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Abstract: One of the important non-linear data structures in Computer Science is graph. Most of the 

real life network, be it a road transportation network, or airlines network or a communication 

network etc., cannot be exactly transformed into a graph model, but into a Multigraphs model. The 

Multigraph is a topological generalization of the graph where multiple links (or edges/arcs) may 

exist between two nodes unlike in graph. The existing algorithms to extract the neutrosophic 

shortest path in a graph cannot be applied to a Multigraphs. In this paper a method is developed to 

extract the neutrosophic shortest path in a directed Multigraph and then the corresponding 

algorithm is designed.  The classical Dijkstra’s algorithm is applicable to graphs only where all the   

link weights are crisp, but we borrow this concept to apply to Multigraphs where the weights of the 

links are neutrosophic numbers (NNs).  This new method may be useful in many application areas 

of computer science, communication networks, transportation networks, etc. in particular in those 

type of networks which cannot be modelled into graphs but into Multigraphs.   

  

Keywords: Multiset, NN, neutrosophic-min-weight arc-set, neutrosophic shortest path 

estimate, neutrosophic relaxation. 
 

 

1.  Introduction 

 

Graph Theory [4, 13, 51] is used in huge volume of applications in various branches of Engineering, 

mainly in Information Technology, Computer Science, Communication Engineering, Transportation 

Engineering, Space Engineering, Oceanography, and also in Mathematical Sciences, Social Science, 

Medical Science, Economics, Optimization, Decision Sciences, etc.  The Multigraph [45, 51] is an 

important generalization of the data structure graph in which multiple links (or edges/arcs) may 

exist to connect a pair of nodes.  For instance, consider a communication system in an Adhoc 

Network or a MANET where there are many multipaths or multiroute facilities. For another 

example, it is common that two neighbor routers in a network may share more than one direct 

connections existing in the topology between them, for the purpose of reducing the bandwidth 

compared to the case where a single connection be used. In fact there are a number of real life 

instances of communication network system, airlines network, road transportation network, etc. 

which cannot be transformed into graphs model,  but can be well transformed into multigraphs 
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model for the purpose of various analysis and decision makings.  In real life situation, in many of 

these type of directed multigraphs another issue is that the weights of the links are not always crisp 

rather neutrosophic numbers (NNs).  Throughout in this paper, those multigraphs are under 

consideration which are not having any loop.  

The NSPP problem is solved by Broumi in [32-36], but there is no work reported in the existing 

literature on solving neutrosophic shortest path problem (NSPP) in a multigraph.  In this paper we 

solve the NSPP problem for a multigraph where the arc-weights are neutrosophic numbers (NNs). It 

is known that the very popular Dijkstra’s algorithm is applicable to graphs only where the weights 

of the links are crisp numbers, but is not applicable to multigraphs even having crisp weights for its 

liunks. In this paper we extend this philosophy of Dijkstra’s algorithm to apply to the case of 

directed multigraphs having the weights of the links as neutrosophic numbers (NNs). This problem 

is not solved so far in any literature, but the SPP in a multigraph having weights of the links as fuzzy 

or intuitionistic fuzzy numbers are solved (for example, see [46-49]). But it has been well justified in 

length in the pioneering works [27,28,29] about the cases where fuzzy theory fails, and intuitionistic 

fuzzy theory can offer soft solutions; in fact the works [27,28,29] expos the major drawbacks of the 

fuzzy set theory. And then in the work [8,49] it is further justified that neutrosophic theory 

generalizes the intuitionistic fuzzy theory. An intuitionistic fuzzy set can be viewed as a special case of a 

neutrosophic set, but the converse is not necessarily true. The era of improvement of various models are like:-   

Crisp Set → Fuzzy Set (and various types of higher order Fuzzy Sets) → IFS→ NS. And hence, by heredity the 

same is true for the corresponding notion of numbers too, i.e.  Crisp Number → Fuzzy Number → IFN→ NN.  

Consequently, it is now obvious to the soft-computing researchers that the application of 

neutrosophic theory can surely provide better solutions [35] for ill-defined or imprecise problems.  

 

2.  Preliminaries  

In this section some relevant literatures are recollected from the work of Smarandache [8-12], Salama 

[1, 2] and also few works of other authors [5, 14, 15, 19]. In his pioneer work, Smarandache 

introduced the concepts of neutrosophic trio components T, I, and F which represent respectively the 

membership value, indeterminacy value, and non-membership value, where  ]-0,1+[  stands for a 

non-standard unit interval.  

2.1    Basic Preliminaries of the Neutrosophic Theory  

This subsection contains some elements of basic notions on the theory of neutrosophic sets, in 

particular about the single valued neutrosophic sets out of the existing literatures. 

Definition 2.1.1 Let X be a non-null set. A neutrosophic set A of the universe X is an object having 

the form A = {< x : TA(x), IA(x), FA(x)> , x X}, where the trio functions T, I, F : X → ]-0,1+[  define the 

truth-membership function, indeterminacy-membership function, and falsity-membership function 

respectively of the element x X to the set A along with the following condition: 

-0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+ .   

The trio functions TA(x), IA(x) and FA(x) are three real standard (or nonstandard) subsets of 

non-standard unit interval ]-0,1+[ .   

Application of the general model of NSs as defined above to the practical problems and issues may 

require complex computations, and consequently the authors [14, 15] suggested the notion of a 
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SVNS as a particular instance of a NS which can be used in real problems of scientific and 

engineering areas. 

Definition 2.1.2 Let T, I, F be three real standard or nonstandard subsets of the non-standard unit 

interval ]-0,1+[ , with the following:  

Sup_T = t_sup, inf_T = t_inf  

Sup_I = i_sup, inf_I = i_inf  

Sup_F = f_sup, inf_F = f_inf  

n-sup = t_sup + i_sup + f_sup  

n-inf = t_inf + i_inf + f_inf,  

Then T, I, F are called neutrosophic trio components.  

Definition 2.1.3 The NS 0N in X is defined as follows:  

(i)   0N   = {<x, (0,0,1)> :  x X}  

(ii)  0N   = {<x, (0,1,1)> :  x X}  

(iii)  0N   = {<x, (0,1,0)> :  x X}  

(iv)  0N   = {<x, (0,0,0)> :  x X}  

The NS 1N in X is defined as follows:  

(i)   1N   = {<x, (1,0,0)> :  x X}  

(ii)  1N   = {<x, (1,0,1)> :  x X}  

(iii)  1N   = {<x, (1,1,0)> :  x X}  

(iv)  1N   = {<x, (1,1,1)> :  x X}  

Definition 2.1.4 Let X be a non-null set. A single valued neutrosophic set A (SVNS A) is an object 

having the form A = {< x : TA(x), IA(x), FA(x)> , x X}, where TA(x), IA(x), FA(x)  [0,1] define the 

truth-membership function, indeterminacy-membership function, and falsity-membership function 

respectively of the element x X  Therefore a SVNS A could be expressed as  A = {< x : TA(x), IA(x), 

FA(x)> , x X} where TA(x), IA(x), FA(x)  [0,1].  

Definition 2.1.5 Let A1 = (T1, I1, F1) and A2 = (T2, I2, F2) be two single valued neutrosophic numbers. 

Then, the operations for SVNNs are defined as below:  

(i)  A1   A2 = <T1 + T2 – T1T2, I1I2, F1F2>. 

(ii)  A1   A2 = <T1T2, I1 + I2 -  I1I2, F1 + F2 -  F1F2>.  

(iii) kA1 =  < 1- (1-T1)k, I1k, F1k >     where k > 0.   

(iv)  A1k  = < T1k, 1- (1-I1)k , 1- (1-F1)k >     where k > 0.   

 

Definition 2.1.6  

The neutrosophic zero 0N may be defined as follow: 

0N   =  {<x, (0,1,1)> :  x X} To compare two single valued neutrosophic numbers, one can use 

score function. 

Definition 2.1.7 Let A1 = (T1, I1, F1) be a single valued neutrosophic number. Then, the score function 

s(A1),  accuracy function a(A1) and  the certainty function c(A1)  of the SVNN  A1 are defined as 

below :  

(i)   s(A1)  =  
1 1 1

2

3

T I F  
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(ii)  a(A1)  =  T1 – F1  

(iii) c(A1)  =  T1   

Definition 2.1.8 Suppose that A1 = (T1, I1, F1) and A2 = (T2, I2, F2) be two single valued neutrosophic 

numbers. Then we define a ranking method as follows: 

(i)  if s(A1) > s(A2),  then the SVNN A1  is neutrosophic greater than the SVNN A2  denoted by the 

notation A1 A2.  

(ii) if  s(A1) = s(A2)  but  a(A1) > a(A2),   then the SVNN A1  is neutrosophic greater than the 

SVNN A2  denoted by the notation A1 A2. 

(iii) if  s(A1) = s(A2)  but  a(A1) = a(A2) and c(A1) > c(A2),   then the SVNN A1  is neutrosophic 

greater than the SVNN A2  denoted by the notation A1 A2. 

(iv) if  s(A1) = s(A2)  and  a(A1) = a(A2) and c(A1) > c(A2),   then the SVNN A1  is neutrosophic 

equal to the SVNN A2  denoted by the notation A1 = A2. 

However for simple cases, the following ranking method may be followed for easy applications:  

(i)  if s(A1) > s(A2),  then the SVNN A1  is neutrosophic greater than the SVNN A2  denoted by the 

notation A1 A2.  

(ii) if  s(A1) < s(A2),   then the SVNN A1  is neutrosophic less than the SVNN A2  denoted by the 

notation A1  A2. 

(iii) if s(A1) = s(A2),  then the SVNN A1  is neutrosophic equal to the SVNN A2  denoted by the 

notation A1 = A2. 

For a deep study on the Theory of Nneutrosophic Sets introduced by Smarandache, his main work 

[8-12] could be viewed.  The notion of a neutrosophic numbers (NNs) is important to quantify an 

imprecise or ill-defined quantity. In this paper although, we shall use the very basic neutrosophic 

operations viz. neutrosophic addition , neutrosophic subtraction , and ranking of neutrosophic 

numbers, etc.  

If we can rank n number of neutrosophic numbers, we then easily by soft-compute find out the min 

NN and max NN of these n number of NNs. If A1, A2, A3,…., An  be n  neutrosophic numbers  

sorted in neutrosophic ascending order  i.e. if  A1    A2    A3  …….  An,  then A1 and An 

can be regarded respectively as the neutrosophic-min NN and neutrosophic-max NN of these n 

NNs.  

 

2.2   Multisets: Some Preliminaries   

We present some basic preliminaries of the notion of multigraphs [45, 51]. Mathematically, a 

multigraph G is an ordered pair (V, E) consisting of two sets V and E, where V or V (G) is a set of 

vertices (or, nodes), and E or E(G) is the set of links or edges or arcs.  In multigraphs, although 

multiple links (or edges or arcs) may exist between a pair of nodes (vertices), but in our work here 

we consider only those multigraphs that has no loop.  The multigraphs could be classified by two 

types:  undirected multigraphs and directed multigraphs.  For any undirected multigraph if the 

edge (i, j) and the edge (j, i) exist, then it is obvious that they are identical unlike in the case of the 

directed multigraphs. A rigorous theoretical study on the algebra of multigraphs has been done in 

the work [45].  Figure 1 below shows a directed multigraph G = (V, E), in which the set V = {A, B, C, 

D} and the set E = {AB1, AB2, BA, AD, AC, CB, BD, DB}.   
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Figure 1:   A directed multigraph G 

     

A multigraph H = (W, F)   is   called a submultigraph of the multigraph G = (V, E)   if W ⊆ V and 

F ⊆ E.  The Figure 2 below shows a submultigraph H of the multigraph G (of Figure 1).  

 

Figure 2: A submultigraph H of the directed multigraph G 

  

It is observed that in many real life cases of various networks, be it in a communication network or 

road transportation network, or any such network topologies, the weights of the links are not always 

crisp but neutrosophic numbers.  For an example, see the Figure-3 below which shows a public 

road transportation network multigraph for a traveler in which case the cost implication for 

traveling each link have been available to him as a neutrosophic number (NN). The NN of an arc in 

such a multigraphs is called neutrosophic weight (nw) of the arc.  

Figure 3:  A directed multigraph G with neutrosophic weights of arcs. 
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In our work here we consider this type (as viewed in Figure 3) of real life instances of directed 

multigraphs of a network and then develop a soft-computing method to extract the neutrosophic 

shortest path from a given source node to a pre-decided destination node.  

 

3.  Neutrosophic Shortest Path in a Directed Multigraph  

A good amount of work has been done on the notion of neutrosophic graph and its application by 

several authors [6, 7, 16, 17, 19-44, 49]. The Neutrosophic Shortest Path Problem (NSPP) has been 

solved for graphs by Broumi [32-36], but for the case of a directed multigraph no attempt has been 

reported so far in the literature for extracting a neutrosophic shortest path.  In our proposed 

method here, we solve the NSPP for multigraphs using the style of Dijkstra’s Algorithm but by 

soft-computing exercises. And for doing this, first of all we define the terms:  

Neutrosophic-Min-Weight arc-set, Neutrosophic shortest path estimate (d[v]) of a vertex, 

Neutrosophic relaxation of an arc, etc.  In the context of the theory of multigraphs, and then 

develop few sub algorithms. 

 

3.1. Neutrosophic-Min Weight Arc-set of a directed multigraph 

Consider a directed multigraph G in which the links are of having neutrosophic weights. Consider 

two adjacent nodes u and v, and suppose that there exist n number of links arcs from the node u to 

the node v in G, n being a non-negative integer.   Let Wuv denotes the ordered set consisting of the  

elements which are the arcs connecting the nodes u and v,  but keyed & sorted in non-descending 

order by the values of the respective neutrosophic weights (where sorting is done by using a suitable 

and pre-choosen ranking method of neutrosophic numbers). 

∴    Wuv  =  { (uv1 , w1uv),   (uv2 , w2uv),   (uv3 , w3uv), ….. , (uvn , wnuv) }.  

Here uvi is the arc-i from node u to nodex v and wi is the neutrosophic weight of this arc, for i = 1, 2, 

3,..…., n.  If two or more neutrosophic weights here happen to be neutrosophic equal then they may 

be placed at random at the corresponding place of non-descending array in this set with no loss of 

generality in our analysis.  

Without any confusion, we may denote the multiset { w1uv, w2uv, w3uv, ..….. ,wnuv } also using the same 

notational name Wuv.  Suppose that wuv be the neutrosophic-min value of the members of the 

multiset Wuv = {w1uv, w2uv, w3uv, .... ,wnuv }.  Obviously, wuv = w1uv ,  because the multiset Wuv  is 

already sorted.  

Now construct the set W = {< (u,v), wuv > : (u,v)   E }. Then W is called the 

neutrosophic-min-weight arc-set of the multigraph G. Suppose that the sub algorithm NMWA(G) 

returns the neutrosophic-min-weight arc-set W.  

 

3.2. Neutrosophic Shortest Path Estimate d[v] of a vertex v in a directed multigraph 

Suppose that during the execution the node s is the source vertex and the currently traversed vertex 

is u. There is, in general, no single value of neutrosophic weight for link between the vertex u and 

the neighbor vertex v, rather there are multiple neutrosophic weights as there are multiple arcs 

between the vertex u and the neighbor vertex v. Using the value of wuv from the neutrosophic-min 

weight multiset w of the directed multigraph G, one could now soft-compute the neutrosophic 

shortest path estimate i.e. d[v] of any vertex v as mentioned below:-  
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(Neutrosophic shortest path estimate of the vertex v)  =    

(Neutrosophic shortest path estimate of the vertex u)   (Neutrosophic-min of all the neutrosophic 

weights corresponding to the links from the vertex u to the vertex v). 

or, d[v]  =  d[u]wuv .   

 

 
Figure 4:  Neutrosophic estimation procedure for d[v] 

 

3.3. Neutrosophic Relaxation of an Arc  

In this subsection we present the next step which is ‘relaxation’ as introduced in the classical 

Dijkstra’s algorithm. In our proposed method here we extend the notion of relaxation to the case of 

neutrosophic weighted arcs.  By the term ‘neutrosophic relaxation’ in our work we mean the 

relaxation process of an arc for which the arc-weight is a neutrosophic number (as particular cases, it 

could be crisp or fuzzy or intuitionistic fuzzy number too as all of them could be viewed as NN).  

First of all we do initialization of the multigraph along with its starting vertex and neutrosophic 

shortest path estimate for each vertices of the multigraph G. The corresponding algorithm is called 

‘NEUTROSOPHIC-INITIALIZATION-SINGLE-SOURCE’ as presented below: 

NEUTROSOPHIC-INITIALIZATION-SINGLE-SOURCE (G, s) 

1. For each vertex v ∈ V[G]      

2. d[v]  = ∞ 

3.   v.π   = NIL 

4. d[s]  = 0  

After doing the neutrosophic initialization, the process of neutrosophic relaxation of each arc starts. 

The following sub-algorithm NEUTROSOPHIC-RELAX will play the role to update d[v]  i.e. the 

neutrosophic shortest distance value between the starting vertex s  and the vertex v (which is a 

neighbor of the currently traversed vertex u).  

 

NEUTROSOPHIC-RELAX (u, v, W) 

1. IF d[v]   d[u]    wuv 

2. THEN d[v] ← d[u]    wuv 

3. v.π ← u 

Where, wuv W is the neutrosophic-min weight of the arcs from vertex u to vertex v, and v.π 

denotes the parent node of vertex v. 
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Figure 5: Diagram showing how the NEUTROSOPHIC-RELAX algorithm works. 

3.4. Neutrosophic Shortest Path Algorithm (NSPA)    

In this subsection we develop the main algorithm to extract the single source neutrosophic shortest 

path in a directed multigraph. Let us name this Neutrosophic Shortest Path Algorithm by the title 

NSPA.  In our proposed algorithm we call the sub algorithms developed so far in this work, and 

also the sub algorithm EXTRACT-NEUTROSOPHIC-MIN (Q) which extracts the node u with the 

minimum key by using the neutrosophic ranking of NN method, and then it updates Q.  

NSPA (G, s) 

1  NEUTROSOPHIC-INITIALIZATION-SINGLE-SOURCE (G, s) 

2. W ← NMWA (G) 

3   S ← ∅ 

4   Q ← V [G] 

5   WHILE   Q ≠ ∅ 

6        DO   u ← EXTRACT-NEUTROSOPHIC-MIN (Q) 

7                 S ← S ∪ {u} 

8                 FOR   each vertex v ∈ Adj[u] 

9                 DO NEUTROSOPHIC-RELAX (u, v, W) 

Example 3.1  

Let us consider the directed Multigraph G (as in Figure 6) with neutrosophic weights of its links. The 

problem is to solve the single-source neutrosophic shortest paths problem over this multigraph 

taking the node A as the source and the node D as the destination. 

Figure 6:  A directed multigraph G with neutrosophic weighted arcs. 

 

It is clear that if the NSPA algorithm is applied to solve this NSPP, it will yield the following results: 

 1.   wAB  = 0
~

1 , wAC = 3
~

,  wCB   = 4
~

,  wCD   = 6
~

, and wBD  = 2
~

 ;  and then 
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 2.  S = {A, C, B, D}, i.e. the extracted neutrosophic shortest path from starting the source node A to 

the destination node D is:    

              A     C       B     D.     

 3.  d–values i.e.  Neutrosophic shortest distance estimate-values of each node   

       From the starting node an up to the destination node D will be:   

             d[A] = 0 , d[C] =  NN 3
~

,  d[B] =  NN 7
~

, d[D] = NN 9
~

.  

Here all operations are to be carried out using Definition 2.1.5. The method for ranking of n number of 

neutrosophic numbers is already mentioned earlier (Definition 2.1.7 and 2.1.8), and the concept of the 

‘neutrosophic shortest distance’ is to be understood accordingly with the help of this ranking method.  

Thus the result finally is A    C      B    D with minimum cost of NN . 

 

4.  Conclusion 

Multigraph is a very useful generalization of the mathematical model graph. In real life environment 

there are many problems of network (viz.  road transportation network, communication network, 

circuit systems, airlines network etc.)  Which cannot be mathematically modeled into ‘graphs’ but 

can be very appropriately modeled into ‘multigraphs’ only.  And besides that, many of the directed 

multigraphs have the weights of the links which are not always crisp but neutrosophic number 

(NN). The important problem NSPP has been solved by Broumi [32-36] while it is for graphs, but not 

for multigraphs. In this work we have considered the NSPP for those networks which are 

multigraphs, and we have proposed a method to extract the neutrosophic shortest path in a directed 

multigraph from a given source node to one pre-choosen destination node.  It is claimed by us that 

that our proposed method and the corresponding algorithms developed for NSPP on directed 

multigraphs can play an important role in many real life application areas in the fields of computer 

science, communication network, road transportation systems, etc. in particular for those type of 

networks that cannot be mathematically modeled into ‘graphs’ but into the multigraphs. 
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