
                                    
University of New Mexico  

Khan et.at., Neutrosophic Design of the Exponential Model with Applications 

Neutrosophic Design of the Exponential Model with Applications

Zahid Khan1, *, Muhammad Gulistan2   
1, 2 Department of mathematics and statistics, Hazara University Mansehra Pakistan 

1  

1. Introduction 

zahidkhan@hu.edu.pk 
2 gulistanmath@hu.edu.pk 
* Correspondence: zahidkhan@hu.edu.pk 

Abstract: Operations on neutrosophic numbers generalize operations on crisp numbers. In this 
way, the neutrosophic approach quantifies data ambiguity and enables the generalization of the 
existing statistical model. This study presents an extension of the conventional exponential 
distribution in a neutrosophic context. Neutrosophic generalization is restricted to characterize the 
properties of the neutrosophic exponential distribution (NED); however, related results can   
to other stochastic models for handling the situations involving uncertainties or vagueness in 
processing data. All essential features of the proposed NED, such as neutrosophic moments, 
neutrosophic distribution function, and other related quantities, are explored. The mathematical 
results in this work lay the groundwork for using the exponential distribution to produce drivers 
for other generalized models. The neutrosophic logic of the proposed model is illustrated with 
examples. The estimation technique for treating the imprecision in the unknown parameter is 
established. The performance of the estimator neutrosophic estimator has been evaluated through 
Monte Carlo simulation. Simulation findings reveal that a larger sample size provides reliable 
estimation results. 

Keywords: Neutrosophic probability; neutrosophic distribution; exponential model; estimation 

Probability distributions are now an essential part of every scientific research. Several real-
world random events are described by these probability models [1]. A basic statistical probability 
model is commonly applicable to problems encountered by researchers. One of the most common 
continuous distributions is the exponential distribution [2]. The exponential model is considerably 
connected with the Poisson distribution [3]. It is commonly utilized as a model to measure the time 
between events occurrence. Some examples of its application include measuring the time associated 
with obtaining a faulty component on an assembling line in an engineering framework, predicting 
the risk of a portfolio of financial assets on next default and calculating radioactive decay in physics 
[4]. It is also used to estimate the probability of a certain number of defaults occurring during a 
particular time period [5]. The exponential distribution is an adequate failure model for describing 
the failure patterns of many components and devices with constant hazard rates in reliability 
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analysis [6]. In hydrology, the exponential distribution is frequently used to examine extreme 
values of yearly or monthly maximum river flow and total rainfall [7]. A DNA strand length 
between mutations or the distance between roads fatalities are examples of situations where 
exponential variables may also be used to describe the likelihood of events occurring at a constant 
rate per unit distance [8-9].  

In this study, a novel generalization of the NED has been described with the primary goal of 
incorporating vague information about the study variables. The exponential distribution is 
considered a neutrosophic version because it is a versatile model that can reflect a wide range of 
distribution forms. This extension provides a broader and clear analysis of the studied variables 
under consideration. The neutrosophic extension of the exponential model paves the path for 
working with other classical probability models established for the precisely described datasets. 
This study presents the NED in a way that the conventional logic of the exponential model cannot 
handle the many applied data problems. This generalization is based on the notion of neutrosophy 
presented by Smarandache [10]. The analysis of false or true statements, but indeterminate, neutral, 
inconsistent, or something in between, is oriented by Neutrosophic logic [11]. Every area has its 
neutrosophic component, namely the indeterminacy part, on the mathematical side. Smarandache 
made the first effort to use the neutrosophic approach in statistics, precalculus, and calculus to cope 
with imprecision in study variables [12]. As a result, neutrosophic statistics have given rise to 
research topics that deal with the effect of indeterminacy in statistical modeling. Some recent 
literature has recently made the first step toward describing the neutrosophic principle of statistical 
modeling [13-16]. Neutrosophic measures probability and descriptive statistical are discussed in 
[17]. Neutrosophic decision-making applications in quality control seem to be very efficient [18]. 
Alhabib et al. first looked at the neutrosophic algebraic structures of probability distributions [19]. 
Some recent work on neutrosophical probabability distributions can be seen in [20-23]. 
Nevertheless, works focusing on neutrosophic statistics have always relied on the applications side 
of the neutrosophic logic, and algebraic structures of probability distributions have rarely been 
addressed. 

The work is structured as follows: The NED and algebraic framework of the neutrosophic 
numbers are given in section 2. Mathematical properties of the proposed NED are provided in 
section 3. Section 4 demonstrates some examples of the NED. The estimation approach for the 
imprecise parameter of NED is established in section 5. A simulation study for demonstrating the 
performance of the NML estimator is carried out in section 6.  A real application of the proposed 
model is given in section 7. Lastly, section 8 summarizes the research findings. 

2. Preliminaries  

All essential features of the proposed NED, such as moments, shape coefficients, and the 
moment generating function, are based on the algebraic framework of the neutrosophic numbers. Let 
M = (tm , im , fm )  and N = (tn , in , fn )  are two single-valued neutrosophic numbers with 
tm , tn , im , in , fm , fn ∈ [0,1] , 0 ≤ tm , im , fm ≤ 3  and 0 ≤ tn , in , fn ≤ 3  then the following operation are 
commonly employed in the framework of the neutrosophic algebra [16]: 
M⨁N = (tm + tn − tm tn , im in + fm  fn )        (1) 
M ⊗ N = (tm tn , im +in − tn , fm + fn − fm  fn  )       (2) 
ωM = (1 − (1 − tm )ω , tm

ω , fm
ω);         (3) 

Mω = (tm
ω − 1 − (1 − im )ω , 1 − (1 − fm )ω),      (4) 

where the scalar ω > 0, 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 ∈ 𝑅𝑅. 
Equations (1), (2), (3) and (4) represent neutrosophic summation, neutrosophic multiplication, scalar 
multiplication and neutrosophic power respectively. Likewise, the single-valued neutrosophic 
operations can be extended to neutrosophic sets. 
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Definition 2.1 Neutrosophic data extends the classic data that contain some imprecise, vague or 
indeterminacy in some or all values. In general terms, it can be represented as: 
x = constant + I,  
where I ∈ [u, l]; for example, 7 + I where I ∈ [3, 3.5].  
Definition 2.2 The neutrosophic random variable W, which equals the distance between successive 
events in a Poisson process, follows the NED model with the following neutrosophic density 
function (PDFN ). 
φN (w) = θN exp(−wθN );  w > 0, and  z > 0,      (5) 
where θN ∈ {θl , θu } . Figure 1 shows the form of the distribution with neutrosophic parameter 
θN = {0.25,0.50}, {1.00,1.50} and {2.00, 2.50} if the data are believed to be NED. 

 
 

 
Figure 1 Neutrosophic density graph of the NED 
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Figure 1 shows the neutrosophic area because of the indeterminate value of the failure rate parameter 

θN . It is clearly demonstrated from Figure 1 that parameter settings may be changed to create a variety 

of neutrosophic exponential curves. 

3. Some useful functions of the proposed NED 

In this section, some widely used properties of the NED can be established in the form of the 
following theorems: 
Theorem 1. Show that rth moment of the NED is Γ(r+1)

θN
r  

Proof By definition the rth moment of the NED can define as:  

μrN
′ = � wrθN exp(−wθN )dw

∞

0
 

        = � wr
∞

0
[θlexp(−wθl), θu exp(−wθu )]dw 

        = �∫ wrθlexp(−wθl)dw∞
0 ,   ∫ wrθu exp(−wθu )dw∞

0 �      (6) 
By substituting y = wθN , we get from (6) 

� wrθlexp(−wθl)dw
∞

0
=  

 Γ(r + 1)
θl

r  

� wrθlexp(−wθl)dw
∞

0
=   
Γ(r + 1)
θu

r  

Thus (6) provides  

= �
 Γ(r + 1)
θl

r ,
Γ(r + 1)
θu

r    � 

Hence, 
μrn
′ =   Γ(r+1)

θN
r             where r = 1, 2, 3,        (7) 

Thus first four raw moments can be derived as: 
μ1N
′ = 1

θN
, μ2N
′ = 1

2θN
2 , μ3N

′ = 1
6θN

3  and μ4N
′ = 1

24θN
4  

Theorem 2. The distribution function ΦN (w) of the NED is 1 − exp(−wθN ). 
Proof The result of the distribution function is obtained by solving the following expression: 

ΦN (w) = � φN (w)dw
w

0

 

              = 1 − exp(−wθN )         (8) 
Sketch of the CDF function of the proposed NED with neutrosophic parameter 𝜃𝜃𝑁𝑁 = {1.5, 2} is displayed in 

Figure 2. 
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Figure 2 CDF curve of the NED with θN = {1.5, 2} 

Theorem 3. The median of the NED is �ln(2)
θ l

, ln(2)
θu

�. 

Proof Neutrosophic median (MN) is the solution of the following expression: 

� ΦN(w)dw

MN

0

= �
1
2

,
1
2
� 

�∫ Φl(w)dw,   ∫ Φu (w)dMN
0

MN
0 � = �1

2
, 1

2
�        (9) 

where Φl(w) = 1 − exp(wθu ) and Φu (w) = 1 − exp(wθu ). 

Analytical simplification of (9) implies: 

MNθl = ln(2) 

MNθu = ln(2) 

Implying thereby MN = �ln(2)
θu

, ln(2)
θ l
�. 

Theorem 4. First quantile (QIN ) and the third quantile (Q3N) of the NED are �
ln(4

3)

θu
,

ln(4
3)

θ l
� and 

�ln(4)
θu

, ln(4)
θ l
� respectively. 

Proof The  QIN  and Q3N  by definition are corresponded to solutions such as:  
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� ΦN (w)dw

QIN

0

= �
1
4

,
1
4
� 

� ΦN (w)dw

Q3N

0

= �
3
4

,
3
4
� 

Therefore following theorem 3, we can write: 

QIN = �ln(4)
θu

, ln(4)
θ l
� and Q3N = �

ln(4
3)

θu
,

ln(4
3)

θ l
�. 

Theorem 5 The mean of the NED is  1
θN

 

Proof The neutrosophic mean of the NED is determined as: 

μN = �ωN (w)dw
∞

0

 

= �[ωl(w),ωu (w)]dw
∞

0

  

= �� exp(−wθl)dw, � exp(−wθu )dw
∞

0

∞

0

� 

= �
1
θu

,
1
θl

  � 

= 1
θN

. `          (10) 

Theorem 6. The variance of the NED is 1
θ2N

  

Proof  By definition variance is 

σN
2(W) = E(W2) − (μN )2         (11) 

where σN
2(W) stands for neutrosophic variance 
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Now  E(W2) = ∫ w2φN(w)dw∞
0          (12) 

Since φN (w) = −ωN (w)́  

It follows:  

E(W2) =
2
θN

�ωN (w)dw
∞

0

 

             =
2
θN

�[ωl(w),ωu (w)]dw
∞

0

 

           =
2
θN

�� exp(−wθl)dw, � exp(−wθu )dw
∞

0

∞

0

� 

          =
2
θN

�
1
θu

,
1
θl

  � 

         = �
2
θ2

u
,

2
θ2

l
  � 

Thus (11) yields 

σN
2(W) = � 2

θ2u
, 2
θ2l

  � − �� 1
θu

, 1
θ l

  ��
2
       (13) 

Simplifying (13) provides 

σN
2(W) = � 1

θ2u
, 1
θ2l

  �          (14) 

Likewise, the other properties of the NED can be established in a neutrosophic environment. Some 

applications of the proposed model are presented to understand the initial concepts derived for the 

NED. 

4. Illustrative Examples 

In this section the notion of the NED has been described with a series of examples in the area 

of applied statistics. 
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Example1 Hits to certain website follow a Poisson process with an average of {2,4} hits per hour in 

a day. Let the time between two hits is denoted by the random variable W. Find the probability that 

waiting time is less than an hour. 

Solution Poisson distribution is connected with the exponential distribution. The waiting time 

between Poisson events occurring follows the exponential distribution. 

Using theorem 2 we can write: 

P(W < 1) = ΦN(1) 

= 1 − exp(−w{2,4}) 

= {0.86, 0.98} 

Thus chance to hit the website less than an hour is {86, 98}%. 

Example 2 Failure mechanism of the alternators used in automobiles follows the NED for an 

average lifespan of [8, 12] years. Mr. Adnan buys a six years old car with a functioning alternator to 

keep it for eight years. Determine the probability of the alternator failing during his possession. 

Solution Let W denote the neutrosophic random variable that follows NED. 

Given that μN = � 1
θu

, 1
θ l

  � = [8, 12] years 

This implies [θl , θu ] = [0.083, 0.125] 

Now the required probability: 

P[W < 8] = ΦN (8)  

= [0.079, 0.117] 

Thus the chance that the alternator fails during his ownership is approximated by [8, 12]%. 

Example 3 Let an electrical device has a certain component whose failure time (in months) is 

determined by the random variable W that is nicely modelled by the NED with average time to 

failure equal to {5, 6}. What is the probability that the component would  still be functional after 4 

months? 

Solution Using (1) we can write: 
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P(W > 6) = �{5, 6}exp(−w{5, 6})dw
∞

4

 

= 1 −�{5, 6}exp(−w{5, 6})dw
4

0

 

Using the result given in the theorem 2 we can write: 

= 1 − ΦN (4) 

= {0.48, 0.55} 

5. Sample Estimation 

The method for estimating the parameter of the NED namely neutrosophic maximum 

likelihood estimation (NML) estimation has been introduced. Let we haves n sample {Xi , i = 1,2, . . n} 

values are taken from the NED. The question is, which value of the neutrosophic parameter should 

be used for the observed sample?. This value can be determined by the likelihood function of the 

neutrosophic model. As neutrosophy exist in the parameter of the NED, therefore NML function of 

the NED is given by: 

ϖN (w, θN ) = nlogθN − θN ∑ wi
n
i         (15) 

The NML estimates namely θ�L  and θ�U  can be obtained by solving the following expression: 

=
δϖN (w, θN )

δθN
 

Using the neutrosophic calculus [12], yielded 

= �δϖL (w,θ l )
δθu

, δϖU (w,θu )
δθ l

�         (16) 

where ϖL(w, θl) = nlogθl − θL ∑ wi
n
i  and ϖN (w, θu ) = nlogθu − θu ∑ wi

n
i  

Simplification of (15) provides: 

δϖN (w,θN )
δθN

= � n
θ l
− ∑ wi

n
i , n

θu
− ∑ wi

n
i �       (17) 

Setting (17) equating to [0, 0] provides: 
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θ� l = n
∑ wi

n
i

 and θ�u = n
∑ wi

n
i

 

Thus 

θ�N = �θ� l , θ�u� = n
∑ wi

n
i

 which is a single crisp value and coincides with the classical MLE.  

However, if imprecision in the observed data (z�) is considered then NML of the neutrosophic 

parameter would be modified as: 

θ�N = �θ� l , θ�u� = �n
A

, n
B
�          (18) 

where 

A = minw� = sum ofthe minmum values of the neutrosophic  dataset  

B = maxw� = sum of the maximum values of the neutrosophic dataset 

6 Simulation Analysis 

In this part, the performance of the NML estimator has been assessed in terms of the 
neutrosophic average biased (𝐴𝐴𝐴𝐴𝑁𝑁) and neutrosophic root mean square error (𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁) as defined 
below [21]: 

𝐴𝐴𝐴𝐴𝑁𝑁 =
∑ �𝜃𝜃�𝑁𝑁𝑁𝑁 − 𝜃𝜃𝑁𝑁�𝑁𝑁
𝑁𝑁=1

𝑁𝑁
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁 = �∑ �𝜃𝜃�𝑁𝑁𝑁𝑁 − 𝜃𝜃𝑁𝑁�
2𝑁𝑁

𝑁𝑁=1

𝑁𝑁
 

A Monte Carlo simulation is run in R software with various sample sizes and fixed value of the 
neutrosophic parameter 𝜃𝜃𝑁𝑁 = [0.5, 1.5]. An imprecise dataset is generated using the NED with 
𝜃𝜃𝑁𝑁 = [0.5, 1.5] and simulation analysis is replicated for a total of 𝑁𝑁 = 10000 times with sample 
sizes of  𝑎𝑎 = 5, 15, 30, and 60, respectively. The performance measures of the NML estimator are 
then computed and given in Table 1. 
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Performance of NML estimate of the NED for simulated neutrosophic data 

𝑨𝑨𝑨𝑨𝑵𝑵 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑵𝑵

5 [0.124, 0.373] [0.384, 1.143] 

15 [0.035, 0.106] [0.152, 0.457] 

30 [0.017, 0.051] [0.098, 0.296] 

60 [0.008, 0.025] [0.067, 0.201] 

150 [0.003, 0.009] [0.041, 0.125] 

300 [0.002, 0.005] [0.029, 0.087] 

It can be seen from the results, as the sample size 𝑎𝑎 goes up, the biases 𝐴𝐴𝐴𝐴𝑁𝑁and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁 decrease. 
Thus, the study concluded that the NML estimator provides reliable estimation with a larger 
sample size. 

7 Real Application 

In this section, real data has been used to illustrate the application of the proposed model. The data 
used for analysis is taken from the source [24]. Data contains the lifetime failures (in hours) of air 
conditioning instrument used in 720-Boeing planes. To check the adequacy of exponential model, 
an informal procedure of some necessary graphs have been used. The graphical diagnostic of the 
exponential model along with other candidate models to failure time data is displayed in Figure 3. 
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Figure 3 Model fitting to failure time data using the candidate exponential family models 

Figure 1 emphasizes the adequacy of the exponential distribution on life failures data. Theoretical 
lines in these necessary graphs from the exponential are shown with colored lines. Theoretical fits 
show the appropriateness of the exponential model among the predefined set of candidate 
probability models for the observed variable. Figure 1 describes that the exponential good fits the 
data at both tails and center of the empirical distribution.  It has been assumed that all data values 
are not précised defined, and some values involve uncertainties and are given in the form of 
intervals. These uncertain observations are intentionally created according to the methodology 
defined in [25]. The indeterminate failure times data is given in Table 2. 
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Table 2 The lifetime failures of air conditioning instrument used in 720-Boeing planes 

The conventional exponential model cannot be used to analyze such data, as shown in Table 2. The 
values in Table 2 are provided in intervals because indeterminacies or exact values failure times are 
not recorded perfectly. On the contrary, the proposed exponential distribution can easily analyze 
such data. A descriptive summary of the failure times data rooted in the proposed model is shown 
in Table 3. 

Table 3 Descriptive summary of failure times data using the proposed model 

Descriptive Summary 

Estimated Rate parameter [0.011, 0.012] 

Estimated Mean [82, 84] 

Estimated Variance [6888, 7051] 

The estimated values for rate, mean, and variance are in intervals due to indeterminacies in the 
observed data. Thus, the proposed model analyzes data more efficiently than the conventional 
model. 

8 Conclusions 

A new generalization of the classical exponential model, namely NED, has been presented in 
this work. The notion of neutrosophic theory has been utilized in order to quantify ambiguity in the 
absence of accurate distribution theory for analyzing data. The mathematical form of the proposed 
NED in a neutrosophic environment is thoroughly presented. The analytical expressions for the key 

Failure times (in hours) 

[89.40, 90.80] [ 9.90, 10.02] [59.12, 60.66] [185.71, 186.66] [ 60.80, 61.95] 

[48.25, 49.21] [13.05, 14.71] [23.17, 24.45] [55.36,  56.80] [19.44,  20.25] 

[78.29, 79.10] [ 83.91, 84.18] [ 43.33,  44.11] [58.43,  59.11] [28.28, 29.24] 

[117.22, 118.90] [24.12, 25.00] [155.83,  156.07] [309.10,  310.47] [75.511, 76.43] 

[ 25.51,  26.19] [ 43.99,  44.70] [22.82, 23.96] [ 61.87, 62.64] [129.82, 130.38] 

[207.23, 208.68] [ 69.28, 70.63] [100.07, 101.48] [207.97, 208.16]  
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properties of the proposed model, including neutrosophic moments, neutrosophic distribution 
function, and other related quantities, are derived. Some applicability examples of the NED mainly 
for the processing indeterminacies in data have been provided. An estimation approach of the 
maximum likelihood to estimate the parameter of the NED for dealing with imprecise data values is 
developed. To validate the performance of the neutrosophic estimator, a simulation study has been 
carried out. The simulation results demonstrate that indeterminate sample data with a larger size 
may be used to accurately estimate the unknown parameter of the proposed model. 
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