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Abstract: The Cramer-von Mises test is commonly used to determine how well-observed sample 

data fits a given model. The existing Cramer-von Mises test under traditional statistics is 

commonly used when sample data in reliability work are resolute and precise. In this paper, we 

introduced a Neutrosophic Cramer-von Mises (NCVM) test under neutrosophic statistics. The 

necessary measures and procedures are presented to perform the test. For the application purpose, 

we consider the real-life data sets of failure time batteries and ball bearings. It is inferred that the 

NCVM test is more instructive than the classical CVM test under indeterminacy. 
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1. Introduction 

The statistical techniques have been utilized in every practical field for modeling data sets, 

prediction, and forecasting purposes. The application of these modeling statistical techniques/tests is 

made under specific suppositions, and infringement of these assumptions could prompt deluding 

interpretation and dependable outcomes [1, 2]. One of the fundamental presumptions that various 

statistical techniques are associated with the distribution of observed data follows a specified 

distribution. Typically, it is expected that the obtained information follows the normal distribution. 

In some viable situations, data sets don't need to be normally distributed. Therefore, researchers 

planned a few tests to valuation some hypotheses about the distribution of the information being 

scrutinized. Various tests, for the most part, known as “goodness-of-fit” are employed to evaluate 

whether an example of observations can be considered as a sample from a given distribution. The 

frequently utilized goodness-of-fit tests are; Kolmogorov–Smirnov [3, 4], Anderson–Darling [5, 6], 

Pearson's chi-square [7], Cramèr–von Mises [8, 9], Shapiro–Wilk [10], Jarque–Bera [11, 12], 

D'Agostino–Pearson [13] and Lilliefors [14]. 

The Cramèr–von Mises (CVM) test is a criterion utilized for the evaluation of the goodness of 

fit. The CVM test is the generalization of the Anderson-Darling test. The CVM test is the assessment 

of the minimum distance between hypothetical and sample probability distribution. Stephens [16] 

utilized the CVM goodness-of-fit test based on the experimental distribution function considering 

normal and exponential distributions. It was found that the CVM test appears more powerful test 

than chi-square. Al-zahrani [17] introduced the CVM goodness of fit test for Topp-Leone 

distribution. 

The classical Cramèr–von Mises test can't be applied when the sample observations are 

neutrosophic numbers. So the principle motivation behind this study is to present another 

Cramèr–von Mises goodness-of-fit test within the sight of indeterminacy. We will introduce the 

technique to fit the neutrosophic Weibull and Rayleigh distributions on the lifetime of batteries and 

ball-bearings data sets. 
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2. Preliminaries  

Suppose that  ; ,N L U N N L UX X X I I I I   denotes the neutrosophic number (NN) that follows the 

neutrosophic Weibull distribution with neutrosophic shape parameter ; [ , ]N L U N N L UI I I I      

and the neutrosophic scale parameter ; [ , ]N L U N N L UI I I I     . Here 
LX is the determinate part 

and
U NX I is the indeterminate part with an indeterminacy constant [ , ]N L UI I I . Note that 

neutrosophic Weibull random variable
NX reduces to classical Weibull distribution when 0NI  . 

Neutrosophic statistics is the augmentation of classical statistics. This field acquires significance 

because of dealing with the data sets of values more specifically an interval, for more detail reader 

can consult the following references [18-20]. For the presentation of the neutrosophic environment, 

normally a subsequent “N” is utilized such as
NX . 

3. Neutrosophic Weibull distribution 

The neutrosophic Weibull (NW) distribution was introduced by [21]. The cumulative 

distribution function of NW distribution is 

  1 exp , 0.

N

N

N N
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where    , , ,N L U N L U        

4. Neutrosophic Rayleigh distribution 

The Neutrosophic Rayleigh (NR) distribution was introduced by [22]. The cumulative 

distribution function of NR distribution is 
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where  ,N L U    

5. Neutrosophic Cramèr-von-Mises 

The CVM test is a non-parametric test of the hypothesis. It is utilized to test whether an example 

comes from a particular distribution when the observed data set is precise or determined. When the 

data set is imprecise then the exiting CVM test cannot be used to test the goodness of fit due to 

indeterminacy in the data. We modify the classical CVM test and proposed the neutrosophic 

Cramer-von-Mises (NCVM) test for the data having neutrosophic numbers. The proposed test will 

bring about terms of indeterminacy interval which will be more successful when compared to the 

classical CVM test. The assumption for the NCVM test are 

 

  The data consists of imprecise observations. 

  The observations in the interval are mutually independent. 

 

“Suppose
1 2 3, , ,...,N N N nNX X X X is a neutrosophic random sample from a neutrosophic 

population having a neutrosophic cumulative distribution function, say  NF X ”. Then the NCVM is 

given by  

    
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where  ,N L Un n n  are the neutrosophic random samples and  
 

N

N

N

N

X i
M i





 
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 

.  

6. Applications of Neutrosophic Cramèr-von-Mises Test 

This section examines the use of the newly introduced test. For the application purposed we 

consider two real-life data sets. 

6.1. Application on data Set I (lifetime in 100 h of 23 batteries 

The first data set is regarding the lifetime of batteries also utilized by [21]. The lifetime in 100 h 

of 23 batteries is given in Table 1.  

Table 1. The lifetime of batteries 

Sr. No NX
 Sr. No NX

 Sr. No NX
 Sr. No NX

 

1 [2.9,3.99] 7 [12.65,17.4] 13 [17.4,23.93] 19 [26.07,35.84] 

2 [5.24,7.2] 8 [13.24,18.21] 14 [17.8,24.48] 20 [30.29,41.65] 

3 [6.56,9.02] 9 [13.67,18.79] 15 [19.01,26.14] 21 [43.97,60.46] 

4 [7.14,9.82] 10 [13.88,19.09] 16 [19.34,26.59] 22 [48.09,66.13] 

5 [11.6,15.96] 11 [15.64,21.51] 17 [23.13,31.81] 23 [73.48,98.04] 

6 [12.14,16.69] 12 [17.05,23.45] 18 [23.34,32.09]   

 

 

The mechanical investigators are intrigued to test either the given informational collection 

follows Weibull distribution or not. It is not difficult to take note that the data observations are given 

in indeterminacy intervals instead of the specific observation. So the classical CVM test is not 

appropriate. Therefore, we will utilize the option NCVM test proposed in section 5 is used for these 

neutrosophic numbers.  

Assume that we need to test the following hypothesis: 

0H =The sample observation follows to neutrosophic Weibull distribution. 

1H =The distribution of sample observation is not neutrosophic Weibull distribution. 

 

The numerical computations are listed in Table 2. The parameters of Neutrosophic Weibull 

distribution are estimated using the maximum likelihood estimation method. The estimated values 

are ˆ [22.936,31.427]N  and ˆ [1.465,1.481]N  . The test statistic values of the proposed
NCVM test for 

the considered lifetime of batteries data are shown as 

   
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 0.1112,0.3617NCVM   
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Table 2. The necessary calculation of the NCVM test for the first data 

ith  NX
  NM i

 
 N NF X

 
ith-term  

1 [2.9,3.99] [0.0484, 0.0772] [0.0472, 0.0743] [0.0006, 0.0028] 

2 [5.24,7.2] [0.1150, 0.1832] [0.1087, 0.1674] [0.0019, 0.0104] 

3 [6.56,9.02] [0.1599, 0.2549] [0.1477, 0.2250] [0.0015, 0.0135] 

4 [7.14,9.82] [0.1810, 0.2887] [0.1656, 0.2507] [0.0002, 0.0097] 

5 [11.6,15.96] [0.3684, 0.5879] [0.3082, 0.4445] [0.0127, 0.0619] 

6 [12.14,16.69] [0.3938, 0.6277] [0.3255, 0.4662] [0.0075, 0.0516] 

7 [12.65,17.4] [0.4183, 0.6672] [0.3418, 0.4869] [0.0035, 0.0417] 

8 [13.24,18.21] [0.4472, 0.7132] [0.3606, 0.5099] [0.0012, 0.0338] 

9 [13.67,18.79] [0.4686, 0.7467] [0.3741, 0.5261] [0.0000, 0.0245] 

10 [13.88,19.09] [0.4792, 0.7643] [0.3807, 0.5343] [0.0010, 0.0147] 

11 [15.64,21.51] [0.5708, 0.9103] [0.4349, 0.5976] [0.0005, 0.0199] 

12 [17.05,23.45] [0.6477, 1.0330] [0.4767, 0.6441] [0.0005, 0.0208] 

13 [17.4,23.93] [0.6672, 1.0641] [0.4869, 0.6550] [0.0032, 0.0124] 

14 [17.8,24.48] [0.6898, 1.1001] [0.4983, 0.6672] [0.0079, 0.0064] 

15 [19.01,26.14] [0.7596, 1.2111] [0.5321, 0.7021] [0.0097, 0.0051] 

16 [19.34,26.59] [0.7790, 1.2418] [0.5411, 0.7111] [0.0176, 0.0014] 

17 [23.13,31.81] [1.0124, 1.6146] [0.6367, 0.8010] [0.0065, 0.0070] 

18 [23.34,32.09] [1.0259, 1.6354] [0.6415, 0.8051] [0.0142, 0.0020] 

19 [26.07,35.84] [1.2063, 1.9228] [0.7007, 0.8538] [0.0107, 0.0024] 

20 [30.29,41.65] [1.5028, 2.3961] [0.7775, 0.9089] [0.0049, 0.0037] 

21 [43.97,60.46] [2.5941, 4.1359] [0.9253, 0.9840] [0.0012, 0.0086] 

22 [48.09,66.13] [2.9577, 4.7161] [0.9481, 0.9911] [0.0002, 0.0032] 

23 [73.48,98.04] [5.5034, 8.3957] [0.9959, 0.9998] [0.0003, 0.0005] 

 

6.2. Application on data Set I (lifetime of ball-bearings) 

The second data set is about the service life of ball-bearing data [23]. The second data set is 

listed in below Table 3. 

Table 3. The failure life of 21 ball bearings  

Sr. No NX
 Sr. No NX

 Sr. No NX
 Sr. No NX

 

1 [0.70, 0.81] 7 [0.85, 1.03] 13 [0.23, 0.74] 19 [0.34, 1.11] 

2 [0.63, 0.81] 8 [0.67, 0.73] 14 [0.76, 0.95] 20 [0.07, 1.17] 

3 [0.35, 0.41] 9 [0.96, 1.04] 15 [0.80, 0.86] 21 [0.41, 0.44] 

4 [0.70, 0.72] 10 [1.07, 1.26] 16 [1.06, 1.21]   

5 [1.12, 1.43] 11 [0.95, 1.35] 17 [0.60, 0.70]   

6 [0.47, 1.39] 12 [0.82, 1.02] 18 [0.85, 1.01]   

 

For the second application, we utilized the ball-bearing failure time data test either it follows 

Neutrosophic Raleigh or not. 
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Assume that we need to test the following hypothesis: 

0H =The sample observation follows to neutrosophic Raleigh distribution. 

1H =The distribution of sample observation is not neutrosophic Raleigh distribution. 

The maximum likelihood estimates for NR distribution are ˆ [0.52447,0.70812]N  . The 

numerical computation of NCVM is presented in Table 4. The test statistic values of the 

proposed
NCVM test for the considered lifetime of batteries data are shown as 

   
  

2

1

1 2 1
1 exp

12 21,21 2 21,21

Nn

N N

i

i
CVM M i



  
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  
  

 0.1564,0.3550NCVM   

 

Table 4. The necessary calculation of the NCVM test for second data 

ith  NX
  NM i

 
 N NF X

 
ith-term  

1 [0.70, 0.81] [0.0178, 0.3352] [0.0089, 0.1543] [0.0002, 0.0170] 

2 [0.63, 0.81] [0.1923, 03861] [0.0917, 0.1756] [0.0004, 0.0108] 

3 [0.35, 0.41] [0.4203, 0.9772] [0.1895, 0.3865] [0.0050, 0.0715] 

4 [0.70, 0.72] [0.4453, 1.0338] [0.1996, 0.4036] [0.0011, 0.0562] 

5 [1.12, 1.43] [0.6111, 1.0628] [0.2633, 0.4122] [0.0024, 0.0392] 

6 [0.47, 1.39] [0.8031, 1.0921] [0.3307, 0.4208] [0.0047, 0.0252] 

7 [0.85, 1.03] [1.3088, 1.3084] [0.4802, 0.4802] [0.0291, 0.0291] 

8 [0.67, 0.73] [1.4429, 1.3084] [0.5140, 0.4802] [0.0246, 0.0151] 

9 [0.96, 1.04] [1.6320, 1.4750] [0.5578, 0.5217] [0.0234, 0.0137] 

10 [1.07, 1.26] [1.7814, 1.7998] [0.5896, 0.5934] [0.0188, 0.0199] 

11 [0.95, 1.35] [1.7814, 2.0344] [0.5896, 0.6384] [0.0080, 0.0192] 

12 [0.82, 1.02] [2.0998, 2.0748] [0.6500, 0.6456] [0.0105, 0.0096] 

13 [0.23, 0.74] [2.3267, 2.1157] [0.6876, 0.6528] [0.0085, 0.0033] 

14 [0.76, 0.95] [2.4445, 2.1570] [0.7054, 0.6599] [0.0039, 0.0003] 

15 [0.80, 0.86] [2.6266, 2.4572] [0.7311, 0.7073] [0.0016, 0.0003] 

16 [1.06, 1.21] [2.6266, 2.7300] [0.7311, 0.7446] [0.0000, 0.0000] 

17 [0.60, 0.70] [3.2810, 2.9198] [0.8061, 0.7677] [0.0004, 0.0003] 

18 [0.85, 1.01] [3.3504, 3.1661] [0.8127, 0.7947] [0.0004, 0.0015] 

19 [0.34, 1.11] [4.0848, 3.6346] [0.8703, 0.8375] [0.0001, 0.0019] 

20 [0.07, 1.17] [4.1622, 3.8531] [0.8752, 0.8544] [0.0028, 0.0055] 

21 [0.41, 0.44] [4.5603, 4.0781] [0.8977, 0.8698] [0.0062, 0.0113] 

 

7. Discussion and Conclusion 

In this section, we will compare the efficiency of the proposed NCVM test under the 

neutrosophic environment with the existing classical CVM test. The proposed test is more efficient 

when dealing with data having imprecise observation or indeterminacy as the proposed method 

provides results in the form of indeterminacy. For comparison purposes, we use the same data set 

for classical CVM. Note that the data given in Tables 1 and 3 have a determinate part as well as the 
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indeterminate part. The determinate part will be used for the existing CVM test and the same data 

set is used for the NCVM test. The critical value at 1% and 5% are 1%,23 0.267CVM   

and 5%,23 0.187CVM  , respectively. From Table 2 it is unmistakably that the proposed test gives the 

results in the form of indeterminacy interval rather than determinate part only. Utilizing Equation 

(3) the value of statistic as indeterminacy interval can be written as  0.1112 0.3617 0,0.692; 6NI I  . 

Note that the proposed test gives a decent portion of indeterminacy. At a 1% level of significance, the 

probability of accepting the true null hypothesis is 0.99, the probability of rejecting the true null 

hypothesis is 0.01 and the probability of indeterminacy is 0.69. For instance, 0.3617CVM  is the 

value of classical CVM and 0.3617UCVM  gives the indeterminate part under uncertainty. By 

contrasting with crucial values, we can see that the determinant component of the information 

follows the Weibull distribution, but the uncertain part does not. Similarly, for the failure of ball 

bearings data the value of statistics as indeterminacy interval can be written 

as  0.1564 0.3550 0,0.599; 4NI I  . By contrasting with critical values, we note that the determinant 

part follows the Rayleigh distribution, yet the uncertain part of the information doesn't follow the 

Rayleigh distribution.  

It is concluded that the proposed NCVM test under neutrosophic statistics provides 

information about the measure of indeterminacy, but the classical CVM test does not. Furthermore, 

the existing test delivers accurate statistics values, which are not necessary for uncertainty. As a 

result, under neutrosophic statistics, the proposed NCVM goodness-of-fit test is particularly 

efficacious when used under uncertainty. 
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