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1 Introduction
Fuzzy sets were established by Zadeh [1] as a tool to deal with uncertain data. The idea of neutrosophic
fuzzy sets, an extension of fuzzy sets, was introduced by Smarandache [2, 3] to handle indeterminate and
uncertain situations. As another way to deal with uncertain information, Molodtsov [4] introduced the concept
of soft sets. Various researchers around the world have extended fuzzy sets and soft sets in different directions
in order to make them more appropriate to handle different types of information. However, in some cases
the description of objects by fuzzy soft sets in terms of one dimensional membership function only is not
adequate. This motivates Adam and Hassan [5–8] to define the Q-fuzzy soft sets and matrix as a way to deal
with situations with a set of parameters and two-dimensional data. Q-neutrosophic soft sets (Q-NSSs) [9]
were introduced as a new model that deals with two-dimensional uncertain data. It is a model that generalizes
neutrosophic and Q-fuzzy sets simultaneously. Q-NSSs were further investigated and their basic operations
and relations were discussed in [9, 10].

Different hybrid models of fuzzy sets and soft sets were utilized in different branches of mathematics,
including algebra [11–13]. Bera and Mahapatra [14,15] introduced neutrosophic soft groups and neutrosophic
normal soft groups. This motivates Solairaju and Nagarajan [16] to introduce the new structure of Q-fuzzy
groups which combine the concepts of Q-fuzzy sets and groups. Recently, Q-fuzzy sets were utilized to
different algebraic structures, for example, Q-fuzzy normal subgroups [17], anti-Q-fuzzy normal subgroups
[18]. Furthermore, Sarala and Suganya [19] utilized Q-fuzzy soft sets to establish Q-fuzzy soft rings.

In a particular view on the utilization of Q-NSSs to algebraic structures, Abu Qamar and Hassan [20]
applied Q-NSS to group theory by introducing Q-neutrosophic soft groups, they examined numerous properties
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and basic attributes. Additionally, they characterized the thought of Q-level soft sets of a Q-neutrosophic soft
set, which is a bridge between Q-neutrosophic soft groups and soft groups. Furthermore, rings and fields were
studied under Q-neutrosophic soft settings in [21, 22].

In this paper, we provide a wider discussion on Q-NSGs, by defining the notions of Q-neutrosophic normal
soft groups (Q-NNSGs) and Q-neutrosophic soft cosets. Also, we discuss the relation between Q-neutrosophic
normal soft groups and normal soft groups. Further, we discuss several related structural characteristics and
properties.

2 Preliminaries

In this section, we recall some basic definitions related to the work in this study.

Definition 2.1 ( [9]). Let X be a universal set, Q be a nonempty set and A ⊆ E be a set of parameters. Let
µlQNS(X) be the set of all multi Q-NSs on X with dimension l = 1. A pair (ΓQ, A) is called a Q-NSS over
X , where ΓQ : A→ µlQNS(X) is a mapping, such that ΓQ(e) = φ if e /∈ A.

Definition 2.2 ( [10]). The union of two Q-neutrosophic soft sets (ΓQ, A) and (ΨQ, B) is the Q-neutrosophic
soft set (ΛQ, C) written as (ΓQ, A)∪(ΨQ, B) = (ΛQ, C), where C = A∪B and for all c ∈ C, (x, q) ∈ X×Q,
the truth-membership, indeterminacy-membership and falsity-membership of (ΛQ, C) are as follows:

TΛQ(c)(x, q) =


TΓQ(c)(x, q) if c ∈ A−B,
TΨQ(c)(x, q) if c ∈ B − A,
max{TΛQ(c)(x, q), TΨQ(c)(x, q)} if c ∈ A ∩B,

IΛQ(c)(x, q) =


IΓQ(c)(x, q) if c ∈ A−B,
IΨQ(c)(x, q) if c ∈ B − A,
min{IΓQ(c)(x, q), IΨQ(c)(x, q)} if c ∈ A ∩B,

FΛQ(c)(x, q) =


FΓQ(c)(x, q) if c ∈ A−B,
FΨQ(c)(x, q) if c ∈ B − A,
min{FΓQ(c)(x, q), FΨQ(c)(x, q)} if c ∈ A ∩B.

Definition 2.3 ( [10]). The intersection of two Q-neutrosophic soft sets (ΓQ, A) and (ΨQ, B) is the Q-neutrosophic
soft set (ΛQ, C) written as (ΓQ, A) ∩ (ΨQ, B) = (ΛQ, C), where C = A ∩ B and for all c ∈ C and
(x, q) ∈ X × Q the truth-membership, indeterminacy-membership and falsity-membership of (ΛQ, C) are
as follows:

TΛQ(c)(x, q) = min{TΓQ(c)(x, q), TΨQ(c)(x, q)},
IΛQ(c)(x, q) = max{IΓQ(c)(x, q), IΨQ(c)(x, q)},
FΛQ(c)(x, q) = max{FΓQ(c)(x, q), FΨQ(c)(x, q)}.
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Definition 2.4. [22] Let G be a group and (ΓQ, A) be a Q-NSS over a group G. Then (ΓQ, A) is called a
Q-neutrosophic soft group over G if for all x, y ∈ G and e ∈ A it satisfies:

1. TΓQ(e)(xy, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(xy, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and

FΓQ(e)(xy, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(x
−1, q) ≥ TΓQ(e)(x, q), IΓQ(e)(x

−1, q) ≤ IΓQ(e)(x, q) and FΓQ(e)(x
−1, q) ≤ FΓQ(e)(x, q).

3 Q-Neutrosophic Normal Soft Groups
In this section, we introduce the Q-NNSG and discuss several relevant structural properties.

Definition 3.1. A Q-NSG (ΓQ, A) over the group G is called a Q-NNSG over G if ΓQ(e) is a Q-neutrosophic
normal subgroup of G for each e ∈ A i.e., for x ∈ ΓQ(e), y ∈ G, q ∈ Q

TΓQ(e)(yxy
−1, q) ≥ TΓQ(e)(x, q),

IΓQ(e)(yxy
−1, q) ≤ IΓQ(e)(x, q),

FΓQ(e)(yxy
−1, q) ≤ FΓQ(e)(x, q).

Definition 3.2. A Q-NSG (ΓQ, A) over the group G is called abelian Q-NSG if ∀x, y ∈ G, q ∈ Q, e ∈ A the
following hold

TΓQ(e)(xy, q) = TΓQ(e)(yx, q),

IΓQ(e)(xy, q) = IΓQ(e)(yx, q),

FΓQ(e)(xy, q) = FΓQ(e)(yx, q).

Example 3.3. LetG = (Z,+) be a group and A=N be the parametric set. Define a Q-NSG (ΓQ, A) as follows:
For q ∈ Q, x ∈ Z,m ∈ N

TΓQ(m)(x, q) =

{
0 if x is odd
2
3

if x is even,

IΓQ(m)(x, q) =

{
1
n

if x is odd
0 if x is even,

FΓQ(m)(x, q) =

{
1− 3

n
if x is odd

0 if x is even.

It is clear that (ΓQ,N) is a Q-NNSG over G.

Proposition 3.4. Let (ΓQ, A) be a Q-NNSG over a group G. Then, ∀x, y ∈ G, q ∈ Q and e ∈ A,

1. TΓQ(e)(yxy
−1, q) = TΓQ(e)(x, q), IΓQ(e)(yxy

−1, q) = IΓQ(e)(x, q), FΓQ(e)(yxy
−1, q) = FΓQ(e)(x, q).

2. (ΓQ, A) is an abelian Q-NSG over G.
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Proof. 1.

TΓQ(e)(x, q) = TΓQ(e)

(
(y−1y)x(y−1y), q

)
= TΓQ(e)

(
y−1(yxy−1)y, q

)
= TΓQ(e)

(
y−1(yxy−1)(y−1)−1, q

)
≥ TΓQ(e)

(
yxy−1, q

)
.

Now, from Definition 3.1 TΓQ(e)(yxy
−1, q) = TΓQ(e)(x, q).

In a similar manner we can show that IΓQ(e)(yxy
−1, q) = IΓQ(e)(x, q) and FΓQ(e)(yxy

−1, q) = FΓQ(e)(x, q).

2. TΓQ(e)(x, q) = TΓQ(e)(yxy
−1, q), this implies TΓQ(e)(xy, q) = TΓQ(e)(yxyy

−1, q) = TΓQ(e)(yx, q). Simi-
larly, we can show that IΓQ(e)(xy, q) = IΓQ(e)(yx, q) and FΓQ(e)(xy, q) = FΓQ(e)(yx, q). Hence, (ΓQ, A) is an
abelian Q-NSG over G.

Theorem 3.5. Let (ΓQ, A) and (ΨQ, B) be two Q-NNSG over a group G. Then, (ΓQ, A) ∩ (ΨQ, B) is also a
Q-NNSG over G.

Proof. Let (ΛQ, C) = (ΓQ, A) ∩ (ΨQ, B). Then, for x, y ∈ G, q ∈ Q, e ∈ C

TΛQ(e)(yxy
−1, q) = min

{
TΓQ(e)(yxy

−1, q), TΨQ(e)(yxy
−1, q)

}
≥ min

{
TΓQ(e)(x, q), TΨQ(e)(x, q)

}
= TΛQ(e)(x, q),

IΛQ(e)(yxy
−1, q) = max

{
IΓQ(e)(yxy

−1, q), IΨQ(e)(yxy
−1, q)

}
≤ max

{
IΓQ(e)(x, q), IΨQ(e)(x, q)

}
= IΛQ(e)(x, q).

Similarly, we can show that FΛQ(e)(yxy
−1, q) ≤ FΛQ(e)(x, q). This completes the proof.

Remark 3.6. The union of two Q-NNSGs is not a Q-NNSG since the union is not a Q-NSG.

The next example illustrates the above remark.

Example 3.7. let G = (Z,+) and E = 2Z. Define the two Q-neutrosophic soft groups (ΓQ, E) and (ΨQ, E)
over G as the following:
For x,m ∈ Z, q ∈ Q
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TΓQ(2m)(x, q) =

{
0.50 if x = 4tm,∃t ∈ Z,
0 otherwise,

IΓQ(2m)(x, q) =

{
0 if x = 4tm,∃t ∈ Z,
0.25 otherwise,

FΓQ(2m)(x, q) =

{
0 if x = 4tm,∃t ∈ Z,
0.10 otherwise,

and

TΨQ(2m)(x, q) =

{
0.67 if x = 6tm,∃t ∈ Z,
0 otherwise,

IΨQ(2m)(x, q) =

{
0 if x = 6tm,∃t ∈ Z,
0.20 otherwise,

FΨQ(2m)(x, q) =

{
0 if x = 6tm,∃t ∈ Z,
0.17 otherwise.

Let (ΓQ, A) ∪ (ΨQ, B) = (ΛQ, E). For m = 3, x = 12, y = 18 we have

TΛQ(6)(12.18−1, q) = TΛQ(6)(−6, q) = max
{
TΓQ(6)(−6, q), TΨQ(6)(−6, q)

}
= max{0, 0} = 0

and

min
{
TΛQ(6)(12, q), TΛQ(6)(18, q)

}
= min

{
max

{
TΓQ(6)(12, q), TΨQ(6)(12, q)

}
,max

{
TΓQ(6)(18, q), TΨQ(6)(18, q)

}}
= min

{
max

{
0.50, 0

}
,max

{
0, 0.67

}}
= min

{
0.50, 0.67

}
= 0.50.

Hence, TΛQ(6)(12.18−1, q) = 0 < min
{
TΛQ(6)(12, q), TΛQ(6)(18, q)

}
= 0.50; i.e. (ΛQ, E) = (ΓQ, A) ∪

(ΨQ, B) is not a Q-neutrosophic soft group.

Theorem 3.8. Let (ΓQ, A) be a Q-NSS over G. Then, (ΓQ, A) is a Q-NNSG over G if and only if for all
α, β, γ ∈ [0, 1], the Q-level soft set (ΓQ, A)(α,β,γ) 6= φ is a normal soft group over G.

Proof. We only need to prove the normality. For x ∈ (ΓQ, A)(α,β,γ), y ∈ G and q ∈ Q, we have

TΓQ(e)(yxy
−1, q) = TΓQ(e)(yy

−1x, q) = TΓQ(e)(x, q) ≥ α,

IΓQ(e)(yxy
−1, q) = IΓQ(e)(yy

−1x, q) = IΓQ(e)(x, q) ≤ β,

FΓQ(e)(yxy
−1, q) = FΓQ(e)(yy

−1x, q) = FΓQ(e)(x, q) ≤ γ.
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It follows that yxy−1 ∈ (ΓQ, A)(α,β,γ), i.e. (ΓQ, A)(α,β,γ) is a Q-NNSG of G.
Conversely, assume that (ΓQ, A) is not a Q-NNSG over G. Then, there exists e ∈ A such that ΓQ(e) is not

a Q-NN subgroup of G. Then, there exists x1, y1 ∈ G and q ∈ Q such that

TΓQ(e)(x1y1, q) < TΓQ(e)(y1x1, q) or TΓQ(e)(x1y1, q) > TΓQ(e)(y1x1, q) or

IΓQ(e)(x1y1, q) < IΓQ(e)(y1x1, q) or IΓQ(e)(x1y1, q) > IΓQ(e)(y1x1, q) or

FΓQ(e)(x1y1, q) < FΓQ(e)(y1x1, q) or FΓQ(e)(x1y1, q) > FΓQ(e)(y1x1, q).

In case TΓQ(e)(x1y1, q) < TΓQ(e)(y1x1, q), there exists α ∈ [0, 1] such that TΓQ(e)(x1y1, q) < α < TΓQ(e)(y1x1, q).
It follows that x1y1 /∈ ΓQ(e)(α,β,γ)

, but for IΓQ(e)(x1y1, q) < β and FΓQ(e)(x1y1, q) < γ, x1y1 /∈ ΓQ(e)(α,β,γ)
this

contradicts with the fact that (ΓQ, A)(α,β,γ) is a normal soft group over G. In the other cases the proof can be
obtained in a similar way.

Theorem 3.9. Let (ΓQ, A) be a Q-NNSG over G. Let

(ΓQ, A)|é =
{
x ∈ G : TΓQ(e)(x, q) = TΓQ(e)(é, q),IΓQ(e)(x, q) = IΓQ(e)(é, q),

FΓQ(e)(x, q) = FΓQ(e)(é, q), e ∈ A
}
,

where é is the unit element of G. Then, (ΓQ, A)|é is a normal soft group over G.

Proof. For each e ∈ A and x, y ∈ (ΓQ, A)|é, q ∈ Q, we have

TΓQ(e)(xy
−1, q) ≥ min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
= min

{
TΓQ(e)(é, q), TΓQ(e)(é, q)

}
= TΓQ(e)(é, q),

IΓQ(e)(xy
−1, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
= max

{
IΓQ(e)(é, q), IΓQ(e)(é, q)

}
= IΓQ(e)(é, q).

Similarly, we can show FΓQ(e)(xy
−1, q) ≤ FΓQ(e)(é, q). Always, TΓQ(e)(é, q) ≥ TΓQ(e)(xy

−1, q), IΓQ(e)(é, q) ≤
IΓQ(e)(xy

−1, q) andFΓQ(e)(é, q) ≤ FΓQ(e)(xy
−1, q). Therefore, TΓQ(e)(xy

−1, q) = TΓQ(e)(é, q), IΓQ(e)(xy
−1, q) =

IΓQ(e)(é, q), FΓQ(e)(xy
−1, q) = FΓQ(e)(é, q) and xy−1 ∈ (ΓQ, A)|é.

Next, let x ∈ (ΓQ, A)|é and y ∈ G. Then,

TΓQ(e)(yxy
−1, q) = TΓQ(e)(x, q) = TΓQ(e)(é, q),

IΓQ(e)(yxy
−1, q) = IΓQ(e)(x, q) = IΓQ(e)(é, q),

FΓQ(e)(yxy
−1, q) = FΓQ(e)(x, q) = FΓQ(e)(é, q).

Therefore, yxy−1 ∈ (ΓQ, A)|é. Hence, (ΓQ, A)|é is a normal soft group over G.
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4 Q-Neutrosophic Soft Cosets
In this section, we present the Q-neutrosophic soft cosets with some related properties.

Definition 4.1. Let (ΓQ, A) be a Q-NSG over G and g ∈ G be a fixed element. Then, the set g(ΓQ, A) ={
gΓQ(e) : e ∈ A

}
is called a left Q-neutrosophic soft coset of (ΓQ, A), where

gΓQ(e) =
{〈

(x, q), TgΓQ(e)(x, q), IgΓQ(e)(x, q), FgΓQ(e)(x, q)
〉

: x ∈ G, q ∈ Q
}

=
{〈

(x, q), TΓQ(e)(g
−1x, q), IΓQ(e)(g

−1x, q), FΓQ(e)(g
−1x, q)

〉
: x ∈ G, q ∈ Q

}
.

The right Q-neutrosophic soft coset of (ΓQ, A) in G is (ΓQ, A)g =
{

ΓQ(e)g : e ∈ A
}

, where

ΓQ(e)g =
{〈

(x, q), TΓQ(e)(xg
−1, q), IΓQ(e)(xg

−1, q), FΓQ(e)(xg
−1, q)

〉
: x ∈ G, q ∈ Q

}
.

Example 4.2. Let G be a classical group. Then, (ΓQ, A) =
{

ΓQ(e) : e ∈ A
}

, where

ΓQ(e) =
{〈

(x, q), TΓQ(e)(x, q), IΓQ(e)(x, q), FΓQ(e)(x, q)
〉

: x ∈ G, q ∈ Q
}

with TΓQ(e)(x, q) = TΓQ(e)(é, q), IΓQ(e)(x, q) = IΓQ(e)(é, q) and FΓQ(e)(x, q) = FΓQ(e)(é, q); (é being the
identity element in G ) is a Q-NNSG of G. In that case, we can get a neutrosophic soft coset.

Proposition 4.3. (ΓQ, A) is called a Q-NNSG overG if and only if the left and right Q-neutrosophic soft cosets
are equal.

Proof. Suppose that (ΓQ, A) is a Q-NNSG over G. Then,

gΓQ(e) =
{〈

(x, q), TgΓQ(e)(x, q), IgΓQ(e)(x, q), FgΓQ(e)(x, q)
〉

: x ∈ G, q ∈ Q
}

=
{〈

(x, q), TΓQ(e)(g
−1x, q), IΓQ(e)(g

−1x, q), FΓQ(e)(g
−1x, q)

〉
: x ∈ G, q ∈ Q

}
=
{〈

(x, q), TΓQ(e)(xg
−1, q), IΓQ(e)(xg

−1, q), FΓQ(e)(xg
−1, q)

〉
: x ∈ G, q ∈ Q

}
=
{〈

(x, q), TΓQ(e)g(x, q), IΓQ(e)g(x, q), FΓQ(e)g(x, q)
〉

: x ∈ G, q ∈ Q
}

= ΓQ(e)g.

Thus, g(ΓQ, A) = {gΓQ(e) : e ∈ A} = {ΓQ(e)g : e ∈ A} = (ΓQ, A)g.
Next, suppose that g(ΓQ, A) = (ΓQ, A)g.

Then,

TgΓQ(e)(x, q) = TΓQ(e)g(x, q), IgΓQ(e)(x, q) = IΓQ(e)g(x, q) and FgΓQ(e)(x, q) = FΓQ(e)g(x, q).

This implies,

TΓQ(e)(g
−1x, q) = TΓQ(e)(xg

−1, q), IΓQ(e)(g
−1x, q) = IΓQ(e)(xg

−1, q) and FΓQ(e)(g
−1x, q) = FΓQ(e)(xg

−1, q).
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Thus,

TΓQ(e)(xg
−1, q) = TΓQ(e)(g

−1x, q), IΓQ(e)(xg
−1, q) = IΓQ(e)(g

−1x, q) and FΓQ(e)(xg
−1, q) = FΓQ(e)(g

−1x, q),

which implies

TΓQ(e)(gxg
−1, q) = TΓQ(e)(x, q), IΓQ(e)(gxg

−1, q) = IΓQ(e)(x, q), FΓQ(e)(gxg
−1, q) = FΓQ(e)(x, q).

Thus, (ΓQ, A) is a Q-NNSG over G.
Therefore, if (ΓQ, A) is a Q-NNSG over G then the left and right Q-neutrosophic soft cosets coincide. In this
case, we call it Q-neutrosophic soft cosets instead of left or right Q-neutrosophic soft cosets separately.

Theorem 4.4. Let (ΓQ, A) be a Q-NNSG over the group G and the set ς be the collection of all distinct
Q-neutrosophic soft cosets of (ΓQ, A) in G. Then, ς is a group in classical sense under the operation of
composition: g1(ΓQ, A)y(ΓQ, A) = (g1y)(ΓQ, A), ∀g1, g2 ∈ G.

Proof. First we show that the operation is well defined in the sense that if g1(ΓQ, A) = ǵ1(ΓQ, A) and
g2(ΓQ, A) = ǵ2(ΓQ, A), then g1(ΓQ, A)g2(ΓQ, A) = (ǵ1ǵ2)(ΓQ, A) for g1, g2, ǵ1, ǵ2 ∈ G.
Now, g1(ΓQ, A) = ǵ1(ΓQ, A) implies g−1

1 ǵ1 = ΓQ(e1), e1 ∈ A and g2(ΓQ, A) = ǵ2(ΓQ, A) implies g−1
2 ǵ2 =

ΓQ(e2), e2 ∈ A.
We show, (g1g2)(ΓQ, A) = (ǵ1ǵ2)(ΓQ, A) i.e., (g1g2)−1(ǵ1ǵ2) ∈ G. Now,

(g1g2)−1(ǵ1ǵ2) = g−1
2 g−1

1 ǵ1ǵ2

= g−1
2 ΓQ(e1)ǵ2

= g−1
2 g2ΓQ(e1)

= ΓQ(e2)ΓQ(e1)

= ΓQ(e3) ∈ (ΓQ, A), e3 ∈ A.

Hence, the operation is well defined. Now,
1. the closure axiom is clearly satisfied.
2. g1(ΓQ, A)[g2(ΓQ, A)g3(ΓQ, A)] = g1(ΓQ, A)(g2g3)(ΓQ, A) = g1(g2g3)(ΓQ, A) and
[g1(ΓQ, A)g2(ΓQ, A)]g3(ΓQ, A) = (g1g2)g3(ΓQ, A) = (g1g2)g3(ΓQ, A) for g1, g2, g3 ∈ G. Now, g1(g2g3) =
(g1g2)g3, since G is a group.
3. é(ΓQ, A)g1(ΓQ, A) = (ég1)(ΓQ, A) = g1(ΓQ, A) and g1(ΓQ, A)é(ΓQ, A) = (g1é)(ΓQ, A) = g1(ΓQ, A) for
é being the unity in G.
4. g−1

1 (ΓQ, A)g1(ΓQ, A) = (g−1
1 g1)(ΓQ, A) = é(ΓQ, A) = (ΓQ, A) and

g1(ΓQ, A)g−1
1 (ΓQ, A) = (g1g

−1
1 )(ΓQ, A) = é(ΓQ, A) = (ΓQ, A).

Thus, ς is a group. This group is a called the quotient group ofG by (ΓQ, A) and is denoted byG/(ΓQ, A).

Theorem 4.5. Let (ΓQ, A) be a Q-NNSG over G. Then, there exists a natural homomorphism ϕ : G →
G/(ΓQ, A) defined by ϕ(g) = g(ΓQ, A),∀g ∈ G in the classical sense.

Proof. Let ϕ : G→ G/(ΓQ, A) be given by ϕ(g) = gΓQ(e),∀e ∈ A. We show that ϕ is a homomorphism i.e.
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ϕ(g1g2) = ϕ(g1)ϕ(g2),∀g1, g2 ∈ G, i.e., (g1g2)ΓQ(e) = g1ΓQ(e)g2ΓQ(e). Now, for x ∈ G, q ∈ Q

(g1ΓQ(e))(x, q) =
〈
Tg1ΓQ(e)(x, q), Ig1ΓQ(e)(x, q), Fg1ΓQ(e)(x, q)

〉
=
〈
TΓQ(e)(g

−1
1 x, q), IΓQ(e)(g

−1
1 x, q), FΓQ(e)(g

−1
1 x, q)

〉
,

(g2ΓQ(e))(x, q) =
〈
Tg2ΓQ(e)(x, q), Ig2ΓQ(e)(x, q), Fg2ΓQ(e)(x, q)

〉
=
〈
TΓQ(e)(g

−1
2 x, q), IΓQ(e)(g

−1
2 x, q), FΓQ(e)(g

−1
2 x, q)

〉
,

(g1g2ΓQ(e))(x, q) =
〈
TΓQ(e)((g1g2)−1x, q), IΓQ(e)((g1g2)−1x, q), FΓQ(e)((g1g2)−1x, q)

〉
.

Then,

[(g1ΓQ(e))(g2ΓQ(e))](x, q) =
〈

min
{
Tg1ΓQ(e)(x, q), Tg2ΓQ(e)(x, q)

}
,

max
{
Ig1ΓQ(e)(x, q), Ig2ΓQ(e)(x, q)

}
,

max
{
Fg1ΓQ(e)(x, q), Fg2ΓQ(e)(x, q)

}〉
=
〈

min
{
TΓQ(e)((g

−1
1 x, q), TΓQ(e)((g

−1
2 x, q)

}
,

max
{
IΓQ(e)((g

−1
1 x, q), IΓQ(e)((g

−1
2 x, q)

}
,

max
{
FΓQ(e)((g

−1
1 x, q), FΓQ(e)((g

−1
2 x, q)

}〉
Further,

TΓQ(e)((g1g2)−1x, q) = TΓQ(e)(g
−1
2 g−1

1 x, q)

= TΓQ(e)(g
−1
2 g−1

1 xg−1
2 g2, q)

= TΓQ(e)(g
−1
1 xg2, q)

≥ min
{
TΓQ(e)(g1x, q), TΓQ(e)(g2x, q)

}
.

Hence, TΓQ(e)((g1g2)−1x, q) = min
{
TΓQ(e)((g

−1
1 x, q), TΓQ(e)((g

−1
2 x, q)

}
, similarly, IΓQ(e)((g1g2)−1x, q) =

max
{
IΓQ(e)((g

−1
1 x, q), IΓQ(e)((g

−1
2 x, q)

}
andFΓQ(e)((g1g2)−1x, q) = max

{
FΓQ(e)((g

−1
1 x, q), FΓQ(e)((g

−1
2 x, q)

}
.

This shows that, [(g1ΓQ(e))(g2ΓQ(e))](x, q) = [(g1g2)ΓQ(e)](x, q) which implies, ϕ(g1g2) = ϕ(g1)ϕ(g2).

5 Conclusion

We have introduced the notions of Q-neutrosophic normal soft groups and Q-neutrosophic soft cosets. We
have discussed several related structural characteristics and properties. For future research, we can extend
these topics to hyperalgebra. Also, these topics may be discussed using t-norm and s-norm. We intend to fur-
ther explore the applications of the algebraic structure to different extensions of fuzzy sets in order to provide
a significant addition to existing theories for handling uncertainties, especially in the area of soft sets [23–25].
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