of the NED is 1 — exp(—w0y).
Proof The result of the distribution function is obtained by solving the following expression:

Oy (w) = f on(w)dw
0

=1 — exp(—wby) ®)
Sketch of the CDF function of the proposed NED with neutrosophic parameter 8y = {1.5, 2} is displayed in
Figure 2.
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Figure 2 CDF curve of the NED with 6y = {1.5, 2}

Theorem 3. The median of the NED is [lng@) , ln:;&)].

0

Proof Neutrosophic median (My) is the solution of the following expression:

My
Of Oy (w)dw = E, %]

(" ewaw, ;™ @,(wid| = 3, 5] ©)

where ®;(w) = 1 — exp(w0,) and ®,(w) = 1 — exp(w0,).
Analytical simplification of (9) implies:

My6; = In(2)

My0, = In(2)

ni2) Ini2)

Implying thereby My = [ ]

iy Inid
Theorem 4. First quantile (Qy) and the third quantile (Qsy) of the NED are [ln;(é_) , %] and

[m i)

1nij@4)] .
T respectively.

Proof The Qpy and Qsy by definition are corresponded to solutions such as:
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QIN

[ ovman=[ ]
NWIEW =13 g
0
Q3N
[ onean=[g.
Ny(w)dw = 2 2
0
Therefore following theorem 3, we can write:

__[nf@) Ini®) _
Qw = [ o ,—91 ]and Qsn = [

i) i)
6, ' 0 |

Theorem 5 The mean of the NED is ei
N

Proof The neutrosophic mean of the NED is determined as:

oo

iy = f oy (W)dw
0

- f L1 (W), 00, (w)]dw
0

- oo =

= fexp(—wel)dw, fexp(—weu)dwl
L0 0

1 1 ]

“le,” 6

=L

=5

Theorem 6. The variance of the NED is QZL
N

Proof By definition variance is
on2(W) = E(W?) — (uy)?

where oy 2(W) stands for neutrosophic variance

(10)

(11)
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Now E(W?) = [~ w2@y(w)dw (12)
Since @y (W) = —wy (W)
It follows:

oo

2
E(W?) = gf wy (w)dw
0

= % Of [y (W), w, (W)]dw

oo

2 [ r
=—/|| exp(—w6,)dw, exp(—weu)dw]
) ;

_2[1 1]
I C)

2 2
Iz @
Thus (11) yields
ot =l 5 - (5 5 ) (13)

Simplifying (13) provides
o W) = [z, g | (14)

Likewise, the other properties of the NED can be established in a neutrosophic environment. Some
applications of the proposed model are presented to understand the initial concepts derived for the

NED.

4. Ilustrative Examples

In this section the notion of the NED has been described with a series of examples in the area

of applied statistics.
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Examplel Hits to certain website follow a Poisson process with an average of {2,4} hits per hour in
a day. Let the time between two hits is denoted by the random variable W. Find the probability that

waiting time is less than an hour.

Solution Poisson distribution is connected with the exponential distribution. The waiting time

between Poisson events occurring follows the exponential distribution.
Using theorem 2 we can write:

P(W < 1) = dy(1)

=1— exp(—w{2,4})

= {0.86,0.98}

Thus chance to hit the website less than an hour is {86, 98}%.

Example 2 Failure mechanism of the alternators used in automobiles follows the NED for an
average lifespan of [8,12] years. Mr. Adnan buys a six years old car with a functioning alternator to

keep it for eight years. Determine the probability of the alternator failing during his possession.

Solution Let W denote the neutrosophic random variable that follows NED.
Given that uy = [i X ] = [8,12] years
UN =[50 5 141y

This implies [6;,0,] = [0.083,0.125]

Now the required probability:

P[W < 8] = ®y(8)

=[0.079,0.117]

Thus the chance that the alternator fails during his ownership is approximated by [8, 12]%.

Example 3 Let an electrical device has a certain component whose failure time (in months) is
determined by the random variable W that is nicely modelled by the NED with average time to
failure equal to {5, 6}. What is the probability that the component would still be functional after 4

months?

Solution Using (1) we can write:

Khan et.at., Neutrosophic Design of the Exponential Model with Applications



Neutrosophic Sets and Systems, Vol. 48, 2022

299

oo

P(W > 6) = f{S, 6}exp(—w{5, 6})dw
4

=1- f{S, 6}exp(—w{5, 6})dw
0

Using the result given in the theorem 2 we can write:
=1-0y(4)
= {0.48,0.55}

5. Sample Estimation

The method for estimating the parameter of the NED namely neutrosophic maximum

likelihood estimation (NML) estimation has been introduced. Let we haves n sample {X;,i = 1,2,..

n}

values are taken from the NED. The question is, which value of the neutrosophic parameter should

be used for the observed sample?. This value can be determined by the likelihood function of the

neutrosophic model. As neutrosophy exist in the parameter of the NED, therefore NML function of

the NED is given by:
@y (w, By) = nlogy — Oy X' w; (15)
The NML estimates namely B, and 8y can be obtained by solving the following expression:

_ SEN (W, eN)
YN

Using the neutrosophic calculus [12], yielded

Swy, (w,0)) SGSU (w 0y)
[ 50, ' (16)
where @}, (w, 6,) = nlogf; — 0, .I' w; and wy(w, 0,) = nlogb, — 0, X' w;
Simplification of (15) provides:
Swy (w,0n)
PO = [& - S Wi — 0w (17)

Setting (17) equating to [0, 0] provides:
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N .
A I wi

By = [6),8,] = =— which is a single crisp value and coincides with the classical MLE.

i Wi

However, if imprecision in the observed data (Z) is considered then NML of the neutrosophic

parameter would be modified as:
By = [6,8,] = [+.3] (18)

where

A = ming = sum ofthe minmum values of the neutrosophic dataset

B = maxg = sum of the maximum values of the neutrosophic dataset

6 Simulation Analysis

In this part, the performance of the NML estimator has been assessed in terms of the
neutrosophic average biased (ABy) and neutrosophic root mean square error (RMSy) as defined
below [21]:

A Monte Carlo simulation is run in R software with various sample sizes and fixed value of the
neutrosophic parameter 8y = [0.5, 1.5]. An imprecise dataset is generated using the NED with
Oy = [0.5, 1.5] and simulation analysis is replicated for a total of N = 10000 times with sample
sizes of n =5,15,30, and 60, respectively. The performance measures of the NML estimator are

then computed and given in Table 1.

Khan et.at., Neutrosophic Design of the Exponential Model with Applications



Neutrosophic Sets and Systems, Vol. 48, 2022

301

Performance of NML estimate of the NED for simulated neutrosophic data

AB)y

RMSEy,

[0.124, 0.373]

[0.384, 1.143]

15

[0.035, 0.106]

[0.152, 0.457]

30

[0.017, 0.051]

[0.098, 0.296]

60

[0.008, 0.025]

[0.067, 0.201]

150

[0.003, 0.009]

[0.041, 0.125]

300

[0.002, 0.005]

[0.029, 0.087]

It can be seen from the results, as the sample size n goes up, the biases AByand RMSEy decrease.

Thus, the study concluded that the NML estimator provides reliable estimation with a larger

sample size.

7 Real Application

In this section, real data has been used to illustrate the application of the proposed model. The data

used for analysis is taken from the source [24]. Data contains the lifetime failures (in hours) of air

conditioning instrument used in 720-Boeing planes. To check the adequacy of exponential model,

an informal procedure of some necessary graphs have been used. The graphical diagnostic of the

exponential model along with other candidate models to failure time data is displayed in Figure 3.
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Figure 3 Model fitting to failure time data using the candidate exponential family models

Figure 1 emphasizes the adequacy of the exponential distribution on life failures data. Theoretical
lines in these necessary graphs from the exponential are shown with colored lines. Theoretical fits
show the appropriateness of the exponential model among the predefined set of candidate
probability models for the observed variable. Figure 1 describes that the exponential good fits the
data at both tails and center of the empirical distribution. It has been assumed that all data values
are not précised defined, and some values involve uncertainties and are given in the form of
intervals. These uncertain observations are intentionally created according to the methodology
defined in [25]. The indeterminate failure times data is given in Table 2.
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Table 2 The lifetime failures of air conditioning instrument used in 720-Boeing planes

Failure times (in hours)

[89.40, 90.80]

[ 9.90, 10.02]

[59.12, 60.66]

[185.71, 186.66]

[ 60.80, 61.95]

[48.25, 49.21]

[13.05, 14.71]

[23.17, 24.45]

[55.36, 56.80]

[19.44, 20.25]

[78.29, 79.10]

[ 83.91, 84.18]

[ 43.33, 44.11]

[58.43, 59.11]

[28.28, 29.24]

[117.22, 118.90]

[24.12, 25.00]

[155.83, 156.07]

[309.10, 310.47]

[75.511, 76.43]

[ 25.51, 26.19]

[ 43.99, 44.70]

[22.82, 23.96]

[ 61.87, 62.64]

[129.82, 130.38]

[207.23, 208.68]

[ 69.28, 70.63]

[100.07, 101.48]

[207.97, 208.16]

The conventional exponential model cannot be used to analyze such data, as shown in Table 2. The
values in Table 2 are provided in intervals because indeterminacies or exact values failure times are
not recorded perfectly. On the contrary, the proposed exponential distribution can easily analyze
such data. A descriptive summary of the failure times data rooted in the proposed model is shown
in Table 3.

Table 3 Descriptive summary of failure times data using the proposed model

Descriptive Summary

Estimated Rate parameter [0.011, 0.012]

Estimated Mean [82, 84]

Estimated Variance [6888, 7051]

The estimated values for rate, mean, and variance are in intervals due to indeterminacies in the
observed data. Thus, the proposed model analyzes data more efficiently than the conventional
model.

8 Conclusions

A new generalization of the classical exponential model, namely NED, has been presented in
this work. The notion of neutrosophic theory has been utilized in order to quantify ambiguity in the
absence of accurate distribution theory for analyzing data. The mathematical form of the proposed
NED in a neutrosophic environment is thoroughly presented. The analytical expressions for the key
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properties of the proposed model, including neutrosophic moments, neutrosophic distribution
function, and other related quantities, are derived. Some applicability examples of the NED mainly
for the processing indeterminacies in data have been provided. An estimation approach of the
maximum likelihood to estimate the parameter of the NED for dealing with imprecise data values is
developed. To validate the performance of the neutrosophic estimator, a simulation study has been

carried out. The simulation results demonstrate that indeterminate sample data with a larger size
may be used to accurately estimate the unknown parameter of the proposed model.
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