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—————————————————————————————————————————-

1. Introduction

To deal with the inconsistent and uncertain data in a more powerful way, Smarandache

introduced Neutrosophic set (NS) theory [2]. Gradually many developments on NS structure

have been made by a couple of researchers and applied it to different branches of science [3–12].

An extension of SVN set i.e. QSVN set was further restudied in [13]. Based on QSVN set

R.Chatterjee et. al introduced the idea of QNN number in 2009 [16]. On contrary Dombi [1]

presented the operations of Dombi T -norms (DT) and T -conorms (DTC) in 1982. Both norms

has a huge operational flexibility as a parameter. Many researchers extended the idea of

Dombi norms to IFS [15], NS [14] theories and applied to different MADM problems [17–21].

In this paper we have applied Dombi norms on QNN . Vaccine distribution in India will

be a very difficult task for Government of India in the upcoming years. To overcome this

difficulty we have defined a model method of vaccine distribution under QSVN environment

using different aggregation operator. In Section 2 we have discussed some preliminary theories
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which will be used throughout the rest of the article. We have defined some order relations

on QNN in Section 3. In Section 4 QSVNWDA and QSVNWDG operators are defined and

their properties are studied. A MADM problem is solved on the basis of QSVNWDA and

QSVNWDG operators in Section 5. Section 6 winds up the article.

2. Some basics

Definition 2.1. [13] A QSVN set A over a set X 6= φ characterizes each element x in X

by a truth-membership function At, a contradiction membership function Ac, an ignorance-

membership function Au and a falsity membership function Af s.t. for each x ∈ X,

At(x), Ac(x), Au(x), Af (x) ∈ [0, 1] and 0 ≤ At(x) +Ac(x) +Au(x) +Af (x) ≤ 4.

Definition 2.2. [16] An element β = 〈βt, βc, βu, βf 〉 ∈ [0, 1]4 is said to be a QNN number.

We express the collection of QNN numbers as QNN .

Definition 2.3. [16] Consider µ, ν, ω ∈ QNN and i, j, k ∈ N. Then the following basic

operations hold on QNN :

(i) µ
⊕
ν = 〈µt + νt − µtνt, µc + νc − µcνc, µuνu, µfνf 〉,

(ii) µ
⊙
ν = 〈µtνt, µcνc, µu + νu − µuνu, µf + νf − µfνf 〉,

(iii) (µ)k = 〈(µt)k, (µc)k, 1− (1− µu)k, 1− (1− µf )k〉,
(iv) kµ = 〈1− (1− µt)k, 1− (1− µc)k, (µu)k, (µf )k〉,

Both the above operations are commutative and associative on QNN .

2.1. DT and DTC

Definition 2.4. [1] Suppose r, s ∈ R. Then DT (D(r, s)) and DTC (D(r, s)) between r and

s are defined respectively as below:

D(r, s) =
1

1 + {(1−rr )% + (1−ss )%}
1
%

D(r, s) =
1

1 + {( r
1−r )% + ( s

1−s)
%}

1
%

,

where % ≥ 1 and (p, q) ∈ [0, 1]× [0, 1].

3. Order relations on QNN

In this section we will first define some order relations of QNN based on newly introduced

score functions and accuracy functions on QNN .
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Definition 3.1. The score function S(β) : QNN → R of β = 〈βt, βc, βu, βf 〉 ∈ QNN is

defined as

S(β) =
2 + βt + βc − βu − βf

4

The corresponding accuracy functions Hi : QNN → R, i = 1, 2, 3 are defined as follows:

H1(β) = (βt + βc)− (βu + βf )

H2(β) =
βt − βc

2

H3(β) =
βu − βf

2
.

Remark 3.2. Now for any β ∈ QNN , it follows that

(i) 0 ≤ S(β) ≤ 1.

(ii) −2 ≤ H1(β) ≤ 2.

(iii) −0.5 ≤ H2(β) ≤ 0.5.

(iv) −0.5 ≤ H3(β) ≤ 0.5.

Definition 3.3. Suppose β, γ ∈ QNN . We define the order relation between any two β, γ ∈
QNN as follows:

(i) If S(β) < S(γ), then β ≤ γ.

(ii) If S(β) = S(γ), then

(a) H1(β) < H1(γ)⇒ β ≤ γ else if

(b) H1(β) = H1(γ) with H2(β) < H2(γ)⇒ β ≤ γ else if

(c) H1(β) = H1(γ), H2(β) = H2(γ) with H3(β) < H3(γ)⇒ β ≤ γ else if

(d) H1(β) = H1(γ), H2(β) = H2(γ) and H3(β) = H3(γ)⇒ β = γ.

Here β ≤ γ denotes β proceeds γ.

3.1. Some QSVN Dombi operations

In this section we have discussed some QSVN Dombi operations [22].

Definition 3.4. Suppose α = 〈m1, n1, p1, q1〉 ∈ QNN and β = 〈m2, n2, p2, q1〉 ∈ QNN , % ≥ 1

and k > 0. Then the DT and DTC operations on QNN are defined as below:

(i)

α
⊕
β=

〈
1− 1

1+

(
(
m1

1−m1
)%+(

m2
1−m2

)%
) 1
%

,1− 1

1+

(
(
n1

1−n1
)%+(

n2
1−n2

)%
) 1
%

,1− 1

1+

(
(
1−p1
p1

)%+(
1−p2
p2

)%
) 1
%

,1− 1

1+

(
(
1−q1
q1

)%+(
1−q2
q2

)%
) 1
%

〉
(ii)

α
⊙
β=

〈
1− 1

1+

(
(
1−m1
m1

)%+(
1−m2
m2

)%
) 1
%

,1− 1

1+

(
(
1−n1
n1

)%+(
1−n2
n2

)%
) 1
%

,1− 1

1+

(
(
p1

1−p1
)%+(

p2
1−p2

)%
) 1
%

,1− 1

1+

(
(
q1

1−q1
)%+(

q2
1−q2

)%
) 1
%

〉
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(iii) kα=

〈
1− 1

1+

(
k(

m1
1−m1

)%
) 1
%

,1− 1

1+

(
k(

n1
1−n1

)%
) 1
%

,1− 1

1+

(
k(

1−p1
p1

)%
) 1
%

,1− 1

1+

(
k(

1−q1
q1

)%
) 1
%

〉
,

(iv) αk=

〈
1− 1

1+

(
k(

1−m1
m1

)%
) 1
%

,1− 1

1+

(
k(

1−n1
n1

)%
) 1
%

,1− 1

1+

(
k(

p1
1−p1

)%
) 1
%

,1− 1

1+

(
k(

q1
1−q1

)%
) 1
%

〉
.

4. Dombi weighted aggregation operators on QNN

Definition 4.1. Let βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) be a collection on QNN . A QSVN

weighted Dombi arithmetic (QSVNWDA) operator of dimension l is a function f : QNN l →
QNN defined by:

f(β1, β2, . . . , βl) =

l⊕
j=1

ωjβj

where ω = (ω1, ω2, . . . , ωl)
T is the weight vector, ωj is attached with βj , j = 1, 2, . . . , l with

0 ≤ ωj ≤ 1 and
l∑

j=1
ωj = 1.

Theorem 4.2. Suppose βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) be a collection on QNN along

weight vector ω. Then

f(β1, β2, . . . , βl) =
l⊕

j=1
ωjβj

=

〈
1− 1

1+

 l∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

Proof. Here ω1 ∈ ω and β1 ∈ QNN . Now we have ω1β1 =〈
1− 1

1+

{(
m1

1−m1

)%} 1
%

,1− 1

1+

{(
n1

1−n1

)%} 1
%

,1− 1

1+

{(
1−p1
p1

)%} 1
%

,1− 1

1+

{(
1−q1
q1

)%} 1
%

〉
. Hence the above equation

trivially holds for l = 1. In a parallel way ω2 ∈ ω and β2 ∈ QNN and we have ω2β2 =〈
1− 1

1+
{(

m2
1−m2

)%} 1
%
, 1− 1

1+
{(

n2
1−n2

)%} 1
%
, 1− 1

1+
{(

1−p2
p2

)%} 1
%
, 1− 1

1+
{(

1−q2
q2

)%} 1
%

〉
.

Therefore

f(β1, β2) = ω1β1
⊕
ω2β2

=

〈
1− 1

1+

 2∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 2∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 2∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 2∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

Hence the equation is valid for l = 1, 2. We assume that the equation is valid for l = s i.e.

f(β1, β2, . . . , βs) =
s⊕
j=1

ωjβj

=

〈
1− 1

1+

 s∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.
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Finally for l = s+ 1, one can easily see that

f(β1, β2, . . . , βs) =
s⊕
j=1

ωjβj
⊕
ωs+1βs+1

=

〈
1− 1

1+

 s∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 s∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
⊕
ωs+1βs+1

=

〈
1− 1

1+

s+1∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

s+1∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

s+1∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

s+1∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

Thus in general the equation

f(β1, β2, . . . , βl) =
l⊕

j=1
ωjβj

=

〈
1− 1

1+

 l∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

holds ∀l ∈ N.

Theorem 4.3. The QSVNWDA operator f satisfies the following properties:

(i) Consistency: f(β1, β2, . . . , βl) ∈ QNN .

(ii) Idempotency: f(β, l times . . . , β) = β.

(iii) Commutativity: f(β1, β2, . . . , βl) = f(βl, βl−1, . . . , β1).

(iv) f(βπ(1), βπ(2), . . . , βπ(l)) = f(β1, β2, . . . , βl) where π is a permutation on {1, 2, . . . , l}.

Proof. The proof of consistency and commutativity properties of QSVNWDA operator is quite

easy. We now proceed to prove the part (ii). Since
l∑

j=1
ωj = 1, thus

f(β, l times . . . , β) =
l⊕

j=1
ωjβj = (

l∑
j=1

ωj)β = β.

Finally considerπ as a permutation on {1, 2, . . . , l}. Now due to additive commutativity in

QNN

f(βπ(1), βπ(2), . . . , βπ(l)) =
l⊕

j=1

ω(βπ(j))βπ(j) =
l⊕

j=1

ω(βj)βj = f(β1, β2, . . . , βl).

Hence we are done.

Theorem 4.4. Consider βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l and γj = 〈m̃j , ñj , p̃j , q̃j〉, j =

1, 2, . . . , l) are two collections on QNN such that mj ≤ m̃j , nj ≤ ñj , pj ≥ p̃j , qj ≥ q̃j∀j. Then

f(β1, β2, . . . , βl) ≤ f(γ1, γ2, . . . , γl).
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Proof. Here,

f(β1, β2, . . . , βl) =
l⊕

j=1
ωjβj

=

〈
1− 1

1+

 l∑
j=1

ωj

(
mj

1−mj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
nj

1−nj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−pj
pj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−qj
qj

)%
1
%

〉
.

f(γ1, γ2, . . . , γl) =
l⊕

j=1
ωjγj

=

〈
1− 1

1+

 l∑
j=1

ωj

(
m̃j

1−m̃j

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
ñj

1−ñj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−p̃j
p̃j

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−q̃j
q̃j

)%
1
%

〉
.

Firstly we suppose that mj < m̃j , nj < ñj , pj > p̃j , qj > q̃j∀j ∈ {1, . . . , l}. Then

1−mj > 1− m̃j∀j ∈ {1, . . . , l}

⇒
l∑

j=1
ωj

(
mj

1−mj

)
<

l∑
j=1

ωj

(
m̃j

1−m̃j

)

⇒ 1 +

{
l∑

j=1
ωj

(
mj

1−mj

)%} 1
%

< 1 +

{
l∑

j=1
ωj

(
m̃j

1−m̃j

)%} 1
%

⇒ 1

1+

{
l∑

j=1
ωj

(
mj

1−mj

)%} 1
%
> 1

1+

{
l∑

j=1
ωj

(
m̃j

1−m̃j

)%} 1
%

⇒ 1− 1

1+

{
l∑

j=1
ωj

(
mj

1−mj

)%} 1
%
< 1− 1

1+

{
l∑

j=1
ωj

(
m̃j

1−m̃j

)%} 1
%
.

In a similar way we have

1− 1

1 +

{
l∑

j=1
ωj

(
nj

1−nj

)%} 1
%

< 1− 1

1 +

{
l∑

j=1
ωj

(
ñj

1−ñj

)%} 1
%

.

Conversely we can easily see that

1− 1

1 +

{
l∑

j=1
ωj

(
1−pj
pj

)%} 1
%

> 1− 1

1 +

{
l∑

j=1
ωj

(
1−p̃j
p̃j

)%} 1
%

.

1− 1

1 +

{
l∑

j=1
ωj

(
1−qj
qj

)%} 1
%

> 1− 1

1 +

{
l∑

j=1
ωj

(
1−q̃j
q̃j

)%} 1
%

.

Combining all the above we get

S(f(β1, β2, . . . , βl)) < S(f(γ1, γ2, . . . , γl)).
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Hence f(β1, β2, . . . , βl) < f(γ1, γ2, . . . , γl). Now if mj = m̃j , nj = ñj , pj = p̃j , qj =

q̃j ∀j ∈ {1, . . . , l}. Then all the equalities as well as the score functions become equal i.e.

S(f(β1, β2, . . . , βl)) = S(f(γ1, γ2, . . . , γl)). Finally f(β1, β2, . . . , βl) ≤ f(γ1, γ2, . . . , γl).

Theorem 4.5. Consider a collection of βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l in QNN . Then

β ≤ f(β1, β2, . . . , βl) ≤ β,where

β = 〈min
j

(mj),min
j

(nj),min
j

(pj),min
j

(qj)〉 = 〈mj , nj , pj , qj〉 and

β = 〈max
j

(mj),max
j

(nj),max
j

(pj),max
j

(qj)〉 = 〈mj , nj , pj , qj〉.

Proof. From Definition of QNN we have ∀j = {1, 2, . . . , l},

mj ≤ mj , nj ≤ nj , pj ≥ pj , qj ≥ qj and

mj ≤ mj , nj ≤ nj , pj ≥ pj , qj ≥ qj and

Then

f(β, l times, β) ≤ f(β1, β2, . . . , βl) ≤ f(β, l times, β), i.e

β ≤ f(β1, β2, . . . , βl) ≤ β.

Definition 4.6. Suppose βj = 〈mj , nj , pj , qj〉, (j = 1, 2, . . . , l) be a collection on QNN . Then

from Definition 4.1 a QSVNWDA operator f of dimension l can be written as follows

f(β1, β2, . . . , βl) =
l⊕

j=1

ωjβj

Now if ωj = 1
l ∀ j ∈ {1, 2, . . . , l} then

f(β1, β2, . . . , βl) =
1

l

l⊕
j=1

βj .

In that case f(β1, β2, . . . , βl) is called average QSVNWDA operator i.e.QSVNWADA operator

of βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l).

Definition 4.7. Let βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l) be a collection on QNN . A quadri-

partioned single valued neutrosophic weighted Dombi geometric (QSVNWDG) operator of

dimension l is a function g : QNN l → QNN defined by:

g(β1, β2, . . . , βl) =

l⊙
j=1

β
ωj
j
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where ω = (ω1, ω2, . . . , ωl)
T is the weight vector, ωj is attached with βj , j = 1, 2, . . . , l with

0 ≤ ωj ≤ 1 and
l∑

j=1
ωj = 1.

Theorem 4.8. Suppose βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l) be a collection on QNN along

weight vector ω. Then

g(β1, β2, . . . , βl) =
l⊕

j=1
β
ωj
j

=

〈
1− 1

1+

 l∑
j=1

ωj

(
1−mj
mj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
1−nj
nj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
pj

1−pj

)%
1
%

,1− 1

1+

 l∑
j=1

ωj

(
qj

1−qj

)%
1
%

〉
.

Proof. We have omitted it due to similarity with Theorem 4.2.

Theorem 4.9. The QSVNWDG operator g satisfies properties as defined below:

(i) Consistency: g(β1, β2, . . . , βl) ∈ QNN .

(ii) Idempotency: g(β, l times . . . , β) = β.

(iii) Commutativity: g(β1, β2, . . . , βl) = g(βl, βl−1, . . . , β1).

(iv) g(βπ(1), βπ(2), . . . , βπ(l)) = g(β1, β2, . . . , βl) where π is a permutation on {1, 2, . . . , l}.

Proof. We have omitted it due to similarity with Theorem 4.3.

Theorem 4.10. Consider βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l) and γj = 〈m̃j , ñj , p̃j , q̃j〉 (j =

1, 2, . . . , l) are two collections on QNN such that mj ≤ m̃j , nj ≤ ñj , pj ≥ p̃j , qj ≥ q̃j∀j. Then

g(β1, β2, . . . , βl) ≤ g(γ1, γ2, . . . , γl).

Proof. Here the proof is similar with Theorem 4.4, hence we have omitted it.

Theorem 4.11. Consider a collection of βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l in QNN . Then

β ≤ g(β1, β2, . . . , βl) ≤ β,where

β = 〈min
j

(mj),min
j

(nj),min
j

(pj),min
j

(qj)〉 = 〈mj , nj , pj , qj〉 and

β = 〈max
j

(mj),max
j

(nj),max
j

(pj),max
j

(qj)〉 = 〈mj , nj , pj , qj〉.

Proof. Again proof is not done due to its similarity with Theorem 4.5.

Definition 4.12. Suppose βj = 〈mj , nj , pj , qj〉, j = 1, 2, . . . , l) be a collection on QNN . Then

from Definition 4.7 a QSVNWDG operator g of dimension l can be written as follows

g(β1, β2, . . . , βl) =

l⊙
j=1

β
ωj
j
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Now if ωj = 1
l ∀ j ∈ {1, 2, . . . , l} then

g(β1, β2, . . . , βl) = (

l⊙
j=1

βj)
1
l .

In that case g(β1, β2, . . . , βl) is called average QSVNWDG operator i.e.QSVNWADG operator

of βj = 〈mj , nj , pj , qj〉 (j = 1, 2, . . . , l).

5. An application in MADM of QSVNWDA and QSVNWDG operator

Without an application in real life it is very tough to realize the utility of any operator. A

reader can not get any interest if the operators cannot be used properly in MADM technique.

For this reason we proposed a model with the help of QSVNWDA and QSVNWDG operator.

Suppose Govt. of India want to distribute the Covid-19 vaccine in a smooth manner so that

every Indian will get the vaccine. Now Govt of India has 4 vaccine vi, i = 1, 2, 3, 4 in hand

where v1: the co-vaxin from Bharat Bio-tech, v2: Sputnik-V from Russia, v3: Astrazeneca

vaccine from Oxford university, v4: Pfizer vaccine from USA with equal storage. However

there are four attributes Cj , j =, 2, 3, 4 which are to be considered for choosing a particular

vaccine from the above list i.e. (C1) : the cost of the vaccine, (C2) : the effectiveness of a

vaccine in human body, (C3): the rate of production of a vaccine (C4): the risk factor of a

particular vaccine. In order to get a suitable vaccine Vi after consideration of all attributes Cj

we have represented these MADM problems in the form of a decision making matrix D(vij)

on QNN as following:

D(vij) =


〈0.4, 0.5, 0.2, 0.6〉 〈0.5, 0.5, 0.8, 0.1〉 〈0.2, 0.6, 0.3, 0.2〉 〈0.6, 0.5, 0.6, 0.7〉
〈0.4, 0.2, 0.7, 0.6〉 〈0.8, 0.5, 0.3, 0.4〉 〈0.4, 0.1, 0.1, 0.1〉 〈0.6, 0.6, 0.5, 0.5〉
〈0.4, 0.4, 0.4, 0.5〉 〈0.3, 0.6, 0.1, 0.4〉 〈0.9, 0.2, 0.7, 0.3〉 〈0.4, 0.2, 0.1, 0.1〉
〈0.1, 0.1, 0.6, 0.3〉 〈0.5, 0.3, 0.4, 0.2〉 〈0.4, 0.8, 0.3, 0.2〉 〈0.4, 0.5, 0.1, 0.5〉

 .
Here we consider the weight vector as (0.25, 0.25, 0.25, 0.25) since every vaccine has equal stock.

Case-I: We now consider the QSVNWDA operator to face the MADM problem. In that

case we consider % = 1 and derive the collection of QSVNs say vi to find suitable vaccine

among Vi(i = 1, 2, 3, 4) by the help of Definition 4.1 as follows:

v1 = 〈0.460, 0.529, 0.644, 0.779〉

v2 = 〈0.630, 0.417, 0.761, 0.753〉

v3 = 〈0.319, 0.400, 0.833, 0.775〉

v1 = 〈0.164, 0.341, 0.192, 0.538〉.

Based on the Definition 3.1 we have:

S(v1) = 0.392, S(v2) = 0.384, S(v3) = 0.3801, S(v4) = 0.3624.
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Hence the priority order of vaccine is v1 > v2 > v3 > v4. .

Case-II: Now We consider the QSVNWDG operator to face our problem. We again consider

% = 1 and derive the collective QSVNs vi with the help of Definition 4.7 as follows:

v1 = 〈0.5102, 0.4782, 0.607, 0.512〉

v2 = 〈0.657, 0.785, 0.492, 0.4503〉

v3 = 〈0.576, 0.718, 0.446, 0.355〉

v1 = 〈0.739, 0.758, 0.403, 0.628〉.

Again based on the Definition 3.1 we get:

S(v1) = 0.935, S(v2) = 0.625, S(v3) = 0.6231, S(v4) = 0.616.

Therefore the priority order of vaccine is v4 < v3 < v2 < v1. To find the more effect of the

quantity % in the QSVNWDA and QSVNWDG operator we take the value of % in an increasing

order starting from 0.2 to 1 with an increment 0.2. Our results are given in the following tables:

Table of QSVNWDA operator

% S(v1), S(v2), S(v3), S(v4) Order of priority

0.2 0.627, 0.606, 0.598, 0.377

0.4 0.635, 0.621, 0.612, 0.396

0.6 0.676, 0.648, 0.639, 0.404 v4 < v3 < v2 < v1

0.8 0.695, 0.664, 0.652, 0.418

1.0 0.692, 0.678, 0.664, 0.444

Table of QSVNWDG operator

% S(v4), S(v3), S(v2), S(v1) Order of priority

0.2 0.429, 0.492, 0.541, 0.568

0.4 0.417, 0.476, 0.525, 0.549

0.6 0.411, 0.449, 0.484, 0.502 v4 < v3 < v2 < v1

0.8 0.426, 0.442, 0.474, 0.491

1.0 0.394, 0.410, 0.439, 0.462

In both of the above cases we have seen that in respect of the values of %, the order of priority

of the vaccines remains always same for an individual operator. Thus the MADM of finding

suitable vaccine using the QSVNWDA operator as well as QSVNWDG operator gives us a

flexibility of choosing the value of %. Thus the Govt of India will choose the vaccine v1 in

topmost priority.The above procedure help our Govt to choose a multi-solution based on the

current situation at that time.
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6. Conclusion

In this article two aggregation operators i.e. QSVNWDA and QSVNWDG operator based on

Dombi operations onQNN sets are introduced. We have studied the properties of QSVNWDA

and QSVNWDG operators. Finally we have solved a MADM problems using QSVNWDA and

QSVNWDG operators. In solving MADM problems we have utilized the score functions of

QNN to finding the order of priority of different parameters. Also we have seen that different

large values of % may effect the score functions. In future we will develop more advanced type

of QSVNWDA operator and QSVNWDG operator on QNN and will apply them to real life

MADM problems.
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