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Abstract: We explore a finite Neutrosophic field 𝑭𝒑(𝑰) and its Neutrosophic multiplicative group 

 𝑭𝒑(𝑰)×  in this study. We first show |𝑭𝒑(𝑰)×| = (𝒑 − 𝟏)𝟐  and then its algebraic properties are 

studied. The Neutrosophic Fermat's and Little Fermat's theorems over  𝑭𝒑(𝑰)× are then proved. 

Finally, this paper investigates some applications of Neutrosophic Fermat's theorem over 𝑭𝒑(𝑰)× 

with various illustrations. 
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1. Introduction 

In the algebraic sense, finite field theory deals with the algebraic concepts and related systems 

with the properties of different sets of complete residue system 𝑍𝑛 = {0, 1, 2, … . . , 𝑛 − 1} of integers 

modulo  𝑛 . In this paper, we consider some particularly important sets of numbers 𝑍𝑝 =

{0, 1, 2, … . . , 𝑝 − 1}  under addition and multiplication modulo a prime  𝑝 . The theory of these 

numbers is concerned, at least in its elementary aspects, with properties of the scalars and more 

particularly with the numbers in 𝑍𝑝  and their related concepts. We shall make no attempt to 

construct the set of numbers axiomatically, assuming instead that they are already well-known and 

that any reader of this paper is familiar with many elementary concepts and results about finite 

fields. Among these some are defined and stated to refresh in algebraic terminology. We can 

generally define a field 𝐹 as an abelian group under addition together with multiplicative operation 

such that the structure (𝐹 − {0},⋅)  is also an abelian group satisfies the distributive axioms: 

𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 and (𝑏 + 𝑐)𝑎 = 𝑏𝑎 + 𝑐𝑎. Now we shift our attention to the finite field 𝐹𝑝, we are 

considering in this paper [1]. For a prime 𝑝, we represent the number of elements in the field 𝐹𝑝 is 

𝑝. Also, in any finite field of order 𝑝, we have 𝑎𝑝 = 0 for every 𝑎 in 𝐹𝑝 . This means that the 

characteristic of 𝐹𝑝 is 𝑝. Further, all fields of order 𝑝 are isomorphic, that is, there is a unique field 

up to isomorphism of order 𝑝. 

Classic algebra, control systems, neural networks, decision and estimation issues have all been 

reformed and adapted to adhere to Neutrosophic logic and systems in recent years [2-7]. In 1980, 

Smarandache developed his Neutrosophic sets philosophical theory to address many forms of 

uncertainties in a variety of real-world challenges, and it has since been successfully implemented in 

a variety of study domains. However, Neutrosophic theory is an extension theory of Fuzzy logic 

theory in which indeterminacy 𝑰 is included with 𝑰 follows some algebraic properties, namely 𝑰 +
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𝑰 = 𝟐𝑰, 𝑰𝟐 = 𝑰, 𝑰 − 𝑰 = 𝟎, 𝟎𝑰 = 𝟎, 𝟏𝑰 = 𝑰 but 𝑰−𝟏 does not exist. The concept of Neutrosophic field 

structure was introduced by F. Smarandache and W.B. Vasantha Kandasamy in 2006. 

 Now we give a brief introduction to Neutrosophic field structures. For any classical field, there 

exists a Neutrosophic field𝐹(𝐼). The structure 𝐹(𝐼) = (𝐹(𝐼), +,⋅) is called a Neutrosophic field 

under Neutrosophic operations  and  ⋅, which are defined as 

 (𝑎 + 𝑏𝐼) + (𝑐 + 𝑑𝐼) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝐼 and 
 (𝑎 + 𝑏𝐼)(𝑐 + 𝑑𝐼) = 𝑎𝑐 + (𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑)𝐼 

 for every Neutrosophic elements 𝑎 + 𝑏𝐼and 𝑐 + 𝑑𝐼 in𝐹(𝐼) . Note that, 𝐹(𝐼)  is generated by 𝐹 

and  𝐼, and it is represented by 𝐹(𝐼) = 〈𝐹 ∪ 𝐼〉 = 𝐹 + 𝐹𝐼. If 𝐹 is a finite field then 𝐹(𝐼) is also finite. 

Otherwise, 𝐹(𝐼) is an infinite Neutrosophic field. For example, 𝑄(𝐼), 𝑅(𝐼) and 𝐶(𝐼) for all infinite 

fields but 𝐹𝑝(𝐼) is a finite field, where 𝐹𝑝 is isomorphic to 𝑍𝑝. However, for further details about 

Neutrosophic field, the reader should see [8-13]. 

This manuscript makes three contributions. To begin, we propose using finite fields to 

investigate the algebraic features of the corresponding Neutrosophic field through several cases. 

Second, we characterise in detail the Neutrosophic Fermat's and Little Fermat's Theorems over finite 

Neutrosophic fields. Additionally, we present certain necessary and sufficient conditions for the 

Neutrosophic elements' abilities in the Neutrosophic field  𝐹𝑝(𝐼). Finally, and most importantly, to 

illustrate three alternative implementations of the Neutrosophic Fermat's Theorem. Additionally, we 

developed a table comparing classical and neutrosophic fields. 

2. Properties of Finite Neutrosophic Fields 

Most of the researchers in abstract algebra show how to represent a finite field 𝐹𝑝 over its prime 

characteristic 𝑝 by clearly representing its additive structure as an abelian group, or a quotient ring 

of polynomials over 𝐹𝑝. In this section, we represent a Neutrosophic set representation of finite 

Neutrosophic field that naturally and simply displays both the Neutrosophic additive and 

multiplicative structures of the finite Neutrosophic field 𝐹𝑝(𝐼) over the classical field 𝐹𝑝 under its 

prime characteristic 𝑝. 

Let 𝑝 be a prime number. Then we specify the finite field of order 𝑝2, 𝐹𝑝(𝐼) also denoted by 

𝐹𝑝 + 𝐹𝑝(𝐼) as follows: 

 𝐹𝑝(𝐼) = {𝑎 + 𝑏𝐼 ∶ 𝑎, 𝑏𝜖𝐹𝑝, 𝐼2 = 𝐼} 

where the Neutrosophic operations (𝑎 + 𝑏𝐼) + (𝑐 + 𝑑𝐼) and (𝑎 + 𝑏𝐼)(𝑐 + 𝑑𝐼) are both performed 

modulo 𝑝, this means that (𝑎 + 𝑏𝐼) + (𝑐 + 𝑑𝐼) is the remainder of the division 
(𝑎+𝑏𝐼)+(𝑐+𝑑𝐼)

𝑝
 and 

similarly for (𝑎 + 𝑏𝐼) + (𝑐 + 𝑑𝐼) remainder of 
(𝑎+𝑏𝐼)(𝑐+𝑑𝐼)

𝑝
. 

Generally, the following result is well-known with respect to the classical field 𝐹𝑝. 

 

Theorem 2.1[15]: For every element 𝑢 in 𝐹𝑝
× there exists 𝑣 in 𝐹𝑝

× such that 𝑢𝑣 ≡ 1 (𝑚𝑜𝑑 𝑝). 

 

This result is very useful for studying every result in 𝐹𝑝 . But, this result is not true in the 

Neutrosophic field   𝐹𝑝(𝐼) , that is, (𝑎 + 𝑏𝐼)(𝑐 + 𝑑𝐼) ≢ 1 (𝑚𝑜𝑑 𝑝)  for some elements (𝑎 + 𝑏𝐼)  and 

(𝑐 + 𝑑𝐼) in  𝐹𝑝(𝐼), since 𝐼(1 + (𝑝 − 1)𝐼) ≡ 0 (𝑚𝑜𝑑 𝑝). A fairly natural question presents itself. Is it 

possible to enumerate the number of multiplicative inverse elements in the Neutrosophic field𝐹𝑝(𝐼)? 

The answer is yes and it is contained in the following Theorems. ∎ 

Theorem 2.2: Let 𝑢 + 𝑣𝐼  be an element in 𝐹𝑝(𝐼)×  then there exists its multiplicative inverse 

(𝑢 + 𝑣𝐼)−1 in 𝐹𝑝(𝐼)× such that(𝑢 + 𝑣𝐼)−1 = 𝑢𝑝−2 − 𝑣𝑢𝑝−2(𝑢 + 𝑣)𝑝−2𝐼. 

Proof. Suppose 𝑢 + 𝑣𝐼 be an element in 𝐹𝑝(𝐼)×.  Then  𝑢, 𝑢 + 𝑣𝜖𝐹𝑝. If possible assume that 𝑢 ≠ 0 

and 𝑢 + 𝑣 ≠ 0, then there exists 𝑢−1 and (𝑢 + 𝑣)−1 in 𝐹𝑝
× such that 𝑢−1 = 𝑢𝑝−2 and (𝑢 + 𝑣)−1 =

(𝑢 + 𝑣)𝑝−2 . Because (𝑢 + 𝑣𝐼)(𝑢𝑝−2 − 𝑣𝑢𝑝−2(𝑢 + 𝑣)𝑝−2𝐼) = 1 , so the definition of multiplication 
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inverse elements yields the inverse (𝑢 + 𝑣𝐼)−1  of (𝑢 + 𝑣𝐼) exists in 𝐹𝑝(𝐼)× such that (𝑢 + 𝑣𝐼)−1 =

𝑢𝑝−2 − 𝑣𝑢𝑝−2(𝑢 + 𝑣)𝑝−2𝐼. ∎ 

 

Example 2.3:  In 𝐹5(𝐼)×, (4 + 5𝐼)−1 = 45−2 − 2(45−2)(65−2)𝐼 = 4 − 3𝐼 = 4 + 2𝐼. 

 

Here is another basic fact extracted from [14] regarding mutual additive inverse elements. Consider 

an ordered pair (𝑢, 𝑣) in𝐹𝑝
×. An ordered pair (𝑢, 𝑣) in 𝐹𝑝

× is called mutual additive pair if 𝑢 + 𝑣 =

0 in 𝐹𝑝
×. The set of all mutual additive pairs in 𝐹𝑝

× is denoted by 𝑀(𝐹𝑝
×), particularly,  𝑀(𝐹𝑝

×) =

{(𝑢 + 𝑣𝐼): 𝑢 + 𝑣 = 0}.  

Note that |𝐹𝑝(𝐼)∗| = 𝑝 − 1, where 𝐹𝑝(𝐼)∗ = 𝐹𝑝(𝐼) − {0}. If 𝑢 + 𝑣 = 0 in𝐹𝑝, then   

𝑢𝑣 ≢ 1 (𝑚𝑜𝑑 𝑝). Let us see how all this works in a specific instance.  

 

Example 2.4: The following table exhibits the cardinality of the set 𝐹𝑝(𝐼)× for 𝑝 = 2,3,5. 

 

Prime 2 3 5 

𝐹𝑝(𝐼)× 1 4 16 

 

Here, we observe that the cardinality of 𝐹5(𝐼)× is 16, whereas the cardinality of 𝐹2(𝐼)× and 

𝐹3(𝐼)× are 1 and 3 respectively. It is easy to verify that 𝐹2(𝐼)× = {1}, 𝐹3(𝐼)× = {1,2,1 + 𝐼, 2 + 2𝐼}, 
𝐹5(𝐼)× = {1, 2, 3, 4, 1 + 𝐼, 1 + 2𝐼, 1 + 3𝐼, 2 + 𝐼, 2 + 2𝐼, 2 + 4𝐼, 3 + 𝐼, 3 + 3𝐼, 3 + 4𝐼, 4 + 2𝐼, 4 + 3𝐼, 4 + 4𝐼} 

One consequence of what has just been proved is that, in those cases in which a multiplicative 

inverse exists in  𝐹𝑝(𝐼)×, we can now state exactly how many there are. 

 

Theorem 2.5: If 𝑢 + 𝑖𝑣  is a multiplicative inverse in 𝐹𝑝(𝐼)  has exactly (𝑝 − 1)2  of them. 

Particularly,|𝐹𝑝(𝐼)×| = (𝑝 − 1)2. 

Proof.  Because 𝒑 is a prime, surely the Neutrosophic field 𝑭𝒑(𝑰) is a disjoint union of the sets 

{𝟎}, 𝑭∗𝑰, 𝑴(𝑭𝒑(𝑰)∗) and𝑭𝒑(𝑰)×, that is, 𝑭𝒑(𝑰) = {𝟎} ∪ 𝑭𝒑
∗ 𝑰 ∪ 𝑴(𝑭𝒑(𝑰)∗) ∪ 𝑭𝒑(𝑰)×, where  𝑭𝒑

∗ = 𝑭 − {𝟎} 

and 𝑭𝒑
∗ 𝑰 = {𝒖𝑰: 𝒖𝝐𝑭𝒑

∗ }. Raise both sides of this relation to the cardinality and expand to obtain the 

relation  

       𝑭𝒑(𝑰) = |{𝟎}| + |𝑭𝒑
∗ 𝑰| + |𝑴(𝑭𝒑(𝑰)∗)| + |𝑭𝒑(𝑰)×| 

       ⇒ 𝒑𝟐 = 𝟏 + (𝒑 − 𝟏) + (𝒑 − 𝟏) + |𝑭𝒑(𝑰)×| 

      ⇒ |𝑭𝒑(𝑰)× |= 𝒑𝟐 − 𝟏 − (𝒑 − 𝟏) − (𝒑 − 𝟏)  

       ⇒ |𝑭𝒑(𝑰)×|=(𝒑 − 𝟏)𝟐. 

For an illustration of these ideas, let us demonstrate the cardinality of 𝐹3(𝐼)× . Using the 

Neutrosophic elements in 𝐹3(𝐼), we observe that 

𝐹3(𝐼) = {0, 1, 2, 𝐼, 2𝐼, 1 + 𝐼, 1 + 2𝐼, 2 + 𝐼, 2 + 2𝐼}, 

           𝐹3
∗𝐼 ={𝐼, 2𝐼}, and 𝑀(𝐹3(𝐼)∗)={𝑢 + 𝑣𝐼: 𝑢 + 𝑣 = 0}                 

            ={1 + 2𝐼, 2 + 𝐼}. 

Therefore,  
 |𝐹3(𝐼)| = |{0}| + |𝐹3

∗𝐼| + |𝑀(𝐹3(𝐼)∗)| + |𝐹3(𝐼)×| 

         ⇒  32  = 1 + (3 − 1) + (3 − 1) + |𝐹3(𝐼)×| 

   ⇒      |𝐹3(𝐼)×|= 32 − (3 − 1) − (3 − 1)=(3 − 1)2 = ,  

which are listed below 

         𝐹3(𝐼)× = {1, 2, 1 + 𝐼, 2 + 2𝐼}. 

     In view of classical algebraic sense, well-known that 𝑎𝜑(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛) whenever (𝑎, 𝑛) = 1, 

where 𝜑(𝑛) is the Euler totient function of 𝑛. This supports the following definition in the classical 

field 𝐹𝑝. 
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Definition 2.6: Let 𝑢 ∈  𝐹𝑝 , then there exists a least positive integer 𝑘 such that 𝑂(𝑢) = 𝑘 with 

respect to multiplication defined over  𝐹𝑝  if and only if 𝑢𝑘 ≡ 1 (𝑚𝑜𝑑 𝑛). 

For instance, 23 ≡ 1 (𝑚𝑜𝑑 7) in the field 𝐹7, so that the integer 2 has order 3 modulo 7. According to 

this classical field systems, we know that every non-zero element in 𝐹𝑝 has unique order with 

respect to multiplication.  However, it is not true in the Neutrosophic sense. Now let us see how all 

this works in the following specific instances. 

 

Example 2.7: The following table exhibits the order of the non-zero elements in the Neutrosophic 

field  
𝐹3(𝐼) = {0, 1, 2, 𝐼, 2𝐼, 1 + 𝐼, 1 + 2𝐼, 2 + 𝐼, 2 + 2𝐼}  

under Neutrosophic multiplication modulo 3. 

 

Element in 𝐹3(𝐼) 1 2 𝐼 2𝐼 1 + 𝐼 1 + 2𝐼 2+𝐼 2+2𝐼 

Order 1 2 d.e d.e 2 d.e d.e 2 

 

where “d.e” represents does not exist.  

 

Particularly, the following table illustrates the orders of each element in 𝐹3(𝐼)× exits. 

 

Element in 𝐹3(𝐼)× 1 2 1 + 𝐼 2 + 2𝐼 

Order 1 2 2 2 

 

Theorem 2.9:  Let 𝑢, 𝑣 𝜖 𝐹𝑝. Then 𝑢 + 𝑣𝐼 has a multiplicative inverse in 𝐹𝑝(𝐼) if and only if 𝑢 ≠ 0 

and 𝑢 + 𝑣 ≠ 0 in 𝐹𝑝. 

 

Proof. We denote multiplicative identity in 𝐹𝑝 by 1. Consider a nonzero pair of elements 𝑢, 𝑣 in 𝐹𝑝 

and write it in the form (𝑢 + 𝑣𝐼) in 𝐹𝑝(𝐼). Then  

(𝑢 + 𝑣𝐼) has a multiplicative inverse  (𝑢 + 𝑣𝐼)(𝑥 + 𝑦𝐼) = 1 has a solution in  𝐹𝑝(𝐼) 

      𝑢𝑥 ≡ 1 (𝑚𝑜𝑑 𝑝) has a solution in 𝑍 and 

                            𝑣𝑥 + (𝑢 + 𝑣)𝑦 ≡ 0 (𝑚𝑜𝑑 𝑝) has a solution in 𝑍. 

                        𝑢 ≠ 0 and 𝑢 + 𝑣 ≠ 0 in 𝐹𝑝. ∎ 

Let us now employ the unique technique of this section to enumerate the number of elements in 

𝐹𝑝(𝐼)× of the form (𝑢 + 𝑣𝐼)2 = 1. To start, we know that there is only one element 1 in 𝐹2(𝐼)× with 

12 = 1. Now, our enumeration starts from 𝑝 > 2, which explore the following theorem. 

 

Theorem 2.10: If 𝑝 > 2 is a prime number, then the congruence( 𝑢 + 𝑣𝐼)2 − 1 ≡ 0 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑝) has 

exactly 4 solutions in 𝐹𝑝(𝐼)×. 

 

Proof. Because 𝑝 is an odd prime, it follows that 𝐹𝑝(𝐼)× contains at least one element of order 2. 

Suppose that 𝑢 + 𝑣𝐼  is an element in 𝐹𝑝(𝐼)×  of order 2, then the Neutrosophic multiplication 

inverse of 𝑢 + 𝑣𝐼 is itself 𝑢 + 𝑣𝐼 in 𝐹𝑝(𝐼)×. Therefore,  

(𝑢 + 𝑣𝐼)2 = 1   𝑢2 + 𝑣2𝐼 + 2𝑢𝑣𝐼 = 1 + 0𝐼 

                           𝑢2 = 1, 𝑣2 + 2𝑢𝑣 = 0 

                           𝑢2 = 1, 𝑣2 = 4, since 𝑣2 ≠ 0 

                           𝑢 = 1, 𝑝 − 1, 𝑣 = 2, 𝑝 − 2 in 𝐹𝑝. 

So, there exists six [(
4
2

) = 6 ]Neutrosophic elements, namely 

1 + 0𝐼, (𝑝 − 1) + 0𝐼, 1 + 2𝐼, 1 + (𝑝 − 2)𝐼, (𝑝 − 1) + 2𝐼  
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and (𝑝 − 1) + (𝑝 − 2)𝐼 in 𝐹𝑝(𝐼)×.  

Out of these six elements, four elements 1, 𝑝 − 1,1 + (𝑝 − 2)𝐼  and (𝑝 − 1) + 2𝐼  satisfies the 

Neutrosophic equation (𝑢 + 𝑣𝐼)2 = 1 in 𝐹𝑝(𝐼)×, because (1 + 2𝐼)2 ≠ 1 and ((𝑝 − 1) + (𝑝 − 2)𝐼)
2

≠

1is true in 𝐹𝑝(𝐼)×. ∎ 

As an immediate consequence of Theorem [2.10], we deduce the following corollary. 

Corollary 2.11: The set ℐ𝑝(𝐼) = {𝑢 + 𝑣𝐼𝜖𝐹𝑝(𝐼)×: (𝑢 + 𝑣𝐼)2 = 1 } is a Neutrosophic subgroup of the 

Neutrosophic group 𝐹𝑝(𝐼)×. 

 

Proof. It is clear from the well-known result: 

 (𝑢 + 𝑣𝐼)2 = 1, (𝑢′ + 𝑣′𝐼)2 = 1 implies that [(𝑢 + 𝑣𝐼)(𝑢′ + 𝑣′)]2 = 1 in 𝐹𝑝(𝐼)×. ∎ 

 

Remark 2.12:  (1) ℐ𝑝(𝐼) = 𝐹𝑝(𝐼)× ⟺ 𝑝 = 3. 

           (2) |ℐ𝑝(𝐼)| ≤ |𝐹𝑝(𝐼)×| for every 𝑝 ≥ 3. 

Let us see what happens if 0(𝑢 + 𝑣𝐼) = 2 is evaluated for each 𝑢 + 𝑣𝐼 in 𝐹𝑝(𝐼)× of 𝑝 ≥ 3 and the 

required results are added. In the case 𝑝 = 3, the answer is easy; here 

             0(𝑢 + 𝑣𝐼) = 2  𝑢 + 𝑣𝐼𝜖𝐹𝑝(𝐼)× − {1}.  

Suppose that 𝑝 > 3, then the non-empty subset  

             𝐻𝑝(𝐼) = {𝑢 + 𝑣𝐼𝜖𝐹𝑝(𝐼)× ∶  0(𝑢 + 𝑣𝐼) = 2} 

 exists in 𝐹𝑝(𝐼)× but it is not a Neutrosophic subgroup of 𝐹𝑝(𝐼)× because 1 ∉ 𝐻𝑝(𝐼) (since 𝑜(1) =

1 ≠ 2). 

3. Neutrosophic Fermat’s and Little Fermat’s Theorems  

The above information of the Neutrosophic field 𝐹𝑝(𝐼) seems the opportune moment to mention the 

Fermat’s and Little Fermat’s Theorems gave an essentially valid proof of Neutrosophic filed Theory. 

First of all, we state classical Fermat’s and Little Fermat’s Theorems in the classical field  𝐹𝑝 as 

follows. 

 

Theorem3.1 [15]: (Fermat’s Theorem)  

For every 𝑢 in 𝐹𝑝, we have 𝑢𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). 

 

Theorem3.2 [15]: (Fermat’s Little Theorem)  

 For every 𝑢 in 𝐹𝑝, we have 𝑢𝑝 ≡ 𝑢 (𝑚𝑜𝑑 𝑝). 

 

Classical Fermat’s theorem contains many applications and it plays a central role in much of 

what is done in many applied and engineering sciences. However, now we introduce Neutrosophic 

Fermat’s theorem over the Neutrosophic field 𝐹𝑝(𝐼). 

We now proceed to state and prove Neutrosophic Fermat’s Theorem in 𝐹𝑝(𝐼).  

 

Theorem 3.3: (Neutrosophic Fermat’s Theorem for 𝑭𝒑(𝑰)) 

Let 𝑝 be a prime and let  𝑢 + 𝑣𝐼 ∈ 𝐹𝑝(𝐼). Then 

  (𝑢 + 𝑣𝐼)𝑝−1 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑝). ∎ 

 

Before we proceed to the proof of this theorem, we observe that the congruence 
     (𝑢 + 𝑣𝐼)𝑝−1 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑝)  

fails to hold for some choice of 𝑢 + 𝑣𝐼 in 𝐹𝑝(𝐼). As an illustration of this approach, let us look 𝑝 = 3. 

The determination is kept under control by selecting a suitable Neutrosophic element for 𝑢 + 𝑣𝐼, 

say, 𝑢 + 𝑣𝐼 = 1 + 2𝐼 . Because (1 + 2𝐼)𝑝−1  maybe written as,  (1 + 2𝐼)3−1 = (1 + 2𝐼)2 = 1 + 4𝐼 +

4𝐼 = 1 + 2𝐼 (𝑚𝑜𝑑 3) , but (1 + 2𝐼) ≢ 1 (𝑚𝑜𝑑3 . Combining these congruences, we finally obtain  
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(1 + 2𝐼)3−1 ≢ 1 (𝑚𝑜𝑑 3). So, Theorem [3.3] is not true in 𝐹𝑝(𝐼). However, the upshot of all this is the 

following Theorem. 

 

Theorem3.4:  (Neutrosophic Fermat’s Theorem for 𝑭𝒑(𝑰)×) 

Let 𝑝 > 2 be a prime. For every Neutrosophic element 𝑢 + 𝑣𝐼 in 𝐹𝑝(𝐼)× such that 

 (𝑢 + 𝑣𝐼)𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). 

 

Proof. Let 𝑢 + 𝑣𝐼 in 𝐹𝑝(𝐼)×. Then we begin by assuming the first (𝑝 − 1) multiples of 𝑢 + 𝑣𝐼, that 

is, 𝑢 + 𝑣𝐼, 2(𝑢 + 𝑣𝐼), 3(𝑢 + 𝑣𝐼), … . . , (𝑝 − 1)(𝑢 + 𝑣𝐼). None of these Neutrosophic elements in 𝐹𝑝(𝐼)× 

is congruent modulo 𝑝  to any other element in 𝐹𝑝(𝐼)× . To see this, we consider 𝑟(𝑢 + 𝑣𝐼) ≡

𝑠(𝑢 + 𝑣𝐼) (𝑚𝑜𝑑 𝑝)  for some 𝑟  and 𝑠  such that 1 ≤ 𝑟 < 𝑠 ≤ 𝑝 − 1 . Since  𝑢 + 𝑣𝐼 ∈ 𝐹𝑝(𝐼)× , there 

exists a multiplicative inverse of 𝑢 + 𝑣𝐼  in 𝐹𝑝(𝐼)× , so 𝑢 + 𝑣𝐼  could be cancelled in 𝑟(𝑢 + 𝑣𝐼) ≡

𝑠(𝑢 + 𝑣𝐼) (𝑚𝑜𝑑 𝑝) to give 𝑟 ≡ 𝑠 (𝑚𝑜𝑑 𝑝), which is not true because 1 ≤ 𝑟 < 𝑠 ≤ 𝑝 − 1. Therefore, 

the set 𝑢 + 𝑣𝐼, 2(𝑢 + 𝑣𝐼), 3(𝑢 + 𝑣𝐼), … . . , (𝑝 − 1)(𝑢 + 𝑣𝐼) of Neutrosophic elements in 𝐹𝑝(𝐼)× must be 

congruent modulo 𝑝 under the following bijection: 
𝑟 ↦ (𝑢 + 𝑣𝐼)𝑟 

for every 𝑟 in {0, 1, 2, 3, … … . , 𝑝 − 1}. Now multiply all these elements together, we obtain that 
 (𝑢 + 𝑣𝐼)2(𝑢 + 𝑣𝐼)3(𝑢 + 𝑣𝐼) ⋅⋅⋅ (𝑝 − 1)(𝑢 + 𝑣𝐼) ≡ 1 2 3 ⋅⋅⋅ (𝑝 − 1) (𝑚𝑜𝑑 𝑝) 
 ⟹ (𝑢 + 𝑣𝐼)𝑝−1(𝑝 − 1)! ≡ (𝑝 − 1)! (𝑚𝑜𝑑 𝑝) 

  (𝑢 + 𝑣𝐼)𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝), since 𝑔𝑐𝑑(𝑝, (𝑝 − 1)! ) = 1. ∎ 

 

An application of Neutrosophic Fermat’s Theorem leads to the congruences  

(1 + 𝐼)2 ≡ 1 (𝑚𝑜𝑑 3), (1 + 𝐼)6 ≡ 1 (𝑚𝑜𝑑 7), (1 + 𝐼)10 ≡ 1 (𝑚𝑜𝑑 11)  and, in turn, to solve the 

following example. 

 

Example 3.5: In the Neutrosophic multiplicative group 𝐹101(𝐼)×, we have 

 (1 + 𝐼)100 ≡ 1 (𝑚𝑜𝑑 101). 

Solution. It is easy to see that 

 (1 + 𝐼)2 ≡ (1 + 3𝐼) (𝑚𝑜𝑑 101), (1 + 𝐼)10 ≡ (1 + 13𝐼) (𝑚𝑜𝑑 101). 

 However, we conclude that, 
(1 + 𝐼)100 = [(1 + 𝐼)10]10 = (1 + 13𝐼)10 

                ≡ (1 + 83𝐼)(1 + 94𝐼) (𝑚𝑜𝑑 101       

           1 (𝑚𝑜𝑑 101). 

 

Now, starts the greatest advances in this direction were made by this manuscript called 

Neutrosophic Fermat’s Little Theorem. We state this more precisely in the following theorem. 

 

Theorem 3.6: (Neutrosophic Little Fermat’s Theorem) 

Let 𝑝 be a prime. Then for every 𝑢 + 𝑣𝐼 in the Neutrosophic field 𝐹𝑝(𝐼),  

           (𝑢 + 𝑣𝐼)𝑝 ≡ (𝑢 + 𝑣𝐼) (𝑚𝑜𝑑 𝑝). 

 

Proof In light of the Binomial theorem,(𝑢 + 𝑣𝐼)𝑝 = (
𝑝
0

) 𝑢𝑝(𝑣𝐼)0 + (
𝑝
1

) 𝑢𝑝−1(𝑣𝐼)1 + ⋯ + 

 (
𝑝
2

) 𝑢𝑝−2(𝑣𝐼)2 + ⋯ + (
𝑝

𝑝 − 1) 𝑢𝑝−(𝑝−1)(𝑣𝐼)𝑝−1 + (
𝑝
𝑝) 𝑢0(𝑣𝐼)𝑝. 

Because 𝑢 + 𝑣𝐼𝜖 𝐹𝑝(𝐼), we have 𝑢, 𝑣, 𝐼𝜖𝐹𝑝. So, by the classical Fermat’s Little Theorem [3.2], 

             𝑢𝑝 ≡ 𝑢 (𝑚𝑜𝑑 𝑝), 𝑢𝑝 ≡ 𝑢 (𝑚𝑜𝑑 𝑝) and 𝐼𝑝 ≡ 𝐼 (𝑚𝑜𝑑 𝑝).  

 Since 𝑝| (
𝑝
1

), 𝑝| (
𝑝
2

),...... 𝑝| (
𝑝

𝑝 − 1). In this sequence, we can obtain easily as 

 (𝑢 + 𝑣𝐼)𝑝 ≡ (𝑢 + 𝑣𝐼) (𝑚𝑜𝑑 𝑝). ∎ 
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At this stage, when 𝑝 = 2, 2(𝑢 + 𝑣𝐼) ≡ 0(𝑚𝑜𝑑 2) for any 𝑢 + 𝑣𝐼 ∈ 𝐹2(𝐼), so 𝑢 + 𝑣𝐼 = −(𝑢 + 𝑣𝐼) for 

any 𝑢 + 𝑣𝐼 ∈ 𝐹2(𝐼). Therefore, we also have 

 (𝑢 − 𝑣𝐼)2 ≡ 𝑢2 − 𝑣2𝐼 ≡ (𝑢2 + 𝑣2𝐼 )(𝑚𝑜𝑑 2). 

Corollary 3.7: 

Let 𝑝 be an odd prime. Then for every 𝑢 + 𝑣𝐼 in the Neutrosophic field 𝐹𝑝(𝐼),  

           (𝑢 − 𝑣𝐼)𝑝 ≡ (𝑢 − 𝑣𝐼) (𝑚𝑜𝑑 𝑝). 

 

Proof. By Theorem [3.6], we have 
 (𝑢 − 𝑣𝐼)𝑝 = (𝑢 + (−𝑣𝐼))𝑝 = 𝑢𝑝 + (−𝑣𝐼)𝑝 
   = 𝑢𝑝 + (−1)𝑝(𝑣)𝑝(𝐼)𝑝  

   = 𝑢𝑝 + (−1)𝑝𝑣𝑝𝐼. 

When 𝑝 > 2, 𝑝 is odd, we have (−1)𝑝 ≡ −1(𝑚𝑜𝑑 𝑝), and  𝐼𝑝 ≡ 𝐼(𝑚𝑜𝑑 𝑝). Hence  

  (𝑢 − 𝑣𝐼)𝑝 ≡ (𝑢 − 𝑣𝐼) (𝑚𝑜𝑑 𝑝). ∎ 

4. Applications of Neutrosophic Fermat’s Theorem 

Already, it is well known that the Quadratic congruence (𝑢 + 𝑣𝐼)2 − 1 ≡ 0 (𝑚𝑜𝑑 𝑝) has exactly four 

solutions whenever 𝑝 is an odd prime. From this result, we can pass simply to the following 

application of Neutrosophic Fermat’s theorem. 

 

Theorem 4.1: Let 𝑝 > 3 be an odd prime and let 𝑢 + 𝑣𝐼 ∈ 𝐹𝑝(𝐼)×. If 4|(𝑝 − 1) and 4𝑑|(𝑝 − 1)2 then 

the congruence (𝑢 + 𝑣𝐼)4𝑑 − 1 ≡ 0 (𝑚𝑜𝑑 𝑝) has exactly 4𝑑 solutions. 

Proof. Since |𝐹𝑝(𝐼)×| = (𝑝 − 1)2 . Suppose 𝑢 + 𝑣𝐼  be any element in 𝐹𝑝(𝐼)× . But by hypothesis, 

4𝑑|(𝑝 − 1)2 , so we have (𝑝 − 1)2 = 4𝑑𝑞  for some positive integer 𝑞 . Then the expression (𝑢 +

𝑣𝐼)(𝑝−1)2
− 1 = (𝑢 + 𝑣𝐼)4𝑑𝑞 − 1 

    = ((𝑢 + 𝑣𝐼)4𝑑)𝑞 − 1𝑞  

    = ((𝑢 + 𝑣𝐼)4𝑑 − 1)𝑓(𝑢 + 𝑣𝐼), 

where  

 𝑓(𝑢 + 𝑣𝐼) = (𝑢 + 𝑣𝐼)4𝑑(𝑞−1) + (𝑢 + 𝑣𝐼)4𝑑(𝑞−2) +⋅⋅⋅ +(𝑢 + 𝑣𝐼)4𝑑 + 1 

is a polynomial of degree 

 4𝑑(𝑞 − 1) = 4𝑑𝑞 − 4𝑑 = (𝑝 − 1)2 − 4𝑑.   

We know that any solution 𝑢 + 𝑣𝐼 ≡ (𝑎 + 𝑏𝐼)(𝑚𝑜𝑑 𝑝)  of the congruence (𝑢 + 𝑣𝐼)(𝑝−1)2
− 1 ≡

0(𝑚𝑜𝑑 𝑝) that is not a solution of 𝑓(𝑢 + 𝑣𝐼) ≡ 0(𝑚𝑜𝑑 𝑝) must satisfy the congruence(𝑢 + 𝑣𝐼)4𝑑 −

1 ≡ 0 (𝑚𝑜𝑑 𝑝). 

 For the element 𝑎 + 𝑏𝐼 in 𝐹𝑝(𝐼)×, we have 

  0 ≡ ( 𝑎 + 𝑏𝐼)(𝑝−1)2
− 1 = ((𝑎 + 𝑏𝐼)4𝑑 − 1)𝑓(𝑎 + 𝑏𝐼)(𝑚𝑜𝑑 𝑝) 

with the condition 𝑝 ∤  𝑓(𝑎 + 𝑏𝐼), which implies that 𝑝|((𝑎 + 𝑏𝐼)4𝑑 − 1). It follows that the required 

congruence (𝑢 + 𝑣𝐼)4𝑑 − 1 ≡ 0 (𝑚𝑜𝑑 𝑝) must have  

 (𝑝 − 1)2 − ((𝑝 − 1)2 − 4𝑑) = 4𝑑 solutions. ∎ 

 

Example 4.2:  For an illustration of these facts, let us solve the congruence  

 (𝑢 + 𝑣𝐼)4 − 1 ≡ 0 (𝑚𝑜𝑑 5). 

A table of powers of Neutrosophic elements in 𝐹5(𝐼)× can be constructed once a modulo  is fixed. 

Using this modulo 5, we simply calculate the powers of elements in 𝐹5(𝐼)× as follows. 

  14 ≡ 1 (𝑚𝑜𝑑 5), 24 ≡ 1 (𝑚𝑜𝑑 5), 34 ≡ 1 (𝑚𝑜𝑑 5), 44 ≡ 1 (𝑚𝑜𝑑 5), 

 (1 + 𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), (1 + 2𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), (1 + 3𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), 

 (2 + 𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), (2 + 2𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), (2 + 4𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), 

 (3 + 𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), (3 + 3𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), (3 + 4𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), 

 (4 + 2𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), (4 + 3𝐼)4 ≡ 1 (𝑚𝑜𝑑 5), (4 + 4𝐼)4 ≡ 1 (𝑚𝑜𝑑 5). 

Consulting the above list of powers of  in each element of 𝐹5(𝐼)×, we obtain that the original 

congruence  (𝑢 + 𝑣𝐼)4 − 1 ≡ 0 (𝑚𝑜𝑑 5) possesses the 4𝑑 = 4 ⋅ 4 = 16 solutions, namely 
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 𝑢 + 𝑣𝐼 ≡ 1,2,3,4, 1 + 𝐼, 1 + 2𝐼, …, and 4 + 4𝐼 (𝑚𝑜𝑑 5). 

 

Remark 4.3: The congruence (𝑢 + 𝑣𝐼)4 − 1 ≡ 0 (𝑚𝑜𝑑 11) is not solvable in 𝐹11(𝐼)× , because 4 ∤

(11 − 1). 

We would like to close this paper with another application of Neutrosophic Fermat’s theorem to 

the study of quadratic congruence (𝑢 + 𝑣𝐼)2 ≡ 0 (𝑚𝑜𝑑 𝑝). 

 

Theorem 4.4: Let 𝑢 + 𝑣𝐼 ∈ 𝐹𝑝(𝐼)× and let 𝑝 > 3 be a prime. If the quadratic congruence  (𝑢 + 𝑣𝐼)2 +

1 ≡ 0 (𝑚𝑜𝑑 𝑝) has a solution, the prime 𝑝 ≡ 1 (𝑚𝑜𝑑 4). 

Proof: Suppose 𝑎 + 𝑏𝐼 ∈ 𝐹𝑝(𝐼)× be any solution of  (𝑢 + 𝑣𝐼)2 + 1 ≡ 0 (𝑚𝑜𝑑 𝑝). Then  

 (𝑎 + 𝑏𝐼)2 ≡ −1 (𝑚𝑜𝑑 𝑝).  

By the Neutrosophic Fermat’s theorem [15], 

1 ≡ (𝑎 + 𝑏𝐼)𝑝−1 ≡ [(𝑎 + 𝑏𝐼)2]
𝑝−1

2 ≡ (−1)
𝑝−1

2  (𝑚𝑜𝑑 𝑝). 

If possible assume that 𝑝 = 4𝑞 + 3 for some 𝑞, then 

     (−1)
𝑝−1

2 = (−1)2𝑞+1 = −1, hence 1 ≡ −1 (𝑚𝑜𝑑 𝑝).  

This implies that 𝑝|2, which is not true because 𝑝 is an odd prime. Consequently, our assumption 

that 𝑝 = 4𝑞 + 3 is not true, and hence 𝑝 must be of the form 4𝑞 + 1. ∎ 

 

The converse of the preceding theorem may not be true. That is if  𝑝 = 4𝑞 + 1, then  (𝑢 + 𝑣𝐼)2 + 1 ≡

0 (𝑚𝑜𝑑 𝑝) is not solvable in 𝐹𝑝(𝐼)×. For instance, 𝑝 = 5, the congruence  (𝑢 + 𝑣𝐼)2 + 1 ≡ 0 (𝑚𝑜𝑑 5) 

is not solvable in 𝐹5(𝐼)×. 

 

Example 4.5: Consider the case 𝑝 = 13, which is a prime of form 4𝑞 + 1. It is easy to see that 

 (3 + 4𝐼)2 + 1 ≡ 0 (𝑚𝑜𝑑 13) . Thus the congruence  (𝑢 + 𝑣𝐼)2 + 1 ≡ 0 (𝑚𝑜𝑑 13)  is solvable in 

𝐹13(𝐼)×. 

 

Finally, the difference table for 𝐹𝑝 and 𝐹𝑝(𝐼) is displayed below: 

 

Classical Field 𝐹𝑝 Neutrosophic Field 𝐹𝑝(𝐼) 

1. |𝐹𝑝| = 𝑝. 1. |𝑭𝒑(𝑰)| = 𝒑𝟐. 

2. |𝐹𝑝
×| = 𝑝 − 1. 2. |𝑭𝒑(𝑰)×| == (𝒑 − 𝟏)𝟐. 

3. For each 𝑢 in 𝐹𝑝
∗, there exists 𝑣 in 𝐹𝑝

∗ such 

that 𝑢𝑣 ≡ 1 (𝑚𝑜𝑑 𝑝). 

3. For some 𝒂 + 𝒃𝑰 and 𝒄 + 𝒅𝑰 in𝑭𝒑(𝑰)∗,  

we have (𝒂 + 𝒃𝑰)(𝒄 + 𝒅𝑰) ≢ 𝟏 (𝒎𝒐𝒅 𝒑). 

4. 𝐹𝑝
× is a cyclic group. 4. 𝑭𝒑

× is not a cyclic group. 

5. The product of all elements in 𝐹𝑝
∗  is 

non-zero. 

5. The product of all elements in 𝑭𝒑(𝑰)∗  is 

zero. 

6. The congruence 𝑥2 + 1 ≡ 0 (𝑚𝑜𝑑 𝑝)  has a 

solution  𝑝 ≡ 1 (𝑚𝑜𝑑 4). 

6. If (𝒖 + 𝒗𝑰)𝟐 + 𝟏 ≡ 𝟎 (𝒎𝒐𝒅 𝒑) has a solution 

in 𝑭𝒑(𝑰)× then 𝒑 ≡ 𝟏 (𝒎𝒐𝒅 𝟒). But converse 

need not be true. 

5. Conclusions 

In this manuscript, we turn to close to another milestone of the development of Fermat’s theorem 

under the Neutrosophic sense. In this regard, we constructed a table to differentiate the field 𝐹𝑝 and 

Neutrosophic field 𝐹𝑝(𝐼) . Also, we have given necessary and sufficient conditions for solving 

Neutrosophic quadratic congruences like  

 (𝑢 + 𝑣𝐼)2 + 1 ≡ 0 (𝑚𝑜𝑑 𝑝),  

 (𝑢 + 𝑣𝐼)2 − 1 ≡ 0 (𝑚𝑜𝑑 𝑝) and (𝑢 + 𝑣𝐼)4𝑑 − 1 ≡  (𝑚𝑜𝑑 𝑝)  

with various illustrations in the Neutrosophic field 𝐹𝑝(𝐼). 
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