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Abstract  

The main objective of this paper is to introduce the notion of single-valued bipolar 

pentapartitioned neutrosophic set (SVBPNS). We also present some supporting examples and prove 

some basic properties of SVBPNS. We define score function and accuracy function of SVBPNS, and 

establish their basic properties. We define the single-valued bipolar pentapartitioned neutrosophic 

arithmetic mean (SVBPNAM) operator and the single-valued bipolar pentapartitioned neutrosophic 

geometric mean (SVBPNGM) operator and prove their basic properties. We develop two 

Multi-Attribute Decision Making (MADM) strategies namely SVBPNS-MADM Strategy based on 

SVBPNAM operator and SVBPNS-MADM strategy based on SVBPNGM operator under SVBPNS 

environment. Finally, we present a real world numerical example to illustrate the developed 

strategies. 

Keywords: Single-Valued Pentapartitioned Neutrosophic Set; SVBPNS; MADM-Strategy. 

________________________________________________________________________________________ 

1. Introduction 

Smarandache [1] defined the Neutrosophic Set (NS) to deal with uncertainty, indeterminacy and 

inconsistency involved in this real world of mathematical objects. NS is the generalization of Fuzzy 

Set (FS) [2] and intuitionistic fuzzy set (IFS) [3] by incorporating degrees of indeterminacy and 

rejection (falsity or non-membership) as independent components. In 2010, Wang et al. [4] defined 

Single Valued NS (SVNS). The SVNSs, its variants and extensions have been utilized in many areas 

such as air surveillance [5], conflict resolution [6], decision making [7-12]  fault diagnosis [13], 

image segmentation [14], and so on. Details applications and theoretical developments of NSs are 

depicted in the studies [15-20].   
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Deli et al. [21] introduced the Single Valued Bipolar NS (SVBNS). Later on, so many researchers 

applied the notion of SVBNS in the model formation for Multi Attribute Decision making (MADM) 

[22-26] problems. In 2020, Mallick and Pramanik [27] grounded the notion of Pentapartitioned 

Neutrosophic Set (PNS) in which five independent components were introduced. In 2021, Das et al. 

[28] established an MADM strategy using tangent similarity measure under single valued PNS 

Environment. Recently, Das et al. [29] proposed an MADM strategy based on Grey Relational 

Analysis (GRA) under the single valued PNS Environment. 

Research gap: No report of the investigation dealing with the combination of bipolar 

neutrosophic set and PNS has been appeared in the literature. 

Motivation of the study:  The research gap motives us to investigate the possible combination of 

bipolar neutrosophic set and PNS. 

 

In this study, we introduce the Single-Valued Bipolar Pentapartitioned Neutrosophic Set 

(SVBPNS) by combing SVBNS and PNS. Then, we establish some basic properties of SVBPNS. Also, 

few illustrative examples on the SVBPNS are provided. Further, we propose some aggregation 

operators and prove their basic properties. Also, we develop  two new  MADM strategies  under 

the SVBPNS environment. 

 

The organization of the remaining part of this article is described as follows: 

Section 2 presents some relevant results on PNS. Section 3 devotes to introduce the SVBPNS. In 

Section 4, we introduce two aggregation operators, namely, single-valued bipolar pentapartitioned 

neutrosophic arithmetic mean operator and single-valued bipolar pentapartitioned neutrosophic 

geometric mean operator under the SVBPNS environment. In Section 5, we procure the notion of 

score function and accuracy function under SVBPNS Environment. In Section 6, we develop an 

MADM strategy using the single-valued bipolar pentapartitioned neutrosophic arithmetic mean 

operator under SVBPNS environment. Further, in Section 7, we establish an MADM strategy using 

the single-valued bipolar pentapartitioned neutrosophic geometric mean operator under SVBPNS 

environment. In Section 8, we validated the proposed MADM strategies by providing a real world 

numerical example, and also comparing both the MADM strategies. Finally, in Section 9, we 

conclude the paper by stating future scope research in newly defined set environment. 

 

2. Some Preliminary Results 

We recall some basic definitions on NS, Bipolar NS, and PNS, which are relevant to the main results 

of this paper. 

Definition 2.1.[1]. An NS V over a fixed set  is defined as follows: 

V={(,TV(),IV(),FV()):}, 
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where T, I, F : ]-0, 1+[ are the truth, indeterminacy and falsity membership functions respectively 

and 

. 

Example 2.1. Suppose that  = {x, y} be a fixed set. Then, U={(x,0.2,0.8,0.8), (y,0.3,0.2,0.4)} is an NS 

over . 

Definition 2.2.[21]. A BNS U over a non-empty set  is defined as follows: 

U={(, 𝑇𝑈
+(), 𝐼𝑈

+(), 𝐹𝑈
+(), 𝑇𝑈

−(), 𝐼𝑈
−(), 𝐹𝑈

−()):}, 

where 𝑇𝑈
+(), 𝐼𝑈

+(), 𝐹𝑈
+()∈ [0, 1], and 𝑇𝑈

−(), 𝐼𝑈
−(), 𝐹𝑈

−()∈ [-1, 0]. 

Here, 𝑇𝑈
+ (), 𝐼𝑈

+ (), and 𝐹𝑈
+ () denote the positive degree of truth-membership, 

indeterminacy-membership, falsity-membership respectively for  corresponding to the BNS U 

and 𝑇𝑈
− (), 𝐼𝑈

− (),and 𝐹𝑈
− () denote the negative degree of truth-membership, 

indeterminacy-membership, falsity-membership respectively of u corresponding to the BNS U. 

Example 2.2. Suppose that ={x, y} be a fixed set. Then, U={(x,0.1,0.6,0.8,-0.3,-0.4,-0.7), 

(y,0.3,0.4,0.6,-0.5,-0.4,-0.5)} is a bipolar neutrosophic set over . 

Definition 2.3.[21]. Assume that U={(, 𝑇𝑈
+(), 𝐼𝑈

+(), 𝐹𝑈
+(), 𝑇𝑈

−(), 𝐼𝑈
−(), 𝐹𝑈

−()):} be a BNS. 

Then, for each , [𝑇𝑈
+(), 𝐼𝑈

+(), 𝐹𝑈
+(), 𝑇𝑈

−(), 𝐼𝑈
−(), 𝐹𝑈

−()] is called a Single Valued Bipolar 

Neutrosophic Number (SVBNN). 

Definition 2.4.[27]. Assume that  be a fixed set. A PNS Z over  is defined by: 

Z = {(, TZ(), CZ(), GZ(), UZ(), FZ()):}, 

where TZ(), CZ(), GZ(), UZ(), and FZ()∈ [0, 1] are the truth, contradiction, ignorance, unknown 

and falsity membership values for each . So, 

0  TZ()+CZ()+GZ()+UZ()+FZ()  5. 

Definition 2.5.[27]. Suppose that M = {(, TM(), CM(), GM(), UM(), FM()):} and N = {(, TN(), 

CN(), GN(), UN(), FN()):} be any two PNSs over . Then, M  N  TM() TN(), CM() CN(), 

GM() GN(), UM() UN(), FM() FN(), for all . 

Definition 2.6.[27]. The null PNS (0PN) and the absolute PNS (1PN) over  are defined as follows: 

(i) 0PN={(, 0, 0, 1, 1, 1): }; 

(ii) 1PN={(, 1, 1, 0, 0, 0): }; 

It is clearly seen that, 0PN  X  1PN, where X is a PNS over . 

Example 2.3. Consider a PNS X={(n,0.3,0.4,0.5,0.7,0.3), (m,0.3,0.6,0.4,0.8,0.4)} and Y={(n,0.4,0.7,0.1,0.5, 

0.2), (m,0.8,0.9,0.2,0.1,0.2)} over ={n, m}. Then, XY. 

Definition 2.7.[27]. Suppose that M = {(, TM(), CM(), GM(), UM(), FM()): } and N = {(, TN(), 

CN(), GN(), UN(), FN()): } be any two PNSs over . Then, their intersection XY = {(, min 

{TM(), TN()}, min {CM(), CN()}, max {GM(), GN()}, max {UM(), UN()}, max {FM(), FN()}): }. 

Example 2.4. Consider two PNSs X= {(n,0.4,0.3,0.7,0.4,0.9), (m,0.5,0.6,0.3,0.8,0.4)} and Y={(n,0.6,0.2,0.8, 

0.7,0.8), (m,0.5,0.8,0.7,0.4,0.8)} over  = {n, m}. Then, their intersection is: 
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XY = {(n,0.4,0.2,0.8,0.7,0.9), (m,0.5,0.6,0.7,0.8,0.8)}. 

Definition 2.8. [27]. Assume that M = {(, TM(), CM(), GM(), UM(), FM()):} and N = {(, TN(), 

CN(), GN(), UN(), FN()):} be two PNSs over . Then, the union of X and Y is defined by: 

XY = {(, max {TM(), TN()}, max {CM(), CN()}, min {GM(), GN()}, min {UM(), UN()}, min {FM(), 

FN()}):}. 

Example 2.5. Consider two PNSs X={(n,0.4,0.5,0.6,0.8,0.9), (m,0.8,0.5,0.9,1.0,0.5)} and Y={(n,0.6,0.7,0.0, 

0.5,0.3), (m,1.0,0.9,0.4,0.0,0.1)} over ={n, m}. Then, their union is: 

X  Y = {(n,0.6,0.7,0.0,0.5,0.3), (m,1.0,0.9,0.4,0.0,0.1)}. 

Definition 2.9.[27]. Suppose that M = {(, TM(), CM(), GM(), UM(), FM()): } a PNS over . 

Then, the complement of M is defined by: 

Mc = {(, FM(), UM(), 1-GM(), CM(), TM()): }. 

Example 2.6. Suppose that M={(n,0.5,0.7,0.9,0.7,0.9), (m,0.8,0.1,0.5,0.7,0.0)} be an PNS over a fixed set 

={n, m}. Then, Mc={(n,0.9,0.7,0.1,0.7,0.5), (m,0.0,0.7,0.5,0.1,0.8)}. 

Definition 2.10. Suppose that u1, u2,…, un be n real numbers. Then, the arithmetic mean (AM) of u1, 

u2,…, un is defined by AM (u1, u2,…, un) = 
1

𝑛
∑ 𝑢𝑖

𝑛
𝑖=1 . 

Definition 2.11. Suppose that u1, u2,…, un be n real numbers. Then, the geometric mean (GM) of u1, 

u2,…, un is defined by GM (u1, u2,…, un) = ( ∏ 𝑢𝑖) 
1

𝑛𝑛
𝑖=1 . 

 

3. Single-Valued Bipolar Pentapartitioned Neutrosophic Set  

In this section, we procure the notion of SVBPNS. Also, we investigate some different properties 

of these kind of sets. Also, few illustrative examples are given. 

Definition 3.1. A single-valued bipolar pentapartitioned neutrosophic set N over a non-empty set  

is defined as: 

N={(, 𝑇𝑁
−(), 𝐶𝑁

−(), 𝐺𝑁
−(), 𝑈𝑁

−(), 𝐹𝑁
−(), 𝑇𝑁

+(), 𝐶𝑁
+(), 𝐺𝑁

+(), 𝑈𝑁
+(), 𝐹𝑁

+()):}, where 𝑇𝑁
− (),

𝐶𝑁
−(),   𝐺𝑁

− (), 𝑈𝑁
− (),  𝐹𝑁

−() ∈ [-1,0] and  𝑇𝑁
+ (), 𝐶𝑁

+(), 𝐺𝑁
+ (), 𝑈𝑁

+ (), 𝐹𝑁
+() ∈ [0,1]. 

The negative membership degrees 𝑇𝑁
−(), 𝐶𝑁

−(),  𝐺𝑁
−(), 𝑈𝑁

−(), 𝑎𝑛𝑑 𝐹𝑁
−() indicate the degree of 

truth-membership, contradiction-membership, ignorance-membership, unknown-membership, 

falsity-membership respectively for  corresponding to an SVBPNS N. Again, the positive 

membership degrees, 𝑇𝑁
+ (), 𝐶𝑁

+ (), 𝐺𝑁
+ (), 𝑈𝑁

+ (), and 𝐹𝑁
+ () indicate the degree of 

truth-membership, contradiction-membership, ignorance-membership, unknown-membership, 

falsity-membership respectively for n corresponding to an SVBPNS N.  

Example 3.1. Let ={n, m} be a fixed set. Then, U={(n,-0.2,-0.4,-0.3,-0.4,-0.7,0.1,0.6,0.8,0.4,0.1), (y,-0.5, 

-0.4,-0.5,-0.3,-0.2,0.5,0.1,0.3,0.4,0.6)} is an SVBPNS over . 
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Definition 3.2. Let N={(, 𝑇𝑁
−(),𝐶𝑁

−(),𝐺𝑁
−(),𝑈𝑁

−(),𝐹𝑁
−(),𝑇𝑁

+(),𝐶𝑁
+(),𝐺𝑁

+(),𝑈𝑁
+(),𝐹𝑁

+()):} be an 

SVBPNS. Then, [ 𝑇𝑁
− (), 𝐶𝑁

− (), 𝐺𝑁
− (), 𝑈𝑁

− (), 𝐹𝑁
− (), 𝑇𝑁

+ (), 𝐶𝑁
+ (), 𝐺𝑁

+ (), 𝑈𝑁
+ (), 𝐹𝑁

+ ()] is called a 

single-valued bipolar pentapartitioned neutrosophic number (SVBPNN), for each . 

Definition 3.3. Suppose that A = {(, 𝑇𝐴
−(), 𝐶𝐴

−(), 𝐺𝐴
−(), 𝑈𝐴

−(), 𝐹𝐴
−(), 𝑇𝐴

+(), 𝐶𝐴
+(), 𝐺𝐴

+(), 𝑈𝐴
+(), 

𝐹𝐴
+()): } and B = {(, 𝑇𝐵

−(), 𝐶𝐵
−(), 𝐺𝐵

−(), 𝑈𝐵
−(), 𝐹𝐵

−(), 𝑇𝐵
+(), 𝐶𝐵

+(), 𝐺𝐵
+(), 𝑈𝐵

+(), 𝐹𝐵
+()): 

} be any two SVBPNSs over . Then, AB if and only if 𝑇𝐴
−()  𝑇𝐵

−(), 𝐶𝐴
−()  𝐶𝐵

−(), 𝐺𝐴
−()  

𝐺𝐵
−(), 𝑈𝐴

−()  𝑈𝐵
− (), 𝐹𝐴

−()  𝐹𝐵
−(), 𝑇𝐴

+()  𝑇𝐵
+(), 𝐶𝐴

+()  𝐶𝐵
+(), 𝐺𝐴

+()  𝐺𝐵
+(), 𝑈𝐴

+()  𝑈𝐵
+(), 

𝐹𝐴
+()  𝐹𝐵

+(), for all . 

Example 3.2. Consider two SVBPNSs X={(x,-0.2,-0.5,-0.3,-0.4,-0.3,0.3,0.4,0.5,0.7,0.3), (y,-0.3,-0.5,-0.4, 

-0.2,-0.4,0.3,0.6,0.4,0.8,0.4)} and Y={(x,-0.2,-0.6,-0.7,-0.5,-0.5,0.4,0.3,0.1,0.5,0.2), (y,-0.2,-0.6,-0.6,-0.3,-0.5, 

0.8,0.5,0.2,0.1,0.2)} over  = {x, y}. Then, XY. 

Definition 3.4. Suppose that A = {(, 𝑇𝐴
−(), 𝐶𝐴

−(), 𝐺𝐴
−  (), 𝑈𝐴

−  (), 𝐹𝐴
−(), 𝑇𝐴

+(), 𝐶𝐴
+(), 𝐺𝐴

+(), 

𝑈𝐴
+(), 𝐹𝐴

+()): } and B = {(, 𝑇𝐵
− (), 𝐶𝐵

−(), 𝐺𝐵
− (), 𝑈𝐵

− (), 𝐹𝐵
−(), 𝑇𝐵

+ (), 𝐶𝐵
+(), 𝐺𝐵

+(), 𝑈𝐵
+(), 

𝐹𝐵
+()):} are any  two SVBPNSs over . Then, the intersection of X and Y is defined by: 

XY = {(, min {𝑇𝐴
−(), 𝑇𝐵

−()}, max {𝐶𝐴
−(), 𝐶𝐵

−()}, max {𝐺𝐴
−(), 𝐺𝐵

−()}, max {𝑈𝐴
−(), 𝑈𝐵

−()}, max 

{𝐹𝐴
−(), 𝐹𝐵

−()}, min {𝑇𝐴
+(), 𝑇𝐵

+()}, max {𝐶𝐴
+(), 𝐶𝐵

+()}, max {𝐺𝐴
+(), 𝐺𝐵

+()}, max {𝑈𝐴
+(), 𝑈𝐵

+()}, max 

{𝐹𝐴
+(), 𝐹𝐵

+()}) : }. 

Example 3.3. Suppose that X and Y are two SVBPNSs over = {x, y} such that X = {(x,-0.3,-0.7,-0.5, 

-0.1,-0.5,0.5,0.7,0.2,0.4,0.2), (y,-0.5,-0.1,-0.5,-0.3,-0.4,0.4,0.7,0.5,0.7,0.3)} and Y = {(x,-0.1,-0.7,-0.5,-0.4, 

-0.3,0.2,0.5,0.3,0.5,0.4), (y,-0.4,-0.5,-0.5,-0.2,-0.3,0.4,0.5,0.3,0.4,0.3)}. Then, their intersection is XY = 

{(x,-0.3,-0.7,-0.5,-0.1,-0.3,0.2,0.7,0.3,0.5,0.4), (y,-0.5,-0.1,-0.5,-0.2,-0.3, 0.4,0.7,0.5,0.7,0.3)}. 

Definition 3.5. Suppose that A = {(, 𝑇𝐴
−(), 𝐶𝐴

−(), 𝐺𝐴
−  (), 𝑈𝐴

−  (), 𝐹𝐴
−(), 𝑇𝐴

+(), 𝐶𝐴
+(), 𝐺𝐴

+(), 

𝑈𝐴
+(), 𝐹𝐴

+()): }and B = {(, 𝑇𝐵
− (), 𝐶𝐵

−(), 𝐺𝐵
− (), 𝑈𝐵

− (), 𝐹𝐵
−(), 𝑇𝐵

+ (), 𝐶𝐵
+(), 𝐺𝐵

+(), 𝑈𝐵
+(), 

𝐹𝐵
+()):  } are any two SVBPNSs over . Then, the union of X and Y is defined by: 

XY = {(, max {𝑇𝐴
−(), 𝑇𝐵

−()}, min {𝐶𝐴
−(), 𝐶𝐵

−()}, min {𝐺𝐴
−(), 𝐺𝐵

−()}, min {𝑈𝐴
−(), 𝑈𝐵

−()}, min 

{𝐹𝐴
−(), 𝐹𝐵

−()}, max {𝑇𝐴
+(), 𝑇𝐵

+()}, min {𝐶𝐴
+(), 𝐶𝐵

+()}, min {𝐺𝐴
+(), 𝐺𝐵

+()}, min {𝑈𝐴
+(), 𝑈𝐵

+()}, min 

{𝐹𝐴
+(), 𝐹𝐵

+()}) : }. 

Example 3.4. Suppose that X and Y be two SVBPNSs over  = {x, y} such that  X = 

{(x,-0.4,-0.7,-0.5,-0.6,-0.7,0.5,0.7,0.5,0.2,0.3), (y,-0.1,-0.3,-0.7,-0.7,-0.4,0.4,0.7,0.8,0.6,0.4)} and Y = {(x, -0.2, 

-0.3,-0.4,-0.7,-0.6,0.3,0.8,0.5,0.4,0.7), (y,-0.7,-0.1,-0.4,-0.7,-0.6,0.7,0.8,0.6,0.7,0.9)}. Then, their union is 

XY = {(x,-0.2,-0.7,-0.5,-0.7,-0.7,0.5,0.7,0.5,0.2,0.3), (y,-0.1,-0.3,-0.7,-0.7,-0.6,0.7,0.7,0.6,0.6,0.4). 

Definition 3.6. Let A = {(,𝑇𝐴
−(),𝐶𝐴

−(),𝐺𝐴
−(),𝑈𝐴

−(),𝐹𝐴
−(),𝑇𝐴

+(),𝐶𝐴
+(),𝐺𝐴

+(),𝑈𝐴
+(),𝐹𝐴

+()) : } be 

an SVBPNSs over . Then, the complement of A is defined as follows: 

Ac = {(,-1-𝑇𝐴
−(),-1-𝐶𝐴

−(),-1-𝐺𝐴
−(),-1-𝑈𝐴

−(),-1-𝐹𝐴
−(),1-𝑇𝐴

+(),1-𝐶𝐴
+(),1-𝐺𝐴

+(),1-𝑈𝐴
+(),1-𝐹𝐴

+()):}. 
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Example 3.5. Suppose that A = {(x,-0.4,-0.7,-0.5,-0.6,-0.7,0.5,0.7,0.5,0.2,0.3), (y,-0.1,-0.3,-0.7,-0.7,-0.4,0.4, 

0.7,0.8,0.6,0.4)}  be an SVBPNS over  = {x, y}. Then, the complement of A is Ac ={(x,-0.6,-0.3,-0.5,-0.4, 

-0.3,0.5,0.3,0.5,0.8,0.7), (y,-0.9,-0.7,-0.3,-0.3,-0.6,0.6,0.3,0.2,0.4,0.6)}. 

Definition 3.7. The null SVBPNS (0BPN) and the absolute SVBPNS (1BPN) over  are defined as 

follows: 

(i) 0BPN = {(, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1) : }; 

(ii) 1BPN = {(, 0, -1, -1, -1, -1, 1, 0, 0, 0, 0) : }; 

It is clearly seen that, 

(i) 0BPN  X  1BPN, where X is an SVBPNS over ; 

(ii) 0BPN
𝑐  = 1BPN & 1BPN

𝑐  = 0BPN; 

(iii) 0BPN  1BPN = 1BPN; 

(iv) 0BPN  1BPN = 0BPN. 

Definition 3.8. Suppose that =[𝑇
−(),𝐶

−(),𝐺
−(),𝑈

−(),𝐹
−(),𝑇

+(),𝐶
+(),𝐺

+(),𝑈
+(),𝐹

+()] and 

v=[𝑇
−(v),𝐶

−(v),𝐺
−(v),𝑈

−(v),𝐹
−(v),𝑇

+(v),𝐶
+(v),𝐺

+(v),𝑈
+(v),𝐹

+(v)] be two SVBPNNs. Then, 

(i) k.=[-(-𝑇
−())k, -(-𝐶

−())k, -(-𝐺
−())k, -(-𝑈

−())k, -(1-(1-(-𝐹
−()))k), 1-(1-𝑇

+())k, (𝐶
+())k, (𝐺

+())k, 

(𝑈
+())k, (𝐹

+())k], where k 0. 

(ii) k=[-(1-(1-(-𝑇
−()))k), -(-𝐶

−())k, -(-𝐺
−())k, -(-𝑈

−())k, -(-𝐹
−())k, (𝑇

+())k, 1-(1-𝐶
+())k, 1-(1-𝐺

+())k, 

1-(1-𝑈
+())k, 1-(1-𝐹

+())k], where k 0. 

(iii) +=[- 𝑇
− (). 𝑇

− (), -(- 𝐶
− ()- 𝐶

− ()-  𝐶
− () . 𝐶

− ()), -(- 𝐺
− ()- 𝐺

− ()-  𝐺
− () . 𝐺

− ()), 

-(-𝑈
−()-𝑈

−()- 𝑈
−(). 𝑈

−()), -(-𝐹
−()-𝐹

−()- 𝐹
−(). 𝐹

−()), 𝑇
+()+ 𝑇

+()-𝑇
+().𝑇

+(),  𝐶
+(). 𝐶

+(), 

𝐺
+(). 𝐺

+(),  𝑈
+(). 𝑈

+(), 𝐹
+().𝐹

+()]; 

(iv) .=[-(-𝑇
− ()-𝑇

− ()-𝑇
− ().𝑇

− ()), -𝐶
− () . 𝐶

− (), -𝐺
− () . 𝐺

− (), -𝑈
− () . 𝑈

− (), -𝐹
− () . 𝐹

− (), 

𝑇
+ (). 𝑇

+ (),  𝐶
+ ()+ 𝐶

+ ()- 𝐶
+ (). 𝐶

+ (), 𝐺
+ ()+ 𝐺

+ ()- 𝐺
+ (). 𝐺

+ (),  𝑈
+ ()+ 𝑈

+ ()- 𝑈
+ (). 𝑈

+ (), 

𝐹
+()+𝐹

+()-𝐹
+().𝐹

+()]. 

 

4. Single-Valued Bipolar Pentapartitioned Neutrosophic Aggregation Operators 

Definition 4.1. Assume that ui=[𝑇𝜓
−(ui),𝐶𝜓

−(ui),𝐺𝜓
−(ui),𝑈𝜓

−(ui),𝐹𝜓
−(ui),𝑇𝜓

+(ui),𝐶𝜓
+(ui),𝐺𝜓

+(ui),𝑈𝜓
+(ui),𝐹𝜓

+(ui)], 

i=1, 2, 3,…, n, be a collection of SVBPNNs over . Then, the single-valued bipolar pentapartitioned 

neutrosophic arithmetic mean (SVBPNAM) operator is defined as follows: 

SVBPNAM (u1, u2,…, un) = 
1

𝑛
∑ 𝑢𝑖

𝑛
𝑖=1                                                               (1) 

Theorem 4.1. Assume that ui=[𝑇𝜓
−(ui),𝐶𝜓

−(ui),𝐺𝜓
−(ui),𝑈𝜓

−(ui),𝐹𝜓
−(ui),𝑇𝜓

+(ui),𝐶𝜓
+(ui),𝐺𝜓

+(ui),𝑈𝜓
+(ui),𝐹𝜓

+(ui)], i=1, 

2, 3,…, n, be a collection of SVBPNNs over . Then, the aggregated value SVBPNAM (u1, u2,…, un) is 

also an SVBPNN. 

Proof. Assume that ui=[𝑇𝜓
−(ui),𝐶𝜓

−(ui),𝐺𝜓
−(ui),𝑈𝜓

−(ui),𝐹𝜓
−(ui),𝑇𝜓

+(ui),𝐶𝜓
+(ui),𝐺𝜓

+(ui),𝑈𝜓
+(ui),𝐹𝜓

+(ui)], i=1, 2, 

3,…, n, be a finite collection of SVBPNNs over . Therefore, u1 is an SVBPNN.  
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Now,  

∑ 𝑢𝑖
2
𝑖=1  = (u1 + u2) 

=[- 𝑇𝜓
− (u1). 𝑇𝜓

− (u2), -(- 𝐶𝜓
− (u1)- 𝐶𝜓

− (u2)-  𝐶𝜓
− (u1) . 𝐶𝜓

− (u2)), -(- 𝐺𝜓
− (u1)- 𝐺𝜓

− (u2)- 𝐺𝜓
− (u1) . 𝐺𝜓

− (u2)), 

-(- 𝑈𝜓
− (u1)- 𝑈𝜓

− (u2)-  𝑈𝜓
− (u1) . 𝑈𝜓

− (u2)), -(- 𝐹𝜓
− (u1)- 𝐹𝜓

− (u2)-  𝐹𝜓
− (u1) . 𝐹𝜓

− (u2)), 𝑇𝜓
+ (u1)+  𝑇𝜓

+ (u2)- 𝑇𝜓
+ (u1). 𝑇𝜓

+ (u2), 

 𝐶𝜓
+(u1). 𝐶𝜓

+(u2), 𝐺𝜓
+(u1). 𝐺𝜓

+(u2),  𝑈𝜓
+(u1). 𝑈𝜓

+(u2), 𝐹𝜓
+(u1).𝐹𝜓

+(u2)] 

= [𝑇𝜓
−(u1, u2), 𝐶𝜓

−(u1, u2), 𝐺𝜓
−(u1, u2), 𝑈𝜓

−(u1, u2), 𝐹𝜓
−(u1, u2), 𝑇𝜓

+(u1, u2), 𝐶𝜓
+(u1, u2), 𝐺𝜓

+(u1, u2), 𝑈𝜓
+(u1, u2), 

𝐹𝜓
+(u1, u2)] (say), which is an SVBPNN. 

Assume that, ∑ 𝑢𝑖
𝑛
𝑖=1  is an SVBPNN over  for n = m, i.e. ∑ 𝑢𝑖

𝑚
𝑖=1 = [𝑇𝜓

−(u1, u2,…,um), 𝐶𝜓
−(u1, u2,…,um), 

𝐺𝜓
−(u1, u2,…,um), 𝑈𝜓

−(u1, u2,…,um), 𝐹𝜓
−(u1, u2,…,um), 𝑇𝜓

+(u1, u2,…,um), 𝐶𝜓
+(u1, u2,…,um), 𝐺𝜓

+(u1, u2,…,um), 

𝑈𝜓
+(u1, u2,…,um), 𝐹𝜓

+(u1, u2,…,um)] is an SVBPNN. 

Now, 

∑ 𝑢𝑖
𝑚+1
𝑖=1   

= ∑ 𝑢𝑖
𝑚
𝑖=1  + um+1  

= [𝑇𝜓
−(u1, u2,…,um), 𝐶𝜓

−(u1, u2,…,um), 𝐺𝜓
−(u1, u2,…,um), 𝑈𝜓

−(u1, u2,…,um), 𝐹𝜓
−(u1, u2,…,um), 𝑇𝜓

+(u1, u2,…,um), 

𝐶𝜓
+(u1, u2,…,um), 𝐺𝜓

+(u1, u2,…,um), 𝑈𝜓
+(u1, u2,…,um), 𝐹𝜓

+(u1, u2,…,um)]  

+ [𝑇𝜓
−(um+1),𝐶𝜓

−(um+1),𝐺𝜓
−(um+1),𝑈𝜓

−(um+1),𝐹𝜓
−(um+1),𝑇𝜓

+(um+1),𝐶𝜓
+(um+1),𝐺𝜓

+(um+1),𝑈𝜓
+(um+1),𝐹𝜓

+(um+1)]. 

=[- 𝑇𝜓
− (u1, u2,…,um). 𝑇𝜓

− (um+1), -(- 𝐶𝜓
− (u1, u2,…,um)- 𝐶𝜓

− (um+1)-  𝐶𝜓
− (u1, u2,…,um) . 𝐶𝜓

− (um+1)), -(- 𝐺𝜓
− (u1, 

u2,…,um)-𝐺𝜓
−(um+1)- 𝐺𝜓

−(u1, u2,…, um). 𝐺𝜓
−(um+1)), -(-𝑈𝜓

−(u1, u2,…,um)-𝑈𝜓
−(um+1)- 𝑈𝜓

−(u1, u2,…,um). 𝑈𝜓
−(um+1)), 

-(- 𝐹𝜓
− (u1, u2,…,um)- 𝐹𝜓

− (um+1)-  𝐹𝜓
− (u1, u2,…,um) . 𝐹𝜓

− (um+1)), 𝑇𝜓
+ (u1, u2,…,um)+  𝑇𝜓

+ (um+1)- 𝑇𝜓
+ (u1, 

u2,…,um). 𝑇𝜓
+ (um+1),  𝐶𝜓

+ (u1, u2,…,um).  𝐶𝜓
+ (um+1), 𝐺𝜓

+ (u1, u2,…,um).  𝐺𝜓
+ (um+1),  𝑈𝜓

+ (u1, u2,…,um). 𝑈𝜓
+ (um+1), 

𝐹𝜓
+(u1, u2,…,um).𝐹𝜓

+(um+1)] 

=[𝑇𝜓
−(u1, u2,…, um+1), 𝐶𝜓

−(u1, u2,…, um+1), 𝐺𝜓
−(u1, u2,…, um+1), 𝑈𝜓

−(u1, u2,…, um+1), 𝐹𝜓
−(u1, u2,…, um+1), 𝑇𝜓

+(u1, 

u2,…, um+1), 𝐶𝜓
+(u1, u2,…, um+1), 𝐺𝜓

+(u1, u2,…, um+1), 𝑈𝜓
+(u1, u2,…, um+1), 𝐹𝜓

+(u1, u2,…, um+1)] (say), which is 

an SVBPNN. 

Therefore, ∑ 𝑢𝑖
𝑚+1
𝑖=1  is an SVBPNN. This implies, ∑ 𝑢𝑖

𝑛
𝑖=1  is an SVBPNN for n= m+1. 

Hence, ∑ 𝑢𝑖
𝑛
𝑖=1  is an SVBPNN for n=1 and 2. Again, ∑ 𝑢𝑖

𝑛
𝑖=1  is an SVBPNN for n=m+1, whenever it is 

an SVBPNN for n=m. Therefore, by the principle of mathematical induction, we can say that ∑ 𝑢𝑖
𝑛
𝑖=1  

is an SVBPNN for each n. Now, from Definition 3.8. we can say that 
1

𝑛
∑ 𝑢𝑖

𝑛
𝑖=1  is an SVBPNN. Hence, 

SVBPNAM (u1,u2,…,un) = 
1

𝑛
∑ 𝑢𝑖

𝑛
𝑖=1  is an SVBPNN. 

Example 4.1. Assume that u=(-0.3,-0.5,-0.3,-0.2,-0.5,0.5,0.3,0.6,0.5,0.2) and  v=(-0.8,-0.5,-0.5,-0.3, 

-0.7,0.3,0.6,0.2,0.5,0.4) be two SVBPNNs. Then, SVBPNAM(u, v) = 0.5 (u+v) = 0.5 (-0.24, -0.75,-0.65, 

-0.44,-0.85,0.65,0.18,0.12,0.25,0.08) = (-0.49,-0.87,-0.81,-0.66,-0.61,0.41,0.42,0.35,0.5,0.28). It is also an 

SVBPNN. 
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Definition 4.2. Assume that ui=[𝑇𝜓
−(ui),𝐶𝜓

−(ui),𝐺𝜓
−(ui),𝑈𝜓

−(ui),𝐹𝜓
−(ui),𝑇𝜓

+(ui),𝐶𝜓
+(ui),𝐺𝜓

+(ui),𝑈𝜓
+(ui),𝐹𝜓

+(ui)], 

i=1, 2, 3,…, n, be the family of SVBPNNs over . Then, the Single-Valued Bipolar Pentapartitioned 

Neutrosophic Geometric Mean (SVBPNGM) operator is defined as follows: 

SVBPNGM (u1, u2,…, un) = ( ∏ 𝑢𝑖) 
1

𝑛𝑛
𝑖=1                                                            (2) 

Theorem 4.2. Assume that ui=[𝑇𝜓
−(ui),𝐶𝜓

−(ui),𝐺𝜓
−(ui),𝑈𝜓

−(ui),𝐹𝜓
−(ui),𝑇𝜓

+(ui),𝐶𝜓
+(ui),𝐺𝜓

+(ui),𝑈𝜓
+(ui),𝐹𝜓

+(ui)], i=1, 

2, 3,…, n, be a family of SVBPNNs over . Then the aggregated value SVBPNGM (u1, u2,…, un) is also 

an SVBPNN. 

Proof. Assume that ui=[𝑇𝜓
−(ui),𝐶𝜓

−(ui),𝐺𝜓
−(ui),𝑈𝜓

−(ui),𝐹𝜓
−(ui),𝑇𝜓

+(ui),𝐶𝜓
+(ui),𝐺𝜓

+(ui),𝑈𝜓
+(ui),𝐹𝜓

+(ui)], i=1, 2, 

3,…, n, be a finite collection SVBPNNs over . Therefore, u1 is an SVBPNN.  

Now, ∏ 𝑢𝑖
2
𝑖=1 = 𝑢1 .  𝑢2  = [-(- 𝑇𝜓

− (u1)- 𝑇𝜓
− (u2)- 𝑇𝜓

− (u1). 𝑇𝜓
− (u2)), - 𝐶𝜓

− (u1) . 𝐶𝜓
− (u2), - 𝐺𝜓

− (u1) . 𝐺𝜓
− (u2), 

- 𝑈𝜓
− (u1) . 𝑈𝜓

− (u2), - 𝐹𝜓
− (u1) . 𝐹𝜓

− (u2), 𝑇𝜓
+ (u1). 𝑇𝜓

+ (u2),  𝐶𝜓
+ (u1)+ 𝐶𝜓

+ (u2)- 𝐶𝜓
+ (u1). 𝐶𝜓

+ (u2), 

𝐺𝜓
+(u1)+𝐺𝜓

+(u2)-𝐺𝜓
+(u1).𝐺𝜓

+(u2),  𝑈𝜓
+(u1)+𝑈𝜓

+(u2)-𝑈𝜓
+(u1).𝑈𝜓

+(u2), 𝐹𝜓
+(u1)+𝐹𝜓

+(u2)-𝐹𝜓
+(u1).𝐹𝜓

+(u2)] 

= [𝑇𝜓
−(u1, u2), 𝐶𝜓

−(u1, u2), 𝐺𝜓
−(u1, u2), 𝑈𝜓

−(u1, u2), 𝐹𝜓
−(u1, u2), 𝑇𝜓

+(u1, u2), 𝐶𝜓
+(u1, u2), 𝐺𝜓

+(u1, u2), 𝑈𝜓
+(u1, u2), 

𝐹𝜓
+(u1, u2)] (say), which is an SVBPNN. 

Suppose that, ∏ 𝑢𝑖
𝑛
𝑖=1 is an SVBPNN over  for n = m, i.e. ∏ 𝑢𝑖

𝑚
𝑖=1  = [𝑇𝜓

−(u1, u2,…,um), 𝐶𝜓
−(u1, u2,…,um), 

𝐺𝜓
−(u1, u2,…,um), 𝑈𝜓

−(u1, u2,…,um), 𝐹𝜓
−(u1, u2,…,um), 𝑇𝜓

+(u1, u2,…,um), 𝐶𝜓
+(u1, u2,…,um), 𝐺𝜓

+(u1, u2,…,um), 

𝑈𝜓
+(u1, u2,…,um), 𝐹𝜓

+(u1, u2,…,um)] is an SVBPNN. 

Now, 

∏ 𝑢𝑖
𝑚+1
𝑖=1   

= um+1 . ∏ 𝑢𝑖
𝑚
𝑖=1  

= [𝑇𝜓
− (um+1),𝐶𝜓

− (um+1),𝐺𝜓
− (um+1),𝑈𝜓

− (um+1),𝐹𝜓
− (um+1),𝑇𝜓

+ (um+1),𝐶𝜓
+ (um+1),𝐺𝜓

+(um+1),𝑈𝜓
+(um+1),𝐹𝜓

+ (um+1)]. [𝑇𝜓
− (u1, 

u2,…,um), 𝐶𝜓
−(u1, u2,…,um), 𝐺𝜓

−(u1, u2,…,um), 𝑈𝜓
−(u1, u2,…,um), 𝐹𝜓

−(u1, u2,…,um), 𝑇𝜓
+(u1, u2,…,um), 𝐶𝜓

+(u1, 

u2,…,um), 𝐺𝜓
+(u1, u2,…,um), 𝑈𝜓

+(u1, u2,…,um), 𝐹𝜓
+(u1, u2,…,um)]  

=[-(-𝑇𝜓
− (um+1)-𝑇𝜓

− (u1, u2,…,um)-𝑇𝜓
− (um+1).𝑇𝜓

− (u1, u2,…,um)), -𝐶𝜓
− (um+1) . 𝐶𝜓

− (u1, u2,…,um), -𝐺𝜓
− (um+1) . 𝐺𝜓

− (u1, 

u2,…,um), -𝑈𝜓
−(um+1). 𝑈𝜓

−(u1, u2,…,um), -𝐹𝜓
−(um+1). 𝐹𝜓

−(u1, u2,…,um), 𝑇𝜓
+(um+1).𝑇𝜓

+(u1, u2,…,um), 𝐶𝜓
+(um+1)+𝐶𝜓

+(u1, 

u2,…,um)-𝐶𝜓
+(um+1).𝐶𝜓

+(u1, u2,…,um), 𝐺𝜓
+(um+1)+𝐺𝜓

+(u1, u2,…,um)-𝐺𝜓
+(um+1).𝐺𝜓

+(u1, u2,…,um),  𝑈𝜓
+(um+1)+𝑈𝜓

+(u1, 

u2,…,um)-𝑈𝜓
+(um+1).𝑈𝜓

+(u1, u2,…,um), 𝐹𝜓
+(um+1)+𝐹𝜓

+(u1, u2,…,um)-𝐹𝜓
+(um+1).𝐹𝜓

+(u1, u2,…,um)] 

=[𝑇𝜓
−(u1, u2,…, um+1), 𝐶𝜓

−(u1, u2,…, um+1), 𝐺𝜓
−(u1, u2,…, um+1), 𝑈𝜓

−(u1, u2,…, um+1), 𝐹𝜓
−(u1, u2,…, um+1), 𝑇𝜓

+(u1, 

u2,…, um+1), 𝐶𝜓
+(u1, u2,…, um+1), 𝐺𝜓

+(u1, u2,…, um+1), 𝑈𝜓
+(u1, u2,…, um+1), 𝐹𝜓

+(u1, u2,…, um+1)] (say), which is 

an SVBPNN. 

Therefore, ∏ 𝑢𝑖
𝑚+1
𝑖=1  is an SVBPNN. This implies, ∏ 𝑢𝑖

𝑛
𝑖=1  is an SVBPNN for n=m+1. 

Hence, ∏ 𝑢𝑖
𝑛
𝑖=1  is an SVBPNN for n=1 and 2. Again, ∏ 𝑢𝑖

𝑛
𝑖=1  is an SVBPNN for n=m+1, whenever it is 

an SVBPNN for n=m. Therefore, by the principle of mathematical induction, we can say that ∏ 𝑢𝑖
𝑛
𝑖=1  
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is an SVBPNN for each n. Now, from Definition 3.8. we can say that (∏ 𝑢𝑖
𝑛
𝑖=1 )

1

𝑛 is an SVBPNN. 

Hence, SVBPNGM (u1,u2,…,un) = (∏ 𝑢𝑖
𝑛
𝑖=1 )

1

𝑛 is an SVBPNN. 

Example 4.2. Let u=(-0.3,-0.5,-0.3,-0.2,-0.5,0.5,0.3,0.6,0.5,0.2), v=(-0.8,-0.5,-0.5,-0.3,-0.7,0.3,0.6,0.2,0.5, 

0.4) be two SVBPNNs as shown in Example 4.1. Then, SVBPNGM (u, v) = (u+v)0.5 = (-0.86,-0.25,-0.15, 

-0.06,-0.35,0.15,0.72,0.68,0.75,0.52)0.5 = (-0.63,-0.5,-0.39,-0.24,-0.59,0.39,0.47,0.43,0.5,0.31). It is also an 

SVBPNN. 

 

5. Score & Accuracy Functions under the SVBPNS Environment 

Definition 5.1. Suppose that  = [𝑇𝜓
−(),𝐶𝜓

−(),𝐺𝜓
−(),𝑈𝜓

−(),𝐹𝜓
−(),𝑇𝜓

+(),𝐶𝜓
+(),𝐺𝜓

+(),𝑈𝜓
+(),𝐹𝜓

+()] be 

an SVBPNN over . Then, the score function and accuracy function are defined by: 

Sf () = 
[ 1+𝑇𝜓

−()−𝐶𝜓
−()−𝐺𝜓

−()−𝑈𝜓
−()−𝐹𝜓

−()+𝑇𝜓
+()+1−𝐶𝜓

+()+1−𝐺𝜓
+()+1−𝑈𝜓

+()+1−𝐹𝜓
+()]

10
                      (3)  

Af () = 
[𝑇𝜓

−()−𝐶𝜓
−()−𝐹𝜓

−()+𝑇𝜓
+()−𝐶𝜓

+()−𝐹𝜓
+()]   

3
                                                      (4)  

Example 5.1. Suppose that =(-0.3,-0.5,-0.3,-0.2,-0.5,0.5,0.3,0.6,0.5,0.2) be an SVBPNN as defined in 

Example 4.1. Then, Sf ()=0.51 and Af ()=0.233. 

Definition 5.2. Suppose that =[𝑇𝜓
−(),𝐶𝜓

−(),𝐺𝜓
−(),𝑈𝜓

−(),𝐹𝜓
−(),𝑇𝜓

+(),𝐶𝜓
+(),𝐺𝜓

+(),𝑈𝜓
+(),𝐹𝜓

+()] and 

v=[𝑇𝜓
−(v),𝐶𝜓

−(v),𝐺𝜓
−(v),𝑈𝜓

−(v),𝐹𝜓
−(v),𝑇𝜓

+(v),𝐶𝜓
+(v),𝐺𝜓

+(v),𝑈𝜓
+(v),𝐹𝜓

+(v)] be any two SVBPNNs over . Then, 

(i) Sf () > Sf ()   > ; 

(ii) Sf () = Sf (), Af () > Af ()   > ; 

(iii) Sf () = Sf (), Af () = Af (), 𝑇𝜓
+() > 𝑇𝜓

+(), 𝑇𝜓
−() < 𝑇𝜓

−()   > . 

Theorem 5.1. The score function and accuracy function of an SVBPNN are bounded. 

Proof. Suppose that =[𝑇𝜓
− (),𝐶𝜓

− (),𝐺𝜓
− (),𝑈𝜓

− (),𝐹𝜓
− (),𝑇𝜓

+ (),𝐶𝜓
+ (),𝐺𝜓

+ (),𝑈𝜓
+ (),𝐹𝜓

+ ()] be an 

SVBPNN.  

Therefore, -1𝑇𝜓
−()0, -1𝐶𝜓

−()0, -1𝐺𝜓
−()0, -1𝑈𝜓

−()0, -1𝐹𝜓
−()0, 0𝑇𝜓

+()1, 0𝐶𝜓
+ ()1, 

0𝐺𝜓
+()1, 0𝑈𝜓

+()1, 0𝐹𝜓
+()1.  

This implies, 0  1+𝑇𝜓
−()+𝑇𝜓

+()   2, 0  -𝐶𝜓
− ()+1-𝐶𝜓

+()   2, 0  -𝐺𝜓
− ()+1-𝐺𝜓

+()   2, 0  

-𝑈𝜓
−()+1-𝑈𝜓

+()  2, 0  -𝐹𝜓
−()+1-𝐹𝜓

+()  2. 

Therefore, 

0  1+𝑇𝜓
−()+𝑇𝜓

+()-𝐶𝜓
−()+1-𝐶𝜓

+()-𝐺𝜓
−()+1-𝐺𝜓

+()-𝑈𝜓
−()+1-𝑈𝜓

+()-𝐹𝜓
−()+1-𝐹𝜓

+()  10 

 0  1+𝑇𝜓
−()-𝐶𝜓

−()-𝐺𝜓
−()-𝑈𝜓

−()-𝐹𝜓
−()+𝑇𝜓

+()+1-𝐶𝜓
+()+1-𝐺𝜓

+()+1-𝑈𝜓
+()+1-𝐹𝜓

+()  10 

 0  
[ 1+𝑇𝜓

−()−𝐶𝜓
−()−𝐺𝜓

−()−𝑈𝜓
−()−𝐹𝜓

−()+𝑇𝜓
+()+1−𝐶𝜓

+()+1−𝐺𝜓
+()+1−𝑈𝜓

+()+1−𝐹𝜓
+()]

10
  1 

 0  Sf (u)  1. 

Hence, the score function is bounded. 
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Again, -1  𝑇𝜓
−()+𝑇𝜓

+()  1, -1  -𝐶𝜓
−()-𝐶𝜓

+()  1, -1  -𝐹𝜓
−()-𝐹𝜓

+()  1 

This implies, 

-3 𝑇𝜓
−()+𝑇𝜓

+()-𝐶𝜓
−()-𝐶𝜓

+()-𝐹𝜓
−()-𝐹𝜓

+()  3 

-1  
𝑇𝜓

−()−𝐶𝜓
−()−𝐹𝜓

−()+𝑇𝜓
+()−𝐶𝜓

+()−𝐹𝜓
+()   

3
  1 

 -1  Af ()  1. 

Hence, the accuracy function is bounded. 

Theorem 5.2. The score function and accuracy function of an SVBPNN are monotonic increasing. 

Proof. Suppose that =[ 𝑇𝜓
− (), 𝐶𝜓

− (), 𝐺𝜓
− (), 𝑈𝜓

− (), 𝐹𝜓
− (), 𝑇𝜓

+ (), 𝐶𝜓
+ (), 𝐺𝜓

+ (), 𝑈𝜓
+ (), 𝐹𝜓

+ ()] and 

=[𝑇𝜓
−(),𝐶𝜓

−(),𝐺𝜓
−(),𝑈𝜓

−(),𝐹𝜓
−(),𝑇𝜓

+(),𝐶𝜓
+(),𝐺𝜓

+(),𝑈𝜓
+(),𝐹𝜓

+()] be two SVBPNNs over  such 

that   .  

Therefore, 𝑇𝜓
− ()  𝑇𝜓

− (), 𝐶𝜓
−()  𝐶𝜓

−(), 𝐺𝜓
−()  𝐺𝜓

−(),  𝑈𝜓
−()  𝑈𝜓

−(),  𝐹𝜓
−()  𝐹𝜓

−(),  𝑇𝜓
+ ()  

𝑇𝜓
+(), 𝐶𝜓

+() 𝐶𝜓
+(), 𝐺𝜓

+() 𝐺𝜓
+(),  𝑈𝜓

+() 𝑈𝜓
+(),  𝐹𝜓

+() 𝐹𝜓
+().  

It is known that, 

Sf () = 
[ 1+𝑇𝜓

−()−𝐶𝜓
−()−𝐺𝜓

−()−𝑈𝜓
−()−𝐹𝜓

−()+𝑇𝜓
+()+1−𝐶𝜓

+()+1−𝐺𝜓
+()+1−𝑈𝜓

+()+1−𝐹𝜓
+()]

10
; 

Sf () = 
[ 1+𝑇𝜓

−()−𝐶𝜓
−()−𝐺𝜓

−()−𝑈𝜓
−()−𝐹𝜓

−()+𝑇𝜓
+()+1−𝐶𝜓

+()+1−𝐺𝜓
+()+1−𝑈𝜓

+()+1−𝐹𝜓
+()]

10
; 

Af () = 
[𝑇𝜓

−()−𝐶𝜓
−()−𝐹𝜓

−()+𝑇𝜓
+()−𝐶𝜓

+()−𝐹𝜓
+()]   

3
; 

Af () = 
[𝑇𝜓

−()−𝐶𝜓
−()−𝐹𝜓

−()+𝑇𝜓
+()−𝐶𝜓

+()−𝐹𝜓
+()]   

3
; 

Now,   

Sf () - Sf () 

= 

[ 1+𝑇𝜓
−()−𝐶𝜓

−()−𝐺𝜓
−()−𝑈𝜓

−()−𝐹𝜓
−()+𝑇𝜓

+()

+1−𝐶𝜓
+()+1−𝐺𝜓

+()+1−𝑈𝜓
+()+1−𝐹𝜓

+()]

10
 - 

[ 1+𝑇𝜓
−()−𝐶𝜓

−()−𝐺𝜓
−()−𝑈𝜓

−()−𝐹𝜓
−()+𝑇𝜓

+()

+1−𝐶𝜓
+()+1−𝐺𝜓

+()+1−𝑈𝜓
+()+1−𝐹𝜓

+()]

10
 

 0  [since ] 

This implies, Sf ()  Sf (), i.e. the score function is monotonic increasing. 

Now, 

Af () - Af () 

= 
[𝑇𝜓

−()−𝐶𝜓
−()−𝐹𝜓

−()+𝑇𝜓
+()−𝐶𝜓

+()−𝐹𝜓
+()]   

3
 - 

[𝑇𝜓
−()−𝐶𝜓

−()−𝐹𝜓
−()+𝑇𝜓

+()−𝐶𝜓
+()−𝐹𝜓

+()]   

3
 

 0      [since ] 

This implies, Af ()  Af (), i.e., the accuracy function is monotonic increasing. 

Hence, the score and accuracy functions are monotonic increasing functions. 
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6. SVBPNS-MADM Strategy Based on SVBPNAM Operator 

Suppose that A= {A1, A2, …, An} be a fixed set of alternatives, and P= {P1, P2,..., Pm} be a family of 

attributes. The decision maker involves in the decision making provides his/her evaluation 

information of each alternative Qi (i = 1, 2,…, n) over the attribute Pj (j = 1, 2,..., m) in terms of 

SVBPNNs. The whole evaluation information of all alternatives can be expressed by a decision 

matrix. 

 

The proposed SVBPNS-MADM strategy (see Figure 1)is described using the following steps: 

 

Step-1: Construct the decision matrix using SVBPNSs. 

The whole evaluation information of each alternative Ai (i = 1, 2,..., n) based on the attributes Pj (j = 1, 

2,..., m) is expressed in terms of  SVBPNS 𝐸𝐴𝑖
= {(Pj,𝑇𝑖𝑗

−(Ai, Pj),𝐶𝑖𝑗
−(Ai, Pj),𝐺𝑖𝑗

−(Ai, Pj),𝑈𝑖𝑗
−(Ai, Pj),𝐹𝑖𝑗

−(Ai, 

Pj),𝑇𝑖𝑗
+(Ai, Pj),𝐶𝑖𝑗

+(Ai, Pj), 𝐺𝑖𝑗
+(Ai, Pj),𝑈𝑖𝑗

+(Ai, Pj), 𝐹𝑖𝑗
+(Ai, Pj)): PjP}, where (𝑇𝑖𝑗

−(Ai, Pj),𝐶𝑖𝑗
−(Ai, Pj),𝐺𝑖𝑗

−(Ai, 

Pj),𝑈𝑖𝑗
−(Ai ,Pj),𝐹𝑖𝑗

−(Ai, Pj),𝑇𝑖𝑗
+ (Ai, Pj),𝐶𝑖𝑗

+(Ai, Pj),𝐺𝑖𝑗
+(Ai, Pj),𝑈𝑖𝑗

+(Ai, Pj),𝐹𝑖𝑗
+ (Ai, Pj)) denote the evaluation 

information of Ai (i = 1, 2,..., n) based on Pj (j = 1, 2,..., m). 

 

Then the Decision Matrix (DM[A|P] ) can be expressed as: 

DM[A|P] = 

 P1 P2 … … Pm 

A1 [𝑇11
− (A1, P1), 𝐶11

− (A1, P1), 

𝐺11
− (A1, P1), 𝑈11

− (A1, P1), 

𝐹11
− (A1, P1), 𝑇11

+ (A1, P1), 

𝐶11
+ (A1, P1), 𝐺11

+ (A1, P1), 

𝑈11
+ (A1, P1), 𝐹11

+ (A1, P1)] 

[𝑇12
− (A1, P2), 𝐶12

− (A1, P2), 

𝐺12
− (A1, P2), 𝑈12

− (A1, P2), 

𝐹12
− (A1, P2), 𝑇12

+ (A1, P2), 

𝐶12
+ (A1, P2), 𝐺12

+ (A1, P2), 

𝑈12
+ (A1, P2), 𝐹12

+ (A1, P2)] 

… … [𝑇1𝑚
− (A1, Pm), 𝐶1𝑚

− (A1, Pm), 

𝐺1𝑚
− (A1, Pm), 𝑈1𝑚

− (A1, Pm), 

𝐹1𝑚
− (A1, Pm), 𝑇1𝑚

+ (A1, Pm), 

𝐶1𝑚
+ (A1, Pm), 𝐺1𝑚

+ (A1, Pm), 

𝑈1𝑚
+ (A1, Pm), 𝐹1𝑚

+ (A1, Pm)] 

A2 [𝑇21
− (A2, P1), 𝐶21

− (A2, P1), 

𝐺21
− (A2, P1), 𝑈21

− (A2, P1), 

𝐹21
− (A2, P1), 𝑇21

+ (A2, P1), 

𝐶21
+ (A2, P1), 𝐺21

+ (A2, P1), 

𝑈21
+ (A2, P1), 𝐹21

+ (A2, P1)] 

[𝑇22
− (A2, P2), 𝐶22

− (A2, P2), 

𝐺22
− (A2, P2), 𝑈22

− (A2, P2), 

𝐹22
− (A2, P2), 𝑇22

+ (A2, P2), 

𝐶22
+ (A2, P2), 𝐺22

+ (A2, P2), 

𝑈22
+ (A2, P2), 𝐹22

+ (A2, P2)] 

… … [𝑇2𝑚
− (A2, Pm), 𝐶2𝑚

− (A2, Pm), 

𝐺2𝑚
− (A2, Pm), 𝑈2𝑚

− (A2, Pm), 

𝐹2𝑚
− (A2, Pm), 𝑇2𝑚

+ (A2, Pm), 

𝐶2𝑚
+ (A2, Pm), 𝐺2𝑚

+ (A2, Pm), 

𝑈2𝑚
+ (A2, Pm), 𝐹2𝑚

+ (A2, Pm)] 

... 

 

… 

 

… 

 

… 

 

… 

 

… 

 

An [𝑇𝑛1
− (An, P1), 𝐶𝑛1

− (An, P1), 

𝐺𝑛1
− (An, P1), 𝑈𝑛1

− (An, P1), 

𝐹𝑛1
− (An, P1), 𝑇𝑛1

+ (An, P1), 

𝐶𝑛1
+ (An, P1), 𝐺𝑛1

+ (An, P1), 

𝑈𝑛1
+ (An, P1), 𝐹𝑛1

+ (An, P1)] 

[𝑇𝑛2
− (An, P2), 𝐶𝑛2

− (An, P2), 

𝐺𝑛2
− (An, P2), 𝑈𝑛2

− (An, P2), 

𝐹𝑛2
− (An, P2), 𝑇𝑛2

+ (An, P2), 

𝐶𝑛2
+ (An, P2), 𝐺𝑛2

+ (An, P2), 

𝑈𝑛2
+ (An, P2), 𝐹𝑛2

+ (An, P2)] 

…

…

…

… 

…

…

…

… 

[𝑇𝑛𝑚
− (An, Pm), 𝐶𝑛𝑚

− (An, Pm), 

𝐺𝑛𝑚
− (An, Pm), 𝑈𝑛𝑚

− (An, Pm), 

𝐹𝑛𝑚
− (An, Pm), 𝑇𝑛𝑚

+ (An, Pm), 

𝐶𝑛𝑚
+ (An, Pm), 𝐺𝑛𝑚

+ (An, Pm), 

𝑈𝑛𝑚
+ (An, Pm), 𝐹𝑛𝑚

+ (An, Pm)] 
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Step-2: In this step, the decision maker determines the aggregation values (Ai | P1, P2,…, Pm) = 

SVBPNAM (P1, P2,…, Pm) of all the attributes for each alternative by using the eq. (1). After the 

determination of aggregation values SVBPNAM (P1, P2,…, Pm), the decision maker makes an 

aggregate decision matrix aggregate-DM. 

Step-3: In this step, the decision maker determines the score and accuracy values of each alternative 

by using the eqs. (3) and (4). 

Step-4: In this step, the decision maker ranks the alternatives by using Definition 5.1. and Definition 

5.2. 

Step-5: End. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow chart of the SVBPNS-MADM Strategy based on SVBPNAM operator 

7. SVBPNS-MADM Strategy Based on SVBPNGM Operator 

Consider the same MADM problem which is considered in section 6. Then the proposed 

SVBPNS-MADM strategy (see Figure 2) can be described by the following steps: 

Determine the SVBPNAM 

aggregation values of all attributes 

Determination of the score and 

accuracy values of each alternative 

Ranking the alternatives 

 

End  

Step-1 

Step-3 

Step-2 

Step-4 

Step-5 

Construct the decision matrix 

using SVBPNS 
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Step-1: Construct the decision matrix using SVBPNSs. 

It is similar to the step-1 of the section 6. 

Step-2: In this step, the decision makers determine the aggregation values (Ai | P1, P2,…, Pm) = 

SVBPNGM (P1, P2,…, Pm) of all the attributes for each alternative by using the eq. (1). After the 

determination of aggregation values SVBPNGM (P1, P2,…, Pm), the decision maker makes an 

aggregate decision matrix aggregate-DM. 

Step-3: In this step, the decision maker determines the score and accuracy values of each alternative 

by using the eqs. (3) and (4). 

Step-4: In this step, the decision maker ranks the alternatives by using Definition 5.1. and Definition 

5.2. 

Step-5: End. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flow chart of the SVBPNS-MADM Strategy based on SVBPNGM operator 

 

Determine the SVBPNGM 

aggregation values of all attributes 

Determination of the score and 

accuracy values of each alternative 

Rank the alternatives 

 

End  

Step-1 

Step-3 

Step-2 

Step-4 

Step-5 

Construct the decision matrix 

using SVBPNS 
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8. Validation of the Proposed SVBPNS-MADM Strategies: 

In this section, we present a realistic example of “University Selection for Admission into Various 

Degree Course” to validate the proposed SVBPNS-MADM strategies based on both SVBPNAM 

operator and SVBPNGM operator. 

8.1. Example: “University Selection for Admission into Various Degree Course”. 

The selection of university for getting admission for higher education by the students who just 

have passed the higher secondary or college from any stream can be considered as an MADM 

problem. To select the best university for higher education, the students must need to select some 

attributes based on which they select the best university. After the initial screening, the decision 

maker (student) chooses three alternatives (Universities) for further screening. Suppose the 

alternatives (Universities) are A1, A2, A3. After the consultation with experts the decision makers 

(students) can choose three major attributes namely 

P1 (Faculty):- In an educational institution, faculty has the most important role for the system as 

well as students. The number of faculty members and the quality of the faculty members that is the 

profile of faculty is too important. Only faculty can help and find the creative students for the 

success of the social. A good quality Teacher encourages students to come to class from time to time 

with work interest. 

P2 (NAAC-Grade):- In India, UGC gives different grades based on their different performance. 

Higher learning institutes in India are graded for each key aspect/ parameter under different 

categories such as 'A', 'B', 'C', and 'D'. The NAAC grade indicates the overall performance of an 

institution such as very good, good, satisfactory, and unsatisfactory. 

P3 (Government University / Private University):- Most of the time a central University 

certificate has more value than a state university. It's generally seen that the government universities 

charge a lower tuition fee than private universities. There are also more opportunities for a fee 

reduction in government universities with scholarships and/or quota-based benefits 

(SC/ST/OBC/EWS, etc.).  So there are many issues on this regard that is why we are taking a 

criterion on this objective. 

P4 (Infrastructure): A high-grade university infrastructures [30] must have a dynamic facility. 

The infrastructure criteria for being a world-class university are: 

(1) Physical infrastructure,  

(2) Digital infrastructure,  

(3) Innovative academic & training Infrastructure for confidence building,  

(4) Intellectual property infrastructure,  

(5) Emotional infrastructure, and  

(6) Network infrastructure,  
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Based on the rating of the alternatives in terms of SVBPNNs, the decision matrix DM (see Table-1) is 

constructed as follows: 

Table-1: 

 

In Table 2, we calculate the aggregation values (Ai | P1, P2, P3) of all attributes for each alternative Ai, 

by using the SVBPNAM operator. 

Table-2: Aggregate-DM 

 (Ai | P1, P2, P3) 

A1 (-0.30274,-0.96634,-0.99149,-0.9767,-0.59094,0.664963,0.468069,0.562341,0.411953,0.289251) 

A2 (-0.36628,-0.98778,-0.98726,-0.99088,-0.59094,1.00000,0.538356,0.447214,0.34641,0.393598) 

A3 (-0.33437,-0.9807,-0.98902,-0.96439,-0.7087,1.00000,0.500997,0.442673,0.366284,0.468069) 

 

By using eq (2), we get Sf (A1)= 0.7156079; Sf (A2)= 0.7465002; Sf (A3)= 0.7530417.  

Therefore, Sf (A1) < Sf (A2) < Sf (A3).  

The ranking order is obtained as:  A1 < A2 < A3. 

Hence, A3 is the best university for getting admission among the set of alternatives 

(universities). 

In table 3, we calculate the aggregation values (Ai | P1, P2, P3) of all attributes for each alternative Ai, 

by using the SVBPNGM operator.  

Table-3: Aggregate-DM 

 (Ai | P1, P2, P3) 

A1 (-0.4197,-0.33098,-0.4899,-0.34996,-0.518,0.524361,0.577051,0.602365,0.436537,0.426734) 

A2 (-0.4215,-0.4527,-0.52332,-0.50297,-0.40536,0.588566,0.564412,0.452277,0.39452,0.443368) 

A3 (-0.42085,-0.47287,-0.44496,-0.31623,-0.65063,0.832358,0.547298,0.457839,0.421498,0.547298) 

 

DM P1 P2 P3 P4 

A1 (-0.3,-0.5,-0.4,-0.6,-0.3, 

0.3,0.6,0.5,0.4,0.2) 

 

(-0.7,-0.2,-0.6,-0.5-0.6, 

0.4,0.5,0.5,0.3,0.7) 

 

(-0.4,-0.6,-0.3,-0.5,-0.5, 

0.7,0.8,0.5,0.6,0.5) 

 

(-0.1,-0.2,-0.8,-0.1,-0.8, 

0.9,0.2,0.8,0.4,0.1) 

A2 (-0.3,-0.7,-0.5,-0.5,-0.3, 

0.3,0.5,0.4,0.3,0.2) 

 

(-0.6,-0.6,-0.5,-0.4,-0.5, 

0.5,0.4,0.5,0.6,0.5) 

 

(-0.5,-0.5,-0.6,-0.4,-0.2, 

0.8,0.6,0.4,0.2,0.6) 

 

(-0.2,-0.2,-0.5,-0.8,-0.9, 

1.0,0.7,0.5,0.4,0.4) 

A3 (-0.5,-0.5,-0.7,-0.5,-0.8, 

0.6,0.3,0.4,0.6,0.8) 

 

(-0.5,-0.4,-0.7,-0.5,-0.4, 

0.8,0.5,0.6,0.5,0.4) 

 

(-0.5,-0.5,-0.2,-0.4,-0.8, 

1.0,0.6,0.4,0.2,0.5) 

 

(-0.1,-0.5,-0.4,-0.1,-0.7, 

1.0,0.7,0.4,0.3,0.3) 
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By using eq. (2), we get Sf (A1)= 0.4750814; Sf (A2)= 0.5196839; Sf (A3)= 0.5322265.  

Therefore, Sf (A1) < Sf (A2) < Sf (A3).  

The ranking order is obtained as: A1 < A2 < A3.  

Hence, A3 is the best university for getting admission. 

Table 4: Ranking order of alternatives 

Strategies Ranking order Best alternative 

SVBPNS-MADM strategy based on 

BPNAM operator. 

A1 < A2 < A3 A3 

SVBPNS-MADM strategy based on 

BPNAM operator. 

A1 < A2 < A3 A3 

 

Both the SVBPNS-MADM strategies offer the same ranking order of the alternatives (See table 

4) and A3 is the best university for getting admission. 

 

9. Conclusions 

In this paper, we introduce the notion of SVBPNS, and prove its basic properties and operations. 

We define the score and accuracy functions of SVBPNNs, and prove their basic properties. Besides, 

we define two aggregation operators namely, single-valued bipolar pentapartitioned neutrosophic 

arithmetic mean operator and the single-valued bipolar pentapartitioned neutrosophic geometric 

mean operator, and prove their basic properties. Based on these two operators, we develop two new 

MADM strategies and present a numerical example in SVBPNS environment to show the 

applicability of SVBPNS in MADM. The developed strategies can be further used for the other 

MADM problems [31-34], medical diagnosis [35-36] , risk analysis [37], and so on.  

 

References 

1. Smarandache, F. (1998). A unifying field of logics. Neutrosophy: neutrosophic probability, set 

and logic. Rehoboth: American Research Press. 

2. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. 

3. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96. 

4. Wang, H., Smarandache, F., Sunderraman, R., & Zhang, Y.Q. (2010). Single valued neutrosophic 

sets. Multi-space and Multi-structure, 4, 410-413. 

5. Fan, E., Hu, K., & Li, X. (2019, March). Review of neutrosophic-set-theory-based multiple-target 

tracking methods in uncertain situations. In 2019 IEEE International Conference on Artificial 

Intelligence and Computer Applications (ICAICA) (pp. 19-27). IEEE. 

6. Pramanik, S., & Roy, T.K. (2014). Neutrosophic game theoretic approach to Indo-Pak conflict 

over Jammu-Kashmir. Neutrosophic Sets and Systems, 2, 82-101. 



Neutrosophic Sets and Systems, Vol. 49, 2022 161  

 

 

Suman Das, Rakhal Das, Surapati Pramanik, Single Valued Bipolar Pentapartitioned Neutrosophic Set and Its 

Application in MADM Strategy. 

7. Karaaslan, F., & Hunu, F. (2020). Type-2 single-valued neutrosophic sets and their applications 

in multi-criteria group decision making based on TOPSIS method. Journal of Ambient Intelligence 

and Humanized Computing, 11(10), 4113-4132. 

8. Gulistan, M., Mohammad, M., Karaaslan, F., Kadry, F., Khan, S., & Wahab, H.A. (2019). 

Neutrosophic cubic Heronian mean operators with applications in multiple attribute group 

decision-making using cosine similarity functions. International Journal of Distributed Sensor 

Networks, vol. 15(9), 1-21. 

9. Karaaslan, F., & Hayat, K. (2018). Some new operations on single-valued neutrosophic matrices 

and their applications in multi-criteria group decision making. Applied Intelligence, 48(2), 

4594-4614. 

10. Jana, C., Pal, M., Karaaslan, F., & Wang, J.Q. (2020). Trapezoidal neutrosophic aggregation 

operators and their application to the multi-attribute decision-making process. Scientica Iranica, 

27(3), 1655-1673. 

11. Karaaslan, F. (2018). Multi-criteria decision making method based on similarity measures under 

single-valued neutrosophic refined and interval neutrosophic refined environments. 

International Journal of Intelligent Systems, 33(5), 928-952. 

12. Karaaslan, F. (2018).Gaussian Single-valued neutrosophic number and its application in 

multi-attribute decision making, Neutrosophic Sets and Systems, 22, 2018, 101-117.  

13. Ye, J. (2017). Single-valued neutrosophic similarity measures based on cotangent function and 

their application in the fault diagnosis of steam turbine.  Soft Computing, 21(3),817–825. 

14. Koundal, D., Gupta, S., & Singh, S. (2016). Applications of neutrosophic sets in medical image 

denoising and segmentation. In F. Smarandache, & S. Pramanik (Eds.), New trends in 

neutrosophic theory and application (pp.257-275). Brussels, Belgium: Pons Editions. 

15. Peng, X., & Dai, J. (2020). A bibliometric analysis of neutrosophic set: Two decades review from 

1998 to 2017. Artificial Intelligence Review, 53(1), 199-255. 

16. Pramanik, S., Mallick, R., & Dasgupta, A. (2018). Contributions of selected Indian researchers to 

multi-attribute decision making in neutrosophic environment. Neutrosophic Sets and Systems, 20, 

108-131.  

17. Broumi, S., Bakali, A., Talea, M., Smarandache, F., Uluçay, V., Sahin, S., ..., & Pramanik, S. 

(2018). Neutrosophic sets: An overview. In F. Smarandache, & S. Pramanik (Eds., vol.2), New trends 

in neutrosophic theory and applications (pp. 403-434). Brussels: Pons Editions.  

18. Pramanik, S. (2020). Rough neutrosophic set: an overview. In F. Smarandache, & S. Broumi, 

Eds.), Neutrosophic theories in communication, management and information technology 

(pp.275-311). New York. Nova Science Publishers. 

19. Smarandache, F. & Pramanik, S. (Eds). (2016). New trends in neutrosophic theory and 

applications. Brussels: Pons Editions.  

20. Smarandache, F. & Pramanik, S. (Eds). (2018). New trends in neutrosophic theory and 

applications, Vol.2.  Brussels: Pons Editions.   



Neutrosophic Sets and Systems, Vol. 49, 2022 162  

 

 

Suman Das, Rakhal Das, Surapati Pramanik, Single Valued Bipolar Pentapartitioned Neutrosophic Set and Its 

Application in MADM Strategy. 

21. Deli, I., Ali, M., Smarandache, F. (2015). Bipolar neutrosophic sets and their application based 

on multi-criteria decision making problems. proceedings of the 2015 International Conference 

on Advanced Mechatronic Systems, Beijing, China, August, 22-24. 

22. Dey, P.P., Pramanik, S., & Giri, B.C. (2016). TOPSIS for solving multi-attribute decision making 

problems under bi-polar neutrosophic environment. In F. Smarandache, & S. Pramanik (Eds.), 

New trends in neutrosophic theory and applications (pp. 65-77). Brussels: Pons Editions. 

23. Pramanik, S., Dalapati, S., Alam, S., & Roy, T.K. (2018). TODIM method for group decision 

making under bipolar neutrosophic set environment. In F. Smarandache, & S. Pramanik (Eds., 

vol.2), New trends in neutrosophic theory and applications (pp. 140-155). Brussels: Pons Editions. 

24. Pramanik, S., Dalapati, S., Alam, S., & Roy, T.K. (2018). VIKOR based MAGDM strategy under 

bipolar neutrosophic set environment. Neutrosophic Sets and Systems, 19, 57-69. 

25. Pramanik, S., Dey, P.P., Giri, B.C., & Smarandache, F. (2017). Bipolar neutrosophic projection 

based models for solving multi-attribute decision making problems. Neutrosophic Sets and 

Systems, 15, 70-79. 

26. Abdel-Basset, M., Gamal, A., Son, L.H., & Smarandache, F. (2020). A bipolar neutrosophic multi 

criteria decision making framework for professional selection. Applied Sciences, 10(4), 1202. 

doi:10.3390/app10041202. 

27. Mallick, R., & Pramanik, S. (2020). Pentapartitioned neutrosophic set and its properties. 

Neutrosophic Sets and Systems, 36(1), 184-192. 

28. Das, S., Shil, B., & Tripathy, B. C. (2021). Tangent similarity measure based MADM-strategy 

under SVPNS-environment. Neutrosophic Sets and Systems, 43, 93-104. 

29. Das, S., Shil, B., & Pramanik, S. SVPNS-MADM strategy based on GRA in SVPNS Environment. 

Neutrosophic Sets and Systems, In Press. 

30. Aithal, P.S., & Aithal, S. (2019). Building world-class universities : Some insights &  

predictions. MPRA Paper 95734, University Library of Munich, Germany.  

https://mpra.ub.uni-muenchen.de/95734/1/MPRA_paper_95734.pdf. 

31. Deli,I., & Karaaslan, F. (2020). Bipolar FPSS-theory with applications in decision making. Afrika 

Matematika, 31, 493-505  

32. Pramanik, S., & Mukhopadhyaya, D. (2011). Grey relational analysis based intuitionistic fuzzy 

multi criteria group decision-making approach for teacher selection in higher education. 

International Journal of Computer Applications, 34(10), 21-29. 10.5120/4138-5985 

33. Mondal, K., &Pramanik, S. (2014). Intuitionistic fuzzy multicriteria group decision making 

approach to quality-brick selection problem. Journal of Applied Quantitative Methods, 9(2), 35-50. 

34. Dey, P. P., Pramanik, S. & Giri, B. C.  (2015). An extended grey relational analysis based 

interval neutrosophic multi-attribute decision making for weaver selection. 

https://mpra.ub.uni-muenchen.de/95734/1/MPRA_paper_95734.pdf


Neutrosophic Sets and Systems, Vol. 49, 2022 163  

 

 

Suman Das, Rakhal Das, Surapati Pramanik, Single Valued Bipolar Pentapartitioned Neutrosophic Set and Its 

Application in MADM Strategy. 

35. Pramanik, S., & Mondal, K. (2015). Weighted fuzzy similarity measure based on tangent 

function and its application to medical diagnosis. International Journal of Innovative Research in 

Science, Engineering and Technology, 4 (2), 158-164. 

36.  Biswas, P, Pramanik, S.  & Giri, B.C. (2014). A study on information technology professionals’ 

health problem based on intuitionistic fuzzy cosine similarity measure. Swiss Journal of 

Statistical & Applied Mathematics, 2 (1), 44-50. 

37. Zararsız, Z. (2015). Similarity measures of sequence of fuzzy numbers and fuzzy risk analysis, 

Advances in Mathematical Physics, vol. 2015, Article ID 724647, 12 pages. 

https://doi.org/10.1155/2015/724647 

 

Received: Dec. 10, 2021. Accepted: April 4, 2022.


