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Abstract. In this paper, we extend the concepts of Neutrosophy to Boolean function and define ClassicalBal-

anced, AntiBalanced and NeutroBalanced functions. We consider functions of the form f(x) = Tr(xd), where

the exponent d may be Gold exponent, Kasami exponent, Welch exponent or any arbitrary positive integer. We,

for different values of d, examine nature of these functions with respect to the above stated three categories.
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—————————————————————————————————————————-

1. Introduction

In an algebraic structure, the axioms are valid and the operations are defined everywhere.

We cannot do much mathematics just on sets. We need some sort of algebraic structures for

analysis. In real life situations when we require to combine the elements of a particular domain

in a certain manner, it may happen the combination is not meaningful for certain pairs. It may

be undefined, indeterminate or multivalued. In such situation, we cannot have an algebraic

structure and we are left with no option but to modify the combining operations.

What if we have the theoretical platform to deal with such operation the way they are. This

line of thinking lead to evolution of Neutrosophy. The history of Neutrosophy is dated back

to 1998 when Florentin Smarandache propounde the notion of Neutrosophy in [3]. However,
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the research in this area gained momentum in last couple of years. Some recent works may be

found in [8–11].

Neutrosophic structures have been defined on Algebra [1–7], groups [14–16,20,21] and ring

[12, 13] and their properties have been explored. We define neutrosophic structure on a finite

field. The main reasons of choosing finite fields are:

(1) This direction remains by and large unexplored.

(2) Fields are the richest structure. The finiteness is considered to make it more computer

friendly. When it is not possible to produce a rigorous logic for proving an assertion,

computational tools may be utilised to establish the assertion.

(3) Finite fields are widely used in cryptography. We try to translate the concepts of

Boolean function to the Neutrosophic scenario. This may lead to application of these

function to cryptography.

We define three types of functions viz., ClassicalBalanced, AntiBalanced and NeutroBalanced

functions. The details can be found in the subsequent sections. The paper is structured in the

following manner.

In the next section we discuss preliminaries required to comprehend the paper. In section 3

we introduce three neutrosophic functions as mentioned above. In the fourth section we prove

some results related to the defined function. Finally, in section 5, we conclude the paper.

2. Preliminaries

Definition 2.1. [4]

(i) A classical operation is an operation well defined for all the set’s elements while a

Neutro Operation is an operation partially well defined, partially indeterminate, and

partially outer defined on the given set. An AntiOperation is an operation that is outer

definedfor all the set’s elements.

(ii) A NeutroAlgebra is an algebra that has at least one Neutro Operation or one Neu-

troAxiom ( axiom that is true for some elements, indeterminate for other elements,

and false for other elements), and no AntiOperation or AntiAxiom. An AntiAlgebra

is an algebra endowed with at least one AntiOperation or at least one AntiAxiom.

The study and analysis of cryptographic and combinatorial properties with respect to

Boolean functions has been an important branch of cryptography. Boolean functions play
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a significant role in the construction of components used in symmetric ciphers, and crypto-

graphic properties of such functions are of great interest. Boolean functions used in crypto-

graphic applications provide security of a cipher against different kinds of attacks.

Over the prime field, F2 the n-dimensional vector space can be denoted as Fn
2 . One can

identify this vector space Fn
2 over F2 with the finite field F2n of 2n elements, which is basically

extension of the finite field F2 = {0, 1} using some irreducible polynomial of degree n with

coeffiecients either 0 or 1.

A Boolean function in n variables is an arbitrary function from Fn
2 → F2, where F = {0, 1}

is a Boolean domain and n is a non-negative integer. It is called Boolean in honor of the

British mathematician and philosopher George Boole (1815− 1864).

The vectorial Boolean function is of the form F : Fn
2 → Fm

2 with range of the function

being Fm
2 , where m > 1. It is also called an (n,m)-function. If m = n then it is called as

(n, n)-function. For vectorial Boolean functions we use uppercase letters, whereas Boolean

functions are denoted with lowercase letters.

The finite field F2n of order 2n is also denoted as GF (2n), which is due to French math-

ematician Evariste Galois (1811-1832). Usually, F∗
2n is the denotion used to represent the

collection of all nonzero elements in the field F2n . With respect to multiplication, F∗
2n acts as a

cyclic group with order of the group being 2n− 1. For basic and recent results on finite fields,

permutation polynomials, balanced functions and trace functions we refer [19,22–24,27].

The trace representation is very useful in defining and analyzing various properties of

Boolean functions.

Definition 1. [25] If c is an element of K = GF (qn), its trace relative to the subfield

F = GF (q) is defined as follows:

TrKF (c) = c+ cq + cq
2

+ . . .+ cq
n−1

.

The values of trace functions fall into the prime field F2 is the most important property of

the trace. Since Fn
2 is isomorphic with F2n , trace function can also be viewed as a Boolean

function in n variables. In case of the base field F2, we use the notation Tr for trace.

Consider the finite field GF (9) = (00, 10, 11,−11, 0 − 1,−10,−1 − 1, 1 − 1, 01). Trace is

tabulated as below.

x 00 10 11 -11 0-1 -10 -1-1 1-1 01

Trace(x) 0 1 0 1 1 -1 0 -1 -1
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A Boolean function f is said to be balanced if the output column of its truth table has

same number of zero’s and one’s. As balanced functions would give outputs with the balanced

number of zero and one, which appears more random. Hence, these functions avoid statistical

dependencies between the input and output of the stream cipher, which prevents distinguishing

attacks and statistical analysis [26,27]. From cryptographic point of view, balanced functions

are very important. In case of an unbalanced function, the input and output variables have

considerable dependence on each other, which may cause susceptible cryptanalysis attacks.

In [17–19], one can find the construction of many such power function f : F2n 7→ F2 with

trace representation. Some well known examples of Boolean functions f(x) = Tr(xd), where

d is given by the table 1 are as follows

Table 1. Boolean functions

Exponent “d ” Conditions

Gold function 2i + 1 gcd(i, n) = 1

Kasami function 22i − 2i + 1 gcd(i, n) = 1

Welch function 2t + 3 n = 2t+ 1

The terminology of balancedness always comes with the idea of the measurement of different

conditions. The balanced characteristic of a function is defined with the classification of its co-

domain. Here in the next section, we present three types of balanced Neutrosophic functions.

3. ClassicalBalanced, AntiBalanced and NeutroBalanced functions

Let ψ be a Neutrosophic functions defined on Fn
3 to K, where K is some arbitrary set.

Note that there will be three partitions of the domains say P0, P1, P2 such that ψ is defined

on P0, not defined on P1 and indeterminate on P2. The Neutrosophic function ψ induces a

generalised Boolean function f on Fn
3 → F3 as

f(x) = i when x ∈ Pi.

It can be seen easily, every function f : Fn
3 → F3 induces a neutrosophic function Fn

3 → K.

Thus there are one to one correspondance between Neutrosophic functions Fn
3 → K and the

generalised Boolean function from Fn
3 → F3. We can therefore, identify a Neutrosophic func-

tion from Fn
3 → K by a generalised Boolean function from Fn

3 → F3. With this identification,

we proceed further and define neutrosophic functions.

Note that any f : Fn
3 → F3 can be given as f(x) = Tr(h(x)), where h is a function defined on

Fn
3 . We are now fully equipped to define ClassicalBalanced, AntiBalanced and NeutroBalanced

functions.
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Definition 3.1. A function is said to be ClassicalBalanced function if it takes equal number

of 1’s, 0’s and -1’s.

Example 3.2. Over F35 , the function f(x) = Tr(x9) is a ClassicalBalanced function.

Definition 3.3. A function is said to be AntiBalanced function if number of 1’s, 0’s, and -1’s

are all distinct from each other.

Example 3.4. Over F32 , the function f(x) = Tr(x8) is a AntiBalanced function.

Definition 3.5. A function is said to be NeutroBalanced function if number of 1’s, 0’s, and

-1’s are not same but exactly two of them are equal.

Example 3.6. Over F34 , the function f(x) = Tr(x14) is a NeutroBalanced function.

4. Some Special types of Neutrosophic functions

Composition of two functions is an intrinsic approach in the upcoming results to construct

ClassicalBalanced, AntiBalanced and NeutroBalanced function. Trace of finite field is a com-

mon choice for one of the compositions of two functions. Here in the next two propositions

we present the necessary and sufficient conditions for a composition of two functions to be

ClassicalBalanced, AntiBalanced and NeutroBalanced function.

Proposition 1. Let f : F3n → F3 be a Boolean function and h be any bijection on f : F3n.

Then f is ClasicalBalanced, AntiBalanced or NeutroBalanced if and only if the composition

map fh is ClasicalBalanced, AntiBalanced or NeutroBalanced respectively.

Proof. The proof is obvious.

Proposition 2. The exponential map x → xa, a ∈ Z on F3n is a bijection if and only if

gcd(a, 3n − 1) = 1.

Proof. If map x→ xa, a ∈ Z on F3n is a bijection then the proof is obvious. Now let

gcd(a, 3n − 1) = 1

and x1( 6= 0), x2(6= 0) ∈ Fn
3 and g be a generator of non zero elements of Fn

3 . Let if

f(x1) = f(x2),

then

xa1 = xa2,

=⇒ (gu1)a = (gu2)a,

=⇒ (gu1−u2)a = 1,
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=⇒ 3n − 1|(u1 − u2)(a)

or

(u1 − u2)(a) = 0 mod 3n − 1. (1)

Now if gcd(a, 3n − 1) = 1 then,

(u1 − u2) = 0 mod 3n − 1. (2)

Now since, 1 ≤ u1, u2 ≤ 3n − 1 therefore

u1 − u2 ≤ 3n − 1. (3)

From (2) and (3), u1 = u2, which implies that, x1 = x2. Hence the result is proved.

In the next theorem we prove the ClassicalBalanced property of Trace function over finite

field F3n .

Theorem 4.1. A function of the form

f(x) = Tr(x)

is a ClassicalBalanced function over the finite field F3n.

Proof. We have

f(x) = Tr(x) = x+ x3 + x9 + . . .+ x3
n−1

. (4)

This is the absolute trace mapping the elements of F3n to the prime field F3. Therefore,

f−1(F3) = F3n ,

=⇒ f−1(0) ∪ f−1(1) ∪ f−1(2) = F3n ,

=⇒ |f−1(0)|+ |f−1(1)|+ |f−1(2)| = 3n. (5)

Let |f−1(0)| = α1, |f−1(1)| = α2 and |f−1(2)| = α3. Then from (5)

α1 + α2 + α3 = 3n. (6)

Now from (4) we have

α1 = |{x|x+ x3 + x9 + . . .+ x3
n−1

= 0}|, (7)

α2 = |{x|x+ x3 + x9 + . . .+ x3
n−1 − 1 = 0}| (8)

and

α3 = |{x|x+ x3 + x9 + . . .+ x3
n−1 − 2 = 0}|. (9)

All equations (7), (8) and (9) has a polynomial of degree 3n−1. So, each can have at most

3n−1 roots and we conclude that

0 ≤ α1, α2, α3 ≤ 3n−1. (10)
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It is clear that (6) and (10) hold together if and only if α1 = α2 = α3 = 3n−1. Thus our

assertion is proved.

Before start of the proof for next theorem here we prove a lemma.

Lemma 4.2. Let i and n are positive integers, If < n, i >= 1 then < 3n − 1, 2i + 1 >= 1.

Proof. Here n and i are positive integers therefore let p(6= 2, 3) be any prime number such

that p|(3n − 1), then we can write 3n = 1 mod p, which implies that p− 1|n or

n = 0 mod (p− 1). (11)

Now if p|2i + 1, then 2i = −1 mod p which implies that p−1
2 |i, consequently p− 1|2i or

2i = 0 mod (p− 1). (12)

Now combining (11) and (12), we can write < n, 2i >= p − 1. Therefore if < n, i >= 1 then

at max gcd of n and 2i will be 2 but since p 6= 2 or 3, hence there does not exist any prime

p 6= 2 or 3 such that p|(3n − 1) and p|(2i + 1). Hence

< 3n − 1, 2i + 1 >= 1.

Now in the next theorem we present the bijective condition for an exponent function on Fn
3 .

Theorem 4.3. Let f : F3n 7→ F3n be a function defined as f(x) = x2
i+1. If < i, n >= 1 for

any positive integer i, then f is a bijective function.

Proof. The proof follow from the lemma 4.2 and proposition 2.

Corollary 4.4. A function of the form

f(x) = Tr(x2
i+1),

for any positive integer i, is a ClassicalBalanced function with gcd(i, n) = 1 over the finite

field F3n.

Proof. Theorem 4.1 and theorem 4.3 follows the proof of this corollary.

If gcd(i, n) 6= 1, then the functions f(x) = Tr(x2
i+1) cannot be a ClassicalBalanced func-

tions, which we can observe from the following examples.

Example 4.5. Over F34 , the function f(x) = Tr(x2
2+1) is not a ClassicalBalanced function.

Vadiraja Bhatta G. R., Shashi Kant Pandey, P. R. Mishra, Prasanna Poojary,
ClassicalBalanced, AntiBalanced and NeutroBalanced functions

Neutrosophic Sets and Systems, Vol. 48, 2022                                                                              392



Example 4.6. Over F35 , the function f(x) = Tr(x2
5+1) is not a ClassicalBalanced function.

Some more general results for AntiBalanced and NeutroBalanced functions are presented in

following theorems.

Theorem 4.7. A function of the form

f(x) = Tr(x8a)

is a AntiBalanced function for a ∈ N, gcd(a, 32 − 1) = 1 over the finite field F32.

Proof. Given function f(x) is composition of two functions, Tr(x) = x + x3 and h(x) = xa,

therefore,

f(x) = Tr(x8a) = f1h(x) (13)

where f1(x) = Tr(x8) and h(x) = xa. It is given that gcd(a, 32 − 1) = 1, therefore from

propositions 1 and 2, f is AntiBalanced if and only if f1 is AntiBalanced. We now show that

f1 is AntiBalanced. From the expression of trace and f1,

f1(x) = 0 =⇒ x8 + x24 = 0

Similarly,

f1(x) = 1 =⇒ x8 + x24 − 1 = 0

and

f1(x) = 2 =⇒ x8 + x24 − 2 = 0.

It can be verified computationally or otherwise that the polynomials x8 + x24, x8 + x24 − 1,

x8 + x24 − 2 has 1, 0 and 8 distinct roots in F32 . Hence, f1 is AntiBalanced. This proves our

assertion as well.

Theorem 4.8. A function of the form

f(x) = Tr(x2a)

is a AntiBalanced function for a ∈ N with 2a 6≡ 0( mod 13) over the finite field F33.

Proof. Let

f(x) = Tr(x2a) = f1h(x) (14)

where f1(x) = Tr(x2) and h(x) = xa. Now 2a 6≡ 0( mod 13) implies that gcd(a, 33 − 1) = 1.

Propositions 1 and 2 confirm that f is AntiBalanced if and only if f1 is AntiBalanced. Further

we show that f1 is AntiBalanced. From Trace Tr(x) = x+ x3 + x9 over F33 ,

f1(x) = 0 =⇒ x2 + x6 + x18 = 0.
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Similarly,

f1(x) = 1 =⇒ x2 + x6 + x18 − 1 = 0

and

f1(x) = 2 =⇒ x2 + x6 + x18 − 2 = 0

After computational verification we found that the polynomials x2+x6+x18, x2+x6+x18−1,

x2 + x6 + x18 − 2 has 9,6 and 12 distinct roots in F32 . Hence, f1 is AntiBalanced.

Theorem 4.9. A function of the form

f(x) = Tr(x16a)

is a AntiBalanced function for a ∈ N and 16a 6= 0 mod 80 over the finite field F34.

Proof. Here Tr(x) = x+ x3 + x9 + x27 over F34 and

f(x) = Tr(x16a) = f1h(x) (15)

where f1(x) = Tr(x16) and h(x) = xa, gcd(a, 34 − 1) = 1. In view of propositions 1 and 2, f

is AntiBalanced if and only if f1 is AntiBalanced. We now show that f1 is AntiBalanced.

f1(x) = 0 =⇒ x2 + x6 + x18 = 0

Similarly,

f1(x) = 1 =⇒ x2 + x6 + x18 − 1 = 0

and

f1(x) = 2 =⇒ x2 + x6 + x18 − 2 = 0

It is verified computationally or otherwise that the polynomials x + x3 + x9 + x27, x + x3 +

x9 +x27−1 and x+x3 +x9 +x27−2 has 1,16 and 64 distinct roots in F34 respectively. Hence,

f1 is AntiBalanced. This proves our assertion as well.

Theorem 4.10. A function of the form

f(x) = Tr(x2a)

is a AntiBalanced function for a ∈ N, gcd(a, 35 − 1) = 1 over the finite field F35.

Proof. Trace function in the finite field F35 is a polynomial Tr(x) = x+x3+x9+x27+x81 ∈ F3

where x ∈ F35 . Now given function

f(x) = Tr(x16a) = f1h(x) (16)
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where f1(x) = Tr(x2) and h(x) = xa. From proposition 2, gcd(a, 35 − 1) = 1 implies that h is

a bijectiona. Now we now show that f1 is AntiBalanced.

f1(x) = 0 =⇒ x+ x3 + x9 + x27 + x81 = 0

Similarly,

f1(x) = 1 =⇒ x+ x3 + x9 + x27 + x81 − 1 = 0

and

f1(x) = 2 =⇒ x+ x3 + x9 + x27 + x81 − 2 = 0

We found from computation search that the polynomials x + x3 + x9 + x27 + x81, x + x3 +

x9 + x27 + x81 − 1 and x + x3 + x9 + x27 + x81 − 2 has 81,90 and 72 distinct roots in F35

respectively. Therefore, f1 is AntiBalanced. From proposition 1, f is AntiBalanced if and only

if f1 is AntiBalanced. Hence the theorem is proved.

Theorem 4.11. A function of the form

f(x) = Tr(x2a)

is a NeutroBalanced function for a ∈ N with 2a 6≡ 0( mod 8) over the finite field F32.

Proof. The trace of F32 is Tr(x) = x + x3 ∈ F3 where x ∈ F32 . Given function f(x) can be

written as,

f(x) = Tr(x2a) = f1h(x) (17)

where f1(x) = Tr(x2) and h(x) = xa. Now from the given condition gcd(a, 32 − 1) = 1 and

proposition 2, h is a bijective function. Now We show that f1 is NeutroBalanced. Using Tr(x)

on F32 , we can write

f1(x) = 0 =⇒ x+ x3 = 0

Similarly,

f1(x) = 1 =⇒ x+ x3 − 1 = 0

and

f1(x) = 2 =⇒ x+ x3 − 2 = 0

Count of the roots of above three polynomials can settle the proof of Neutrobalanced property

of f . It can be verified computationally or otherwise that the polynomials x+x3, x+x3−1 and

x+ x3− 2 has 5, 2 and 2 distinct roots in F32 respectively. Hence, f1 is NeutroBalanced. It is

already proved in proposition 1 that f is NeutroBalanced if and only if f1 is NeutroBalanced.

Hence the theorem is proved
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Theorem 4.12. A function of the form

f(x) = Tr(x2a)

is a NeutroBalanced function for a ∈ N with 2a 6≡ 0( mod 16) over the finite field F34.

Proof. Here the trace function, Tr(x), on the extension field F34 is

Tr(x) = x+ x3 + x9 + x27 ∈ F3,

where x ∈ F34 . Now given function

f(x) = Tr(x2a) = f1h(x), (18)

where f1(x) = Tr(x2) and h(x) = xa, gcd(a, 34 − 1) = 1. In view of propositions 1 and 2, f is

NeutroBalanced if and only if f1 is NeutroBalanced. We now show that f1 is NeutroBalanced.

From the expression of Tr(x) on F34 ,

f1(x) = 0 =⇒ x+ x3 + x9 + x27 = 0

Similarly,

f1(x) = 1 =⇒ x+ x3 + x9 + x27 − 1 = 0

and

f1(x) = 2 =⇒ x+ x3 + x9 + x27 − 2 = 0

Now it can be observe from proposition 1 that f is NeutroBalanced if enumeration of roots of

any two polynomials from x+x3 +x9 +x27, x+x3 +x9 +x27− 1 and x+x3 +x9 +x27− 2 are

same. We found computationally that the polynomials x+x3 +x9 +x27, x+x3 +x9 +x27− 1

and x + x3 + x9 + x27 − 2 has 21, 30 and 30 distinct roots in F34 respectively. Hence, f1 is

NeutroBalanced. This proves our assertion as well.

5. Conclusions

In this paper, we have defined ClassicalBalanced, AntiBalanced and NeutroBalanced func-

tions. So far a function over finite field is classified into balanced function and unbalanced

function. With this work it is a new approach to define a class of functions which lie between

these two, which are called as NeutroBalanced functions. NeutroBalanced functions are de-

fined with the logic of neutrosophy. NeutroBalanced functions may lead to a new direction

with its application in point of view.
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