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1 Introduction  

Hyperstructure theory was introduced by Marty in 1934 [16]. The concept of hyperring and the 

general form of hyperring for introducing the notion of hyperring homomorphism was developed by 

Corsini [11]. Vougiouklis [31] coined different type of hyperrings called 𝐻𝑣-ring, 𝐻𝑣-subring, and left 

and right 𝐻𝑣-ideal of a 𝐻𝑣-ring, all of which are generalizations of the corresponding concepts related to 

hyperrings introduced by Corsini [11].   

In general fuzzy sets [34] the grade of membership is represented as a single real number in the 

interval [0,1]. The uncertainty in the grade of membership of the fuzzy set model was overcome using 

the interval-valued fuzzy set modelintroduced by Turksen [29]. In 1986, Atanassov [8] introduced 

intuitionistic fuzzy sets which is a generalization of fuzzy sets. This model was equivalent to interval 

valued fuzzy sets in [32]. Intuitionistic fuzzy sets can only handle incomplete information, and not 

indeterminate information which commonly exists in real-life [32]. To overcome these problems, 

Smarandache introduced the neutrosophic model. Some new trends of neutrosophic theory were 

introduced in [1,2,3,4,5,6,7] .Wang et al. [32] introduced the concept of single-valued neutrosophic sets 

(SVNSs), whereas Smarandache introduced plithogenic set as generalization of neutrosophic set model 

in [13].  

The theory of hyperstructures are widely used in various mathematical theories. The study on 

fuzzy algebra began by Rosenfeld [17], and this was subsequently expanded to other fuzzy based 

models such as intuitionistic fuzzy sets, fuzzy soft sets and vague soft sets. Some of the recent works 

related to fuzzy soft rings and ideal, vague soft groups, vague soft rings and vague soft ideals can be 

found in [21; 22; 23; 26, 27]. Research on fuzzy algebra led to the development of fuzzy hyperalgebraic 

theory. The concept of fuzzy ideals of a ring introduced by Liu [15]. The generalization of the fuzzy 

hyperideal introduced by Davvaz[12]. The concepts of fuzzy 𝛾-ideal was then introduced by Bharathi 
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and Vimala [10], and the fuzzy 𝛾 -ideal was subsequently expanded in [33]. The hypergroup and 

hyperring theory for vague soft sets were developed by Selvachandran et al. in [18,19,20,24,25] 

In this paper we develop the theory of single-valued neutrosophic hyperrings and single-valued 

neutrosophic hyperideals to furter contribute to the development of the body of knowledge in 

neutrosophic hyperalgebraic theory. 
 

2 Preliminaries 

Let 𝑋 be a space of points (objects) with a generic element in 𝑋 denoted by 𝑥. 

Definition 2.1. [32] A SVNS 𝐴is a neutrosophic set that is characterized by a truth-membership function 

𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), and a falsity-membership function 𝐹𝐴(𝑥), where 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1]. This set 𝐴 can thus be written as 
𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑈}.                                                        (1) 

The sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) must fulfill the condition 0 ≤ 𝑇𝐴(𝑥) +  𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. For a SVNS 

𝐴 in 𝑈, the triplet (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) is called a single-valued neutrosophic number (SVNN). Let 𝑥 =

(𝑇𝑥, 𝐼𝑥 , 𝐹𝑥) to represent a SVNN . 

 

Definition 2.2. [32]  Let 𝐴 and 𝐵 be two SVNSs over a universe 𝑈. 

(i) 𝐴 is contained in 𝐵, if 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≤ 𝐼𝐵(𝑥), and 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥), for all 𝑥 ∈ 𝑈. This rela-

tionship is denoted as 𝐴 ⊆ 𝐵. 

(ii) 𝐴 and 𝐵 are said to be equal if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 

(iii) 𝐴𝑐 = 〈𝑥, (𝐹𝐴(𝑥), 1 − 𝐼𝐴(𝑥), 𝑇𝐴(𝑥))〉, for all 𝑥 ∈ 𝑈. 

(iv) 𝐴 ∪ 𝐵 = (𝑥, (max(𝑇𝐴, 𝑇𝐵), max(𝐼𝐴, 𝐼𝐵), min(𝐹𝐴, 𝐹𝐵))), for all 𝑥 ∈ 𝑈. 

(v) 𝐴 ∩ 𝐵 = (𝑥, (min(𝑇𝐴 , 𝑇𝐵), min(𝐼𝐴, 𝐼𝐵), max(𝐹𝐴, 𝐹𝐵))), for all 𝑥 ∈ 𝑈. 

 

Definition 2.3. [16] A hypergroup 〈𝐻, ∘〉  is a set  𝐻  with an associative hyperoperation (∘) ∶ 𝐻 × 𝐻 →

𝑃(𝐻)  which satisfies 𝑥 ∘ 𝐻 = 𝐻 ∘ 𝑥 = 𝐻  for all  𝑥  in  𝐻 (reproduction axiom) . 

 

Definition 2.4.[12] A hyperstructure 〈𝐻, ∘〉 is called an  𝐻𝑣-group  if the following axioms hold: 

(i) 𝑥 ∘ (𝑦 ∘ 𝑧) ∩ (𝑥 ∘ 𝑦) ∘ 𝑧 ≠ ∅   for all   𝑥, 𝑦, 𝑧  𝜖  𝐻, (𝐻𝑣-semigroup) 

(ii) 𝑥 ∘ 𝐻 = 𝐻 ∘ 𝑥 = 𝐻  for all  𝑥  in  𝐻. 

 

Definition 2.5.[16] A subset  𝐾  of  𝐻  is called a  subhypergroup  if  〈𝐾, ∘〉  is a hypergroup.  

 

Definition 2.6.[11]A  𝐻𝜈-ring  is a multi-valued system (𝑅, +, ∘) which satisfies the following axioms: 

(i) (𝑅, +) is a 𝐻𝜈-group,   

(ii) (𝑅, ∘) is a 𝐻𝜈-semigroup,  

(iii) The hyperoperation “∘” is weak distributive over the hyperoperation “+”, that is for each  

𝑥, 𝑦, 𝑧 𝜖 𝑅   the conditions 𝑥 ∘ (𝑦 + 𝑧) ∩ ((𝑥 ∘ 𝑦) + (𝑥 ∘ 𝑧))  ≠  𝜙 and (𝑥 + 𝑦) ∘ 𝑧 ∩ ((𝑥 ∘ 𝑧) + (𝑦 ∘

𝑧))  ≠  𝜙 holds true. 

 

Definition 2.7. [11]A nonempty subset 𝑅′  of 𝑅  is a subhyperring of (𝑅, +, ∘)  if (𝑅′, +)  is a 

subhypergroup of (𝑅, +) and for all 𝑥, 𝑦, 𝑧 𝜖  𝑅′, 𝑥 ∘ 𝑦  𝜖  𝑃∗(𝑅′), where 𝑃∗(𝑅′) is the set of all non-empty 

subsets of 𝑅′. 

Definition 2.8. [11] Let 𝑅 be a 𝐻𝑣-ring. A nonempty subset 𝐼 of 𝑅 is called a left (respectively right) 𝐻𝑣-

ideal if the following axioms hold: 

(i) (𝐼, +) is a 𝐻𝑣-subgroup of (𝑅, +), 

(ii) 𝑅 ∘ 𝐼 ⊆ 𝐼(resp.  𝐼 ∘ 𝑅 ⊆ 𝐼).  

If  𝐼  is both a left and right  𝐻𝑣-ideal  of  𝑅,  then  𝐼  is said to be a 𝐻𝑣-ideal  of  𝑅. 
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3 Single-Valued NeutrosophicHyperrings 

Throughout this section, we denote the hyperring(𝑅, +, ∘)by 𝑅. 
 
Definition 3.1.Let 𝐴 be a SVNS over 𝑅. 𝐴 is called a single-valued neutrosophic hyperringover 𝑅, if , 
 
(i) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

and max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 
(ii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑏 ∈ 𝑅  such that 𝑎 ∈ 𝑥 + 𝑏  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑏) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑏) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑏) 
(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑐) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑐) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑐) 
(iv) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}  and 

max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} 
 
 
Example 3.2.The family of 𝑡-level sets of SVNSs over 𝑅 is a subhyperring of 𝑅 is given below: 
 

𝐴𝑡 = {𝑎 ∈ 𝑅: 𝑇𝐴(𝑎) ≥ 𝑡, 𝐼𝐴(𝑎) ≥ 𝑡, 𝐹𝐴(𝑎) ≤ 𝑡},for all 𝑡 ∈ [0, 1]. 
 
Then 𝐴 is a single-valued neutrosophic hyperring over 𝑅. 
 
Theorem 3.3. 𝐴 is a SVNS over 𝑅. Then 𝐴 is a single-valued neutrosophichyperring over 𝑅 iff 𝐴 is sin-
gle-valued neutrosophic semi hyper group over (𝑅, ∘) and also a single-valued neutrosophic hyper-
group over (𝑅, +).  
 
Proof. This is obvious by Definition 3.1.        ∎ 
 
Theorem 3.4. Let 𝐴 and 𝐵 be single-valued neutrosophic hyperrings over 𝑅. Then𝐴 ∩ 𝐵 is a single-val-
ued neutrosophichyperring over 𝑅 if it is non-null.  
 
Proof. Let 𝐴  and 𝐵  are single-valued neutrosophic hyperrings over 𝑅. By Definition 3.1, 𝐴 ∩ 𝐵 =
{〈𝑎, 𝑇𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑎)〉: 𝑎 ∈ 𝑅}, where 𝑇𝐴∩𝐵(𝑎) = min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , 𝐼𝐴∩𝐵(𝑎) =
max(𝐼𝐴(𝑎), 𝐼𝐵(𝑎)) , 𝐹𝐴∩𝐵(𝑎) = max(𝐹𝐴(𝑎), 𝐹𝐵(𝑎)). Then for all 𝑎, 𝑏 ∈ 𝑅, we have the following. We only 
prove all the four conditions for the truth membership terms 𝑇𝐴, 𝑇𝐵 . The proof for the 𝐼𝐴 , 𝐼𝐵 and 𝐹𝐴, 𝐹𝐵 
membership functions obtained in a similar manner.  
 

(i) min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))} 

≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

      ≤ min{inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , inf{𝑇𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}} 

             ≤ inf{min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) : 𝑐 ∈ 𝑎 + 𝑏} 

   = inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

Similarly, max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}  and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈

𝑎 + 𝑏}. 

(ii) Ɐ𝑥, 𝑎 ∈ 𝑅, there exists 𝑏 ∈ 𝑅 such that 𝑎 ∈ 𝑥 + 𝑏. Then it follows that: 

min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))} 

≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

≤ min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) 

              = 𝑇𝐴∩𝐵(𝑐) 

Similarly, max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ 𝐼𝐴∩𝐵(𝑐) and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ 𝐹𝐴∩𝐵(𝑐). 

(iii) It can be easily verified that Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  & 

min{𝑇𝐴∩𝐵(𝑥), 𝑇𝐴∩𝐵(𝑎)} ≤ 𝑇𝐴∩𝐵(𝑐), max{𝐼𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑎)} ≥ 𝐼𝐴∩𝐵(𝑐)  and max{𝐹𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑎)} ≥
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𝐹𝐴∩𝐵(𝑐). 

(iv) Ɐ 𝑎 ∈ 𝑅, min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} ≤ inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈

𝑎 ∘ 𝑏} and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}. 

Hence, 𝐴 ∩ 𝐵 is single-valued neutrosophichyperring over 𝑅.   ∎ 

Theorem 3.5. Let 𝐴 be a single-valued neutrosophic hyperring over 𝑅. Then for every 𝑡 ∈ [0, 1], 𝐴𝑡 ≠ ∅ 

is a subhyperring over 𝑅. 

 

Proof. Let 𝐴 be a single-valued neutrosophichyperring over 𝑅.  Ɐ 𝑡 ∈ [0, 1], let 𝑎, 𝑏 ∈ 𝐴𝑡 . Then 

𝑇𝐴(𝑎), 𝑇𝐴(𝑏) ≥ 𝑡, 𝐼𝐴(𝑎), 𝐼𝐴(𝑏) ≤ 𝑡and 𝐹𝐴(𝑎), 𝐹𝐴(𝑏) ≤ 𝑡. Since 𝐴 is a single-valued neutrosophic sub hyper 

group of (𝑅, +), we have the following: 

inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} ≥ min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≥ min{𝑡, 𝑡} = 𝑡, 

sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} ≤ 𝑡, 

and 

sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} ≤ 𝑡. 

This implies that 𝑐 ∈ 𝐴𝑡 and then for every 𝑐 ∈ 𝑎 + 𝑏, we obtain 𝑎 + 𝑏 ⊆ 𝐴𝑡. As such, for every 𝑐 ∈ 𝐴𝑡, 

we obtain 𝑐 + 𝐴𝑡 ⊆ 𝐴𝑡. Now let 𝑎, 𝑐 ∈ 𝐴𝑡. Then 𝑇𝐴(𝑎), 𝑇𝐴(𝑐) ≥ 𝑡, 𝐼𝐴(𝑎), 𝐼𝐴(𝑐) ≤ 𝑡and 𝐹𝐴(𝑎), 𝐹𝐴(𝑐) ≤ 𝑡. 

 

𝐴 is a single-valued neutrosophic subhypergroup of (𝑅, +), there exists 𝑏 ∈ 𝑅 such that 𝑎 ∈ 𝑐 + 𝑏 and 

𝑇𝐴(𝑏) ≥ min(𝑇𝐴(𝑎), 𝑇𝐴(𝑐)) ≥ 𝑡, 𝐼𝐴(𝑏) ≤ max(𝐼𝐴(𝑎), 𝐼𝐴(𝑐)) ≤ 𝑡, 𝐹𝐴(𝑏) ≤ max(𝐹𝐴(𝑎), 𝐹𝐴(𝑐)) ≤ 𝑡, and this im-

plies that 𝑏 ∈ 𝐴𝑡. Therefore, we obtain 𝐴𝑡 ⊆ 𝑐 + 𝐴𝑡. As such, we obtain 𝑐 + 𝐴𝑡 = 𝐴𝑡. As a result, 𝐴𝑡 is a 

subhypergroup of (𝑅, +). 

 

Let 𝑎, 𝑏 ∈ 𝐴𝑡 ,then 𝑇𝐴(𝑎), 𝑇𝐴(𝑏) ≥ 𝑡, 𝐼𝐴(𝑎), 𝐼𝐴(𝑏) ≤ 𝑡 and 𝐹𝐴(𝑎), 𝐹𝐴(𝑏) ≤ 𝑡.Since 𝐴 is a single-valued neutro-

sophic subsemihypergroup of (𝑅, ∘), then for all 𝑎, 𝑏 ∈ 𝑅, we have the following: 

inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ≥ min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} = 𝑡, 

sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ≤ max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) = 𝑡, 

and 

sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ≤ max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) = 𝑡. 

This implies that 𝑐 ∈ 𝐴𝑡  and consequently 𝑎 ∘ 𝑏 ∈ 𝐴𝑡 . Therefore, for every 𝑎, 𝑏 ∈ 𝐴𝑡  we obtain 𝑎 ∘ 𝑏 ∈

𝑃∗(𝑅). Hence 𝐴𝑡 is a subhyperring over 𝑅.        

 

Theorem 3.6. Let 𝐴 be a single-valued neutrosophic set over 𝑅.Then the following statements are equiv-

alent: 

(i) 𝐴is a single-valued neutrosophic hyperring over 𝑅. 

(ii) Ɐ𝑡 ∈ [0, 1], a non-empty 𝐴𝑡 is a sub hyperring over 𝑅. 

Proof.  

(𝑖) ⟹ (𝑖𝑖) Ɐ 𝑡 ∈ [0, 1], by Theorem 3.5, 𝐴𝑡 is sub hyperring over 𝑅. 

(𝑖𝑖) ⟹ (𝑖) Assume that 𝐴𝑡  is a subhyperring over 𝑅. Let 𝑎, 𝑏 ∈ 𝐴𝑡  and therefore 𝑎 + 𝑏 ⊆ 𝐴𝑡0
. Then for 

every 𝑐 ∈ 𝑎 + 𝑏 we have 𝑇𝐴(𝑐) ≥ 𝑡0, 𝐼𝐴(𝑐) ≤ 𝑡0and 𝐹𝐴(𝑐) ≤ 𝑡0, which implies that: 

min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏}, 

max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏}, 

and 
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max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

Therefore, condition (i) of Definition 3.1 has been verified.  

Next, let 𝑥, 𝑎 ∈ 𝐴𝑡1
 for every 𝑡1 ∈ [0, 1]  which means that there exists 𝑏 ∈ 𝐴𝑡1

 such that 𝑎 ∈ 𝑥 ∘ 𝑏 . 

Since𝑏 ∈ 𝐴𝑡1
, we have 𝑇𝐴(𝑏) ≥ 𝑡1, 𝐼𝐴(𝑏) ≤ 𝑡1 and 𝐹𝐴(𝑏) ≤ 𝑡1, and thus we have  

𝑇𝐴(𝑏) ≥ 𝑡1 = min(𝑇𝐴(𝑎), 𝑇𝐴(𝑐)), 

𝐼𝐴(𝑏) ≤ 𝑡1 = max(𝐼𝐴(𝑎), 𝐼𝐴(𝑐)), 

and 

𝐹𝐴(𝑏) ≤ 𝑡1 = max(𝐹𝐴(𝑎), 𝐹𝐴(𝑐)). 

Therefore, condition (ii) of Definition 3.1 has been verified. Compliance to condition (iii) of Definition 

3.1 can be proven in a similar manner. Thus, 𝐴 is a single-valued neutrosophic subhypergroup of (𝑅, +). 

Now since 𝐴𝑡 is a subsemihypergroup of the semihypergroup (𝑅, ∘), we have the following. Let 𝑎, 𝑏 ∈

𝐴𝑡2
 and therefore we have 𝑎 ∘ 𝑏 ∈ 𝐴𝑡2

.  Thus for every 𝑐 ∈ 𝑎 ∘ 𝑏 , we obtain 𝑇𝐴(𝑐) ≥ 𝑡2, 𝐼𝐴(𝑐) ≤ 𝑡2  and 

𝐹𝐴(𝑐) ≤ 𝑡2, and therefore it follows that: 

min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}, 

max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}, 

and 

max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}, 

which proves that condition (iv) of Definition 3.1 has been verified. Hence 𝐴 is a single-valued neutro-

sophic hyperring over 𝑅.        

4 Single-Valued Neutrosophic Hyperideals 

Definition 4.1.Let 𝐴 be a SVNS over 𝑅. Then 𝐴 is single-valued neutrosophic left (resp. right) 
hyperideal over 𝑅, if , 
 
(i) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

and max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 
(ii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑏 ∈ 𝑅  such that 𝑎 ∈ 𝑥 + 𝑏  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑏) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑏) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑏) 
(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑐) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑐) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑐) 
(iv) Ɐ 𝑎, 𝑏 ∈ 𝑅, 𝑇𝐴(𝑏) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}  (resp. 𝑇𝐴(𝑎) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} ), 𝐼𝐴(𝑏) ≥

sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} (resp. 𝐼𝐴(𝑎) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}) and 𝐹𝐴(𝑏) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}  (resp. 
𝐹𝐴(𝑎) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}) 

 

𝐴 is a single-valued neutrosophic left (resp. right) hyperidealof 𝑅.  From conditions (i), (ii) and (iii) 𝐴 is 

a single-valued neutrosophic subhypergroup of (𝑅, +).  

 
Definition 4.2.Let 𝐴 be a SVNS over 𝑅. Then 𝐴 is a single-valued neutrosophic hyper ideal over 𝑅, if the 
following conditions are satisfied: 

 
(i) Ɐ 𝑎, 𝑏 ∈ 𝑅, min{𝑇𝐴(𝑎), 𝑇𝐴(𝑏)} ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , max{𝐼𝐴(𝑎), 𝐼𝐴(𝑏)} ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

and max{𝐹𝐴(𝑎), 𝐹𝐴(𝑏)} ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 
(ii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑏 ∈ 𝑅  such that 𝑎 ∈ 𝑥 + 𝑏  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑏) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑏) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑏) 
(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴(𝑥), 𝑇𝐴(𝑎)} ≤

𝑇𝐴(𝑐) , max{𝐼𝐴(𝑥), 𝐼𝐴(𝑎)} ≥ 𝐼𝐴(𝑐) and max{𝐹𝐴(𝑥), 𝐹𝐴(𝑎)} ≥ 𝐹𝐴(𝑐) 
(iv) Ɐ 𝑎, 𝑏 ∈ 𝑅, max(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) ≤ inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , max(𝐼𝐴(𝑎), 𝐼𝐴(𝑏)) ≥ sup{𝐼𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} 

and max(𝐹𝐴(𝑎), 𝐹𝐴(𝑏)) ≥ sup{𝐹𝐴(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} 
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From conditions (i), (ii) and (iii) 𝐴 is a single-valued neutrosophic sub hyper group of (𝑅, +). Condition 
(iv) indicate both single-valued neutrosophic left hyperideal and single-valued neutrosophic right hy-
perideal. Hence 𝐴 is a single-valued neutrosophic hyper ideal of 𝑅.  

 
Theorem 4.3.Let 𝐴 be a non-null SVNS over 𝑅. 𝐴 is a single-valued neutrosophic hyperideal over 𝑅 iff 
𝐴 is a single-valued neutrosophic hyper group over (𝑅, +) and also 𝐴is both a single-valued neutro-
sophic left hyper ideal and a single-valued neutrosophic right hyper ideal of 𝑅.  
 
Proof. This is straight forward by Definitions 4.1 and 4.2.       
 
Theorem 4.4.Let 𝐴and 𝐵 be two single-valued neutrosophic hyper ideals over 𝑅. Then 𝐴 ∩ 𝐵 is a single-
valued neutrosophichyperideal over 𝑅 if it is non-null.  
 
Proof. Let 𝐴  and 𝐵  are single-valued neutrosophic hyper ideals over 𝑅. By Definition 4.2, 𝐴 ∩ 𝐵 =
{〈𝑎, 𝑇𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑎)〉: 𝑎 ∈ 𝑅}, where 𝑇𝐴∩𝐵(𝑎) = min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , 𝐼𝐴∩𝐵(𝑎) = max(𝐼𝐴(𝑎), 𝐼𝐵(𝑎)) 
and𝐹𝐴∩𝐵(𝑎) = max(𝐹𝐴(𝑎), 𝐹𝐵(𝑎)). Then Ɐ 𝑎, 𝑏 ∈ 𝑅, we have the following. We only prove all the four 
conditions for the truth membership terms 𝑇𝐴, 𝑇𝐵 . The proof for the 𝐼𝐴 , 𝐼𝐵 and 𝐹𝐴, 𝐹𝐵 membership func-
tions obtained in a similar manner.   
(i) min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))} 

  ≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

          ≤ min{inf{𝑇𝐴(𝑐): 𝑐 ∈ 𝑎 + 𝑏} , inf{𝑇𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}} 

              ≤ inf{min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) : 𝑐 ∈ 𝑎 + 𝑏} 

              = inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏} 

Similarly, it can be proven that max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}  and 

max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 + 𝑏}. 

(ii) Ɐ𝑥, 𝑎 ∈ 𝑅, there exists 𝑏 ∈ 𝑅 such that 𝑎 ∈ 𝑥 + 𝑏. Then: 

min{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} = min{min(𝑇𝐴(𝑎), 𝑇𝐵(𝑎)) , min(𝑇𝐴(𝑏), 𝑇𝐵(𝑏))} 

     ≤ min{min(𝑇𝐴(𝑎), 𝑇𝐴(𝑏)) , min(𝑇𝐵(𝑎), 𝑇𝐵(𝑏))} 

≤ min(𝑇𝐴(𝑐), 𝑇𝐵(𝑐)) 

                = 𝑇𝐴∩𝐵(𝑐) 

Similarly, max{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ 𝐼𝐴∩𝐵(𝑐) and max{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ 𝐹𝐴∩𝐵(𝑐). 

(iii) Ɐ 𝑥, 𝑎 ∈ 𝑅,  there exists 𝑐 ∈ 𝑅  such that 𝑎 ∈ 𝑐 + 𝑥  and min{𝑇𝐴∩𝐵(𝑥), 𝑇𝐴∩𝐵(𝑎)} ≤

𝑇𝐴∩𝐵(𝑐), max{𝐼𝐴∩𝐵(𝑥), 𝐼𝐴∩𝐵(𝑎)} ≥ 𝐼𝐴∩𝐵(𝑐) and max{𝐹𝐴∩𝐵(𝑥), 𝐹𝐴∩𝐵(𝑎)} ≥ 𝐹𝐴∩𝐵(𝑐). 

 

(iv) Ɐ 𝑎 ∈ 𝑅, max{𝑇𝐴∩𝐵(𝑎), 𝑇𝐴∩𝐵(𝑏)} ≤ inf{𝑇𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏} , min{𝐼𝐴∩𝐵(𝑎), 𝐼𝐴∩𝐵(𝑏)} ≥ sup{𝐼𝐴∩𝐵(𝑐): 𝑐 ∈

𝑎 ∘ 𝑏} and min{𝐹𝐴∩𝐵(𝑎), 𝐹𝐴∩𝐵(𝑏)} ≥ sup{𝐹𝐴∩𝐵(𝑐): 𝑐 ∈ 𝑎 ∘ 𝑏}. 

Hence, it is verified that 𝐴 ∩ 𝐵 is a single-valued neutrosophichyperideal over 𝑅.   

 

5. Conclusion 

We developed hyperstructure for the SVNS model through several hyperalgebraic structures 

such as hyperrings and hyperideals. The properties of these structures were studied and verified. The 

future work is on the development of hyperalgebraic theory for Plithogenic sets which is the 

generalization of neutrosophic set and also planned to develop some real life applications. 
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