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Abstract: This study introduces a novel fault recognition methodology for turbine faults through 

symmetric trigonometric fuzzy and neutrosophic cross entropy measures (FCEM and NCEM) 

consequently. After knowing the nethermost (lowest) and uppermost (highest) energy bounds of 

each real fault conditions, the energy interval ranges are constructed and then transformed into the 

form of single valued neutrosophic (SN) sets. Thereafter, the proposed symmetric trigonometric 

cross -entropy measures are deployed to recognize faults of turbine. The nethermost FCEM and 

NCEM values between familiar and unfamiliar fault conditions indicates that the unfamiliar fault 

condition is closer to the familiar one. The applicability of the proposed methodology is validated by 

taking into consideration the example of fault diagnosis of turbine. The repercussions of this study 

yield that the proposed symmetric trigonometric FCEM and NCEM cannot only recognize optimal 

fault, they can also provide meaningful and remarkable fault information. A comparison of the 

underlying FCEM and NCEM (based on SN sets) with the enduring cosine measures (based on 

vague sets) conclude that the latter sets may hide some fruitful fault information., when 

experimented under sensitive and intuitive criteria and thus resulting an incomplete fault evaluation 

criterion. 
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1. Introduction 

A Turbine generator is an important mechanical device and is being widely used for converting heat 

energy of steam into electrical energy in thermal plants. It is a natural process for a huge steam 

turbine generator to have vibrations produced by many factors such as misalignment, heating of 

rotor element and lubricant oil etc. When a fault occurs, it not only damages the generator set but 

also disturbs the continuous and safe operation of internal machinery. Careful analysis of vibration 

signals of the generator set can reveal some useful evaluation information, which in turn, can avoid 

catastrophic mechanical disorder as well as huge economic losses. It is, therefore, necessary to 

reckon and fix the actual cause of the fault as early as possible. Over the past few years, researchers 

have developed some fault recognition methods, that works on cross entropy measures, for 

quantifying the non-linear relationship between unfamiliar and familiar turbine fault conditions. 

Recently, Ren et al. [1] extracted the fuzzy entropy of a series of mode components for observing the 

complexity of working condition and thereafter improved the fault diagnosis accuracy of wind 
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turbine. Lilian and Ye [2,3] modified the vague sets of enduring similarity measure and observed the 

non-linear and complex relationship between vibration signals and various fault conditions. 

Recently, Lilian Shi [4] constructed simplified neutrosophic sets by exercising the enduring Karl 

Pearson’s coefficient of correlation and combined it with wavelet packet transforms for reckoning 

faults of rolling bearing. Tian et al. [5] established a systematic and comprehensive approach based 

on permutation entropy for automatic testimony of bearing defects under and time varying 

conditions. Recently, Martinez et al. [6] utilized Shannon’s Information entropy for quantifying and 

extracting the fault information available in the vibration signals of broken bars in induction motors. 

Under multi fault severities and time-varied complexities, Fu et al. [7] combined approximate 

entropy and wavelet packet transforms for decomposing deterministic and stochastic power signals.  

Zhao et al. [8] extended the existing wavelet entropy to instantaneous wavelet singular entropy for 

extracting the sensor fault characteristics of a gas turbine. Zhao et al. [8] deployed multiscale 

fuzzy distribution entropy for understanding the nonlinear and non-consistent fault 

characteristics signals. Zhang et al. [9] understood the irregularity and complexity of vibration 

signals by extending Shannon’s entropy to wavelet entropy and concluded that whenever wavelet 

entropy increases, the tightness conditions of bolted joints diverge to looseness. Leite et al. [10] 

deployed Shannon’s entropy and Jenson-Renyi’s directed divergence (JRDD) for constructing 

discrete probability mass function of a known time waveform and utilized it for identifying faults 

of rolling bearing elements. Many times, the approaches based on variants of Shannon’s 

probabilistic entropy and JRDD have been found inefficacious in providing semantic output due to 

the difficulty in transforming fault characteristics of cumbersome signals. Hence, the 

above-mentioned fault diagnosis techniques may not be capable for extracting remarkable and 

accurate fault information from faults conditions of turbine. This reinforces the exigency for an 

effective fault diagnosis procedure which can make precise and fruitful analysis for a fault that 

occurs in turbine generator set because the same symptom of a fault may have variety of fault 

causations. A single valued neutrosophic (SN) set [11] is mainly portrayed by truth, indeterminacy 

and falsity membership functions and inherits its indeterminacy into the form of truth and falsity 

values. Kumar et al. [12,13] effectively identified bearing faults by decomposing vibrational signals 
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into eight different frequency modes under neutrosophic environment. However, the enduring 

research on neutrosophic sets and systems have mainly dealt with its theoretical or asymmetrical 

aspects and ignores those engineering problems which may exhibit symmetrical phenomenon or 

return inconsequential results under neutrosophic treatments. Neutrosophic cross entropy approach 

has been found significantly efficacious in tackling complex engineering problems under 

multi-faults severities. Till so far, no symmetric neutrosophic cross entropy measure has been 

developed and utilized for improving fault identification accuracy of turbine. Subsequently, an 

effort is accomplished in this direction which can overcome the above-mentioned shortcomings and 

effectively diagnose the faults of a huge steam turbine generator set. Moreover, the underlying 

symmetric trigonometric cross entropy measure of neutrosophic sets provides meaningful fault 

information whereas the enduring similarity measure may hide some fruitful fault information and 

thus resulting an ambiguous phenomenon. In addition,  

Section 2 deals with pre-requisites of neutrosophic entropy measure, needed for the 

successive growth of the proposed research. Section 3 is devoted to establish a novel symmetric 

trigonometric FCEM whereas Section 4 expands the outcomes of Section 3 to another novel 

symmetric cross entropy measure, hinged on two single valued neutrosophic sets. Section 5 

inaugurates the proposed neutrosophic cross entropy-based fault recognition methodology, the 

applicability and remarkability of which are exemplified in Section 6. Finally, Section 6 contributes 

the concrete conclusions extracted from this study. 

2. Preliminaries: - 

This section deals with the introduction of some familiar apprehensions as follows: 

Def. 2.1 SN Entropy Measure [11-13] A SN set, in any universal set X  with its generic elements 

1 2, ,..., nx x x , is an entity of the form:       , , |,i A i A i A i iA x x i x xf x X     where each 

           : 0,1 , : 0,1 , : 0,1A i A i A ix X i x X f x X     satisfy      0 3 .A i A i A ix i x f x      Suppose 

 T X represents the collection of all SN sets in X , Then    :NT A T X R is called as SN entropy 

measure if  
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         ( ) 0 0 , , 0,1N A i A i A ii T A x i x f x    with equality if either     1, 0,A i A ix i x    

  0A if x  or      0, 0, 1.A i A i A ix i x f x       ( ) .c

N Nii T A T A  If cA denotes the complement of 

,A then       , 1 .|, ,c

i A i A i A i iA x f x i x x x X    

(iii)  NT A  possesses  concavity property for each      , , .A i A i A ix i x f x
 

(iv)  NT A  admits its maximum value which arises when      
1

.
2

A i A i A ix i x f x      

3. A Novel Symmetric Trigonometric FCEM (Fuzzy Cross Entropy Measure)   

We first establish the following Theorem 3.1, the out coming of which will be a backbone for the 

proposed symmetric trigonometric fuzzy cross entropy measure, hinged on two fuzzy sets 

(Theorem 3.2). 

Theorem.3.1 Set          0 1 2, 11, .A i A i A i A iµ x µ x µ x µ xT T T    Let A X be any fuzzy set 

[14].Then  

 1 0 1 2

3 2 3 2
( ) tan tan

3 2 2 3 2 2 2

n

FS

i

T A
T T T

   
                

                                       ... (1)  

represents a valid measure of fuzzy entropy with 
3 2 2

. ( ) tan tan
33 2 2

FSMax T A n
 

    

 and 

minimum value as zero.  

Proof (i) The expressions denoted by 0 1 2, ,T T T are non0negative because    0,1 .A ix   This 

justifies that ( ) 0FT A     0,1A ix  with equality
0 1 20, 1, 1T T T   or 0 1 21, 0, 0.T T T   In 

other words, ( )FT A  vanishes whenever   0or1.A ix   

(ii) If we replace  A ix  with its counterpart  1 ,A ix  then 0T  changes to 1T , 

1 0 2 2, ,T T T T  which means ( ) ( ).c

F FT A T A  

(iii) Concavity: To establish the concavity of   ,FST A differentiating (1) partially with respect 

to  A ix to get  
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 

 

   

  

2 2 2
21 0 0

0 1 0 1 2 0 1 2

2

0 1 2

1 2 3 2
3 2 sec

2 3 2 2 2

3 2 2 2

FS

A i

T T T

T T T TT A T T T T

x T T T

  
      


   

                         … (2) 

It is informative to point out that  2 2 2

1 0 01 2 1 2 .A iT T x T      With this information in hand, the 

above equality simplifies to  

 

 

  
   

  

2

0 1 0 1 2 0 1 2

2

0 1 2

1 2 3 2
3 2 1 2 sec

2 3 2 2 2

3 2 2 2

A i

FS

A i

x
T T T TT A T T T T

x T T T





 
       


   

                … (3)

 

Again, partial differentiation of (2) with respect to  A ix yields  

 

 

  
 

  

 

 

  

2
2 3

1 1 0 0 1 0 2

2 3

1 0 0

2

2 0 1 2
2 0 1 2

0

0 1 2
2

0 1 2

2 2

0 1 2

2 2 2 2 3 2 2 2 2

2 2 1
3 2

9 sec2 2 3 2 2 2
3 2 2 2

1 21 1
3 2

2 12 tan
3 2 2 2

0

3 2 2 2

FS

A i

T TT T T T T

T T T

T T T
T T T

T

T T T
T T TT A

x T T T

      
 
 
 
                          

  
   

 

for each    0,1 ,A ix   This establishes that  FST A exhibits the concavity property with respect to 

 .A ix This motivates ( )FT A  to admit its maximum value which can occur if 
 

 
0

FS

A i

T A

x





 and 

hence (1) yields  
1

.
2

A ix   Thus, 

 
   

 
1

.
2

3 2 2
Max. tan tan .

33 2 2A i
FS FS x

T A T A n
 

 
     

                                   … (4)

 

Also, the graphical representation of  FST A  as shown in Fig 2 justifies that it admits its 

minimum value as zero.  

Theorem.3.2 Set    0 1 1, .B i B iE xEµ x µ     Let A and B belongs to  T X X, then ( , )FST A B  

is a correct symmetric trigonometric FCEM (fuzzy cross entropy measure [15-16]) given as  
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 
 

 
 

2 2 2 2
1 2 2 2 20 0 0 0

0 0 0 0
2 2 2 2

0 0 0 0
0 0 0 0 1 1 1 1

( , )

2
6 tan

3

2 4
2 tan 4 tan

2
3 2 3 2

2 2

FS

n

i

T A B

T E T E
T E T E

T E T E
T E T E T E T E





  
   

  
    

     
            

               
     



                                                                                             … (5) 

Here,
 

( , )FST A B represents the subjective value of symmetric discrimination of A
 
against 

.B   

     

 

 

 

 

   

          

          Fig. 2 A Revolution Plot for the Concavity Property and Minimum value of  ( )FST A    

Proof. (i) Since ( , )FST A B  does not change after the replacement of  A ix with   ,B ix this 

validates the symmetric nature of ( , ).FST A B   

(ii) Since ( , )FST A B remains unchanged after the replacement of ,A B   with  , ,c cA B this 

suggests that ( , ) ( , ).c c

FS FST A B T A B  The fact, that ( , )FST A B

 
is non-negative, can be established 

if we first inculcate the following Lemma 3.1. 

Lemma 3.1 Define 
2 2 2 2

00 0

0

0 0

0

0, .,
2 22

T E T E
G

T E
N A T E

   
      






 There exists the 

inequality: 4 3N A G   with equality if    2 2

0 0 .A i B iT x E x                               … (6) 
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    Fig. 1 A Step-wise Flow Chart of FCEM and NCEM Based urbine Fault Recognition 

          Methodology  

Proof. In our notations, we have 

2 2 2 2

0

0

0 0 0 0 0

0, .,
2 22

T E T E
G

T
N A T E

E    
      






  

The undergoing inequality (6) could be true if     
2 2

2 20 0

0 0 0 00 0

3
2

2 2

T E
T E TT EE

 
    
 
 

  

      
2

2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 08 2 9 4 12T E T E T E T E T E T E T E          

       
2 2

2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 08 16 9 4 12T E T E T E T E T E T E T E          

   
2

2 2 2 2 2 2

0 0 0 0 0 0 0 04 4 0T E T E T E T E       

   
2 42 2

0 0 0 0 0 02 0 0T E T E T E       which is obviously true.  

Thus, in view of the resulting Lemma 3.1, the inequality (6) can be rescheduled as  

4 4
1 1

3 3

N G N G
A A

 
       

 
2 2

0 0
0 0

2 2
0 0

0 0

2
2

1 1
3 2

T E
T E

T
E

E
T

 
  
   

   



 

Establishment of Symmetric Trigonometric FCEM 

(Fuzzy Cross Entropy Measure) 

Development of Symmetric Trigonometric NCEM 

(Neutrosophic Cross Entropy Measure) 

Knowledge of Nethermost and Uppermost Energy Bounds  

Rehabilitation of Energy Interval Ranges into SN sets 

 

FCEM and NCEM Based Fault Recognition Methodology 
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 

2 2

0 0

2 2

0 0
0 0 0 0

2 2

3
3 2

2

T E

T E
T E T E

 
 


  

                                                           .. (7) 

Since tangent function exhibits the monotonicity property over  0,1 , the resulting inequality (7) 

can be rescheduled as   

 
 

 
2 2

2 2 2 20 0

0 0 0 0
2 2

0 0
0 0 0 0

2 2
2 tan 2 tan

3
3 2

2

T E
T E T E

T E
T E T E

 
    


  

                             … (8) 

With the replacement of  A ix with  1 A ix  and of  B ix  with  1 B ix into (8), we 

observe that  

2

0T  changes to 
2 2

1 01 ;T T  2 2 2

0 1 01 ;E E E  
0 0 1 1;T E T E    0 0 1 1.T E T E  Thus, (8) yields   

 
 

 
2 2

2 2 2 20 0

0 0 0 0
2 2

0 0
1 1 1 1

4 2
4 tan 4 tan

32
3 2

2

T E
T E T E

T E
T E T E

 
    

 
  

                           ... (9) 

We can simply add the resulting inequalities (8, 9) and then take the summation over 

1 toi n  to yield ( , ) 0FST A B  as desired. Moreover, when    ,A i B ix x  then 

2 2 2

0 0 1 1 0 1 0 1, ,1 , 1 .T E T E T T T T       Also, 

   
2 2

2 20 0

0 02 2
1 0 0

2 2 4 22
( , ) 6 tan 2 2 tan 4 2 tan 0

3 3 3 6 3

n

FS

i

T T
T A A T T

T T





      
           

       
                ... (10) 

The equality (10) justifies that ( , ) 0FST A B   whenever    A i B iµ x µ x  as desired. 

After the establishment of proposed fuzzy cross entropy measure ( , ),FST A B  the next Theorem 3.3 

argues the urgent situation under which it will admits its extreme values.
 

 

Theorem 3.3 If n N is the cardinality of ,X then  

3 2 2
0 (A,B) 6 tan tan .

33 2 2
FST n

 
     

                                                 … (11) 

Proof. If we replace the fuzzy set B  with ,cA we observe that 
2

0E  changes to 

2

01 ;T
1 0 0 1 0 1 2, , .E T E T T T T    

Thus, after the replacement of  B ix  with  1 ,A ix the undergoing equality measure (5) yields  

( , )c

FST A A

 1 0 1 2

3 2 2 3 2 3 2
6 tan 6 tan 6 tan tan

33 2 2 3 2 2 3 2 2 2

n

i T T T

     
                          

  
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   6Max.T 6TF FA A                                                               … (12) 

Because (A)FT is non-negative (Theorem 3.1), this motivates (12) to yield  

 F

1 3 2 2
(A)=Max.T (A,A ) 0 0 (A,A ) 6 tan tan

6 33 2 2

c c

F FS FST A T T n 
 

        

                … (13)  

With the establishment of resulting inequality (13), it is informative to know that  , c

FST A A   is  

finite for a fixed n. This justifies the finiteness of our proposed symmetric trigonometric FCEM 

(fuzzy cross entropy measure) which ranges as 
3 2 2

0 (A,B) 6 tan tan .
33 2 2

FST n
 

     

Thus,  

 
3 2 2

M a x . , 6 t a n t a n
33 2 2

FST A B n
 

    
 which clarifies that this maximum value does not depend 

upon its truth membership degree, but completely depends upon the cardinality of X. Also, the 

surface plot of ( , )FST A B , represented by Fig 3(a, b), justifies the fact that this measure, because of its 

convexity,  admits its   Min. , 0FST A B   Also, it is evident that ( , )FST A B  gets increased as soon 

as  A B increases, attains  
3 2 2

Max. , 6 tan tan .
33 2 2

FST A B n
 

    
  

The establishment of FCEM ( , )FST A B , resulted from Theorem 3.2 in the overhead discussion, will 

lead to develop the proposed NCEM (represented by  NC A,BT ), the repercussions of which will 

be utilized to meet our goal of recognizing fault conditions of turbine. 

4. A Novel Symmetric Trigonometric NCEM (Neutrosophic Cross Entropy Measure) 

In the resulting Theorem 3.2, the entity ( , )FST A B  represents the amount of fuzziness which 

arises due to true membership degree for symmetric discrimination of fuzzy set A  against 

B . Similarly, if we set        0 1 0 11 1, , , ,A i A i B i B iI I Ji x i x x Ji i x      then the amount of 

fuzziness which arises due to  indeterminancy  membership degree of A  against B  is 

established as  
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 
 

 
 

2 2 2 2
1 2 2 2 20 0 0 0

0 0 0 0
2 2 2 2

0 0 0 0
0 0 0 0 1 1 1 1

( , )

2
6 tan

3

2 4
2 tan 4 tan

2
3 2 3 2

2 2

i

FS

n

i

T A B

I J I J
I J I J

I J I J
I J I J I J I J



  
   

  
    

     
            

               
     



                                                                                            … (14) 

 

 

       

 

                                      (a) 
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                                          (b)   

          Fig 3 (a) Convexity and (b) Minimum Value of the proposed of FCEM ( , )FST A B   

Again, we set        0 1 0 11 1, , , ,A i A i B i B iF F Hf x f x x Hf f x     then the amount of 

fuzziness which arises due to  falsity  membership degree for symmetric discrimination of A  

against B  can also be established as  

 
 

 
 

2 2 2 2
1 2 2 2 20 0 0 0

0 0 0 0
2 2 2 2

0 0 0 0
0 0 0 0 1 1 1 1

( , )

2
6 tan

3

2 4
2 tan 4 tan

2
3 2 3 2

2 2

f

FS

n

i

T A B

F H F H
F H F H

F H F H
F H F H F H F H



  
   

  
    

     
            

               
     



                                                                                            … (15) 

Def.4.1 Let A and B are any two SN sets in  .1 2 nX = x ,x ,...,x The desired NCEM (symmetric 

trigonometric neutrosophic cross entropy measure of SN sets can be constructed by simply adding 

(12), (14) and (15) as below.  

 NC A,B = (A,B)+ (A,B) (A,B)i f

FS FS FST T T T 
                                               

… (16)
                                             

Following same procedure as deployed in Theorem 3.3, readers can easily establish that if    

A and B are any SN sets with same cardinality ,n then there exists the inequality: 
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NC

3 2 2
0 (A,B) 18 tan tan .

33 2 2
T n

 
     

                                               

We shall now authenticate the applicability of our newly discovered NCEM  NC A,BT  by 

recognizing the optimal fault condition of some huge steam turbine generator as follows.  

                                                                                                      

6. FCEM and NCEM Based Fault Recognition Methodology   

To achieve the desired goal, we shall, equally well, establish a neutrosophic cross entropy-based 

methodology which has the necessary capability of identifying various fault conditions of some 

turbine. A schematic flow chart explaining our fault recognition methodology has been provided in 

Fig. 1 and discussed as below.                 

Step:-1  Construction of Energy Interval Ranges 

The applicability of the underlying methodology is exemplified by taking into consideration the 

illustration [12]. Suppose the ten familiar fault conditions experienced by some huge steam turbine 

generator set is represented by  1 2 3 10, , ,....KB B B B B  where the fault condition “Unbalance” is 

abbreviated as 1.B  Similarly, the conditions 2 3 10, ,...,B B B  have been provided in [2,3].  Also, the 

nine frequency intervals    1 2 90.01,0.3 , 0.4,0.49 ,....., higher frequency 5 ,C f C f C f    of 

frequency spectrum , resulted from vibration signals of turbine, are available in [2,3].   

Let  
KB ix (lower bound) and  

KB iU x (upper bound) represent the amount of fuzziness resulted 

from the truth membership degree of 
thK  fault condition at 

thi  range of frequency spectrum. 

Then 

            1 1 1 2 2 2 9 9 9, , , , , ,... , , ; 1,2,...,10.
K K K K K KK B B B B B BB x x U x x x U x x x U x K                     

                                                                                           … (17) 

Generally, the acquitted vibration data may be non-commensurate and conflicting, it 

becomes essential for us to transform the energy interval ranges (17) into the form of SN 

sets. This conversion, however may be problematic, but can be done as follows. 

Step:-2 Transformation of Interval Ranges (energy) by the Form of Neutrosophic Sets  

The amount of fuzziness based on falsity membership degree of thK  familiar fault condition  at 

thi  range of frequency spectrum is denoted by  
KB if x  where    1 .

K KB i B if x U x  Similarly, the 
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amount of fuzziness based on indeterminacy membership degree of thK  familiar fault condition at 

thi  range of frequency spectrum is denoted by  
KB ii x  where      1 .

K K KB i B i B ii x f x U x    We 

have restricted the  value of  
KB ii x  to 0 001  in case it if returns any other value less than or 

equal to 0 001 .Then, the interval ranges (energy), represented by (17), for each 
KB can be 

transformed into the forms of SN sets is described below.  

             
             

1 1 1 1 2 2 2 2

3 3 3 3 9 9 9 9

, , , , , , , ,
; 1,2,...,10

, , , ,... , , ,

K K K K K K

K K K K K K

B B B B B B

K

B B B B B B

x x i x f x x x i x f x
B K

x x i x f x x x i x f x

 

 

            
            

   … (18) 

Also, the unfamiliar fault conditions, represented by ,
jTF  can also be transformed into the forms of 

SN sets as below:  

             
             

1 1 1 1 2 2 2 2

3 3 3 3 9 9 9 9

, , , , , , , ,

, , , ,..., , , ,

T T T T T TJ J J J J J

J

T T T T T TJ J J J J J

F F F F F F

T

F F F F F F

x x i x f x x x i x f x

F

x x i x f x x x i x f x

 

 

       
    

  
       
    

             … (19) 

Step: -3 Computation of FCEM and NCEM Values between familiar and unfamiliar fault 

conditions 

The cross-entropy values    NC , , ,
J JK T FS K TT B F T B F  between each KB and 

JTF can be evaluated as 

follows. Replacement of introduced notations 0 0 0, , ...,T F H etc., with their original values and then 

taking 1,2,...,9i  into (5,16) yields 

 

    
   

    
   

   

    
   

    
   

  

,

22
6 tan 2 tan

3

3 2
2

4
4

2
1 1

ta

3
2

12 1

n

K TJ

K TJ

K TJ

K T K TJ J

K TJ

K TJ

K TJ

K T KJ

J

B i F i

B i F i

B i F i

B i F i B i F i

B i F i

B i F i

B i F i

B i F i B i

FS K T

µ x µ x
µ x µ x

µ x µ x
µ x µ x µ x µ x

µ x µ x
µ x µ x

µ x µ x
µ x µ x µ x

T B F

 



  

 
   
 
 


 


 
 





 
 
   
 
 

 
 
 
 

 


 
      

9

1

TJ

i

F iµ x



 
 
 
 
 
 
 


 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 






                                                                                             ... (20) 
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

                                                                                          … (21) 

Step: -4 Identification of Turbine Faults 

The Smallest value of ( , ); ( , )
J JNC K T FS K TT B F T B F

 indicate that the familiar fault condition KB  is 

closer to the unfamiliar fault condition .
JTF In other words, a typical selection of turbine fault will 

be designated as optimal fault type selection owing to the smallest NCEM ( , )
JNC K TT B F  or FCEM 

( , )
JFS K TT B F

value. 
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7. APPLICATION TO FAULT DIAGNOSIS OF TURBINE 

In order to validate the applicability of FCEM and NCEM based fault recognition methodology, the 

energy interval ranges for each familiar fault condition at various ranges of frequency spectrum is 

provided in Table 1.  

Table 1. The Nethermost and Uppermost Energy Bounds of Each KB  at Nine Ranges of frequency 

        Spectrum  

KB  1C  2C  3C  4C  5C  6C  7C  8C  9C  

1B  [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.85,1.00] [0.04,0.06] [0.04,0.07] [0.00,0.00] [0.00,0.00] 

2B  [0.00,0.00] [0.03,0.31] [0.90,0.12] [0.55,0.70] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.08,0.13] 

3B  [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.30,0.58] [0.40,0.62] [0.08,0.13] [0.00,0.00] [0.00,0.00] 

4B  [0.09,0.11] [0.78,0.82] [0.00,0.00] [0.08,0.11] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,1.00] 

5B  [0.09,0.12] [0.09,0.11] [0.08,0.12] [0.09,0.12] [0.18,0.21] [0.08,0.13] [0.08,0.13] [0.08,0.22] [0.08,0.12] 

6B  [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.18,0.22] [0.12,0.17] [0.37,0.45] [0.00,0.00] [0.22,0.28] 

7B  [0.00,0.00] [0.00,0.00] [0.08,0.12] [0.86,0.93] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] 

8B  [0.00,0.00] [0.27,0.32 [0.08,0.12] [0.54,0.62] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] 

9B  [0.85,0.93] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.08,0.12] [0.00,0.00] 

10B

 

[0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.77,0.83] [0.19,0.30] [0.00,0.00] [0.00,0.00] 

Table 2. Transforming KB  into the forms of Single valued neutrosophic (SN) Sets 

   1C      2C      3C     4C     5C     6C     7C     8C     9C  

[0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.85,0.15,0.00] [0.04,0.02,0.94] [0.04,0.03,0.93] [0.00,0.01,1.00] [0.00,0.01,1.00] 

[0.00,0.01,1.00] [0.03,0.01,0.69] [0.90,0.03,0.88] [0.55,0.15,0.30] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.08,0.05,0.87] 

[0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.30,0.28,0.42] [0.40,0.22,0.38] [0.08,0.05,0.87] [0.00,0.01,1.00] [0.00,0.01,1.00] 

[0.09,0.02,0.89] [0.78,0.04,0.18] [0.00,0.01,1.00] [0.08,0.03,0.89] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] 

[0.09,0.03,0.88] [0.09,0.02,0.89] [0.08,0.04,0.88] [0.09,0.03,0.88] [0.18,0.03,0.79] [0.08,0.05,0.87] [0.08,0.05,0.87] [0.08,0.04,0.88] [0.08,0.04,0.88] 

[0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.18,0.04,0.78] [0.12,0.05,0.83] [0.37,0.08,0.55] [0.00,0.01,1.00] [0.22,0.06,0.72] 

[0.00,0.01,1.00] [0.00,0.01,1.00] [0.08,0.04,0.88] [0.86,0.07,0.07] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] 

[0.00,0.01,1.00] [0.27,0.05,0.68] [0.08,0.04,0.88] [0.54,0.08,0.38] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] 

[0.85,0.08,0.07] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.08,0.04,0.88] [0.00,0.01,1.00] 

[0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.00,0.01,1.00] [0.77,0.06,0.17] [0.19,0.04,0.77] [0.00,0.01,1.00] [0.00,0.01,1.00] 

Step:-2 The nethermost (lowest) and uppermost (highest) energy bounds of each real fault 

conditions  KB  have been extracted and thereafter rehabilitated into the forms of SN sets as 
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shown in Table 2. The fault testing samples  1,2
JTF J   in this study can also be transformed into 

the forms of SN sets as follows.  

       

       

 
1

0.000,0.010,1.000 , 0.000,0.010,1.000 , 0.100,0.010,0.900 , 0.000,0.010,1.000 ,

0.000,0.010,1.000 , 0.000,0.010,1.000 , 0.000,0.010,1.000 , 0.000,0.010,1.000 ,

0.000,0.010,1.000

TF      … (22)  

       

       

 
2

0.390,0.010,0.610 , 0.070,0.010,0.930 , 0.000,0.010,1.000 , 0.060,0.010,0.940 ,

0.000,0.010,1.000 , 0.130,0.010,0.870 , 0.000,0.010,1.000 , 0.000,0.010,1.000 ,

0.350,0.010,0.650

TF        … (23) 

Step:- 3 The FCEM ( , )
JFS K TT B F

 and NCEM ( , )
JNC K TT B F values between each KB ( provided in 

Table 2) and 
JTF  (represented by (22,23)) can be computed employing the resulting equations  

(20,21). The fault diagnosis order obtained through the proposed FCEM and NCEM as well as by the 

existing cosine similarity measure [3] is represented in Table 3. 

Diagnosis Result 1. The fuzzy as well as neutrosophic cross entropy values between each familiar 

fault condition  KB  and the first testing sample 
1TF  , as can be seen from Table 3, are  

         
1 1 1 1 11 2 3 4 5, 0.1382, , 0.0082, , 0.1222; , 0.0830, , 0.0595,FS T FS T FS T FS T FS TT B F T B F T B F T B F T B F          

         
1 1 1 1 16 7 8 9 10, 0.1289, , 0.0000, , 0.0184, , 0.1382, , 0.1368.FS T FS T FS T FS T FS TT B F T B F T B F T B F T B F          

         
1 1 1 1 11 2 3 4 5, 0.3491, , 0.0385, , 0.2913; , 0.1676, , 0.1327,NC T NC T NC T NC T NC TT B F T B F T B F T B F T B F      

         
1 1 1 1 16 7 8 9 10, 0.2737, , 0.0006, , 0.0401, , 0.2931, , 0.2824.NC T NC T NC T NC T NC TT B F T B F T B F T B F T B F      

In view of Minimum Argument Principle, the minimum symmetric trigonometric FCEM and 

NCEM values are 0.0000 and 0.0006 respectively.  Clearly, these values confirm that vibration fault 

in turbine occurs due to the defect in anti-thrust bearing  7B , which is an optimal turbine fault 

selection, as it can also be experienced from Fig. 4(a). The next smallest FCEM and NCEM values are 

0.0082,0.0184 and 0.0385,0.0401 respectively which correspond to the fault types 2B and 8.B  This 

indicates that there is a high possibility of pneumatic force couple and surge faults in the generator. 

The fault type 5B (radial impact friction of rotor) has low possibility owing to the next smaller 
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FCEM and NCEM values (0.0595,0.1327). Similarly, the fault types 4B , 6B , 10B , 3B , 9B and 1B  

have very low possibility owing to their smaller FCEM and NCEM entropy values.  

Table 3.  Fault Recognition of Turbine employing (a) FCEM (b) NCEM and (b) Existing Cosine 

Similarity Measure [3]  

 Description           Measure Values                  Recognized                                          

Fault Condition 

Actual Fault 

Condition 

FCEM 

 
1

,FS K TT B F  

 
2

,FS K TT B F  

NCEM 

 
1

,NC K TT B F  

 
2

,NC K TT B F  

Cosine 

 
1

,VS K TC B F  

 
2

,VS K TC B F  

FCEM Values 

0.1382   0.0082   0.1222  0.0830  0.0595 

0.1289   0.0000   0.0184  0.13821  0.1368 

0.1170   0.0445   0.0787  0.0424  0.0282 

0.0670   0.0818   0.0651  0.0448  0.0720 

NCEM Values 

0.3491   0.0385   0.2913  0.1676  0.1327 

0.2737   0.0006   0.0401  0.2931  0.2824 

0.3053   0.0901   0.1916  0.0867  0.0584 

0.1428   0.1679   0.1284  0.0967  0.1493 

Cosine Similarity Measure Value [] 

0.7891   0.9799   0.8282  0.8236  0.9057 

0.8714   0.9995   0.9774  0.7974  0.8099 

0.8563   0.9128   0.9066  0.8953  0.9738 

0.9567   0.8720   0.9201  0.9403  0.8968 

Antithrust Bearing 

Radial Impact Friction 

Antithrust Bearing 

Radial Impact Friction 

Antithrust Bearing 

Radial Impact Friction 

Antithrust Bearing 

Radial Impact Friction 

Antithrust Bearing 

Radial Impact Friction 

Antithrust Bearing 

Radial Impact Friction 

Thus, the optimal fault recognition order is  

7 2 8 5 4 3 6 10 1 9B B B B B B B B B B  (Obtained from FCEM) 

7 2 8 5 4 6 10 3 9 1B B B B B B B B B B (Obtained from NCEM) 

Diagnosis Result 2. The FCEM and NCEM values between second real testing sample 
2TF  and KB  

are

         
2 2 2 2 21 2 3 4 5, 0.1170, , 0.0445, , 0.0787, , 0.0424, , 0.0282,FS T FS T FS T FS T FS TT B F T B F T B F T B F T B F          

         
2 2 2 2 26 7 8 9 10, 0.0670, , 0.0818, , 0.0651, , 0.0448, , 0.0720.FS T FS T FS T FS T FS TT B F T B F T B F T B F T B F          

         
2 2 2 2 21 2 3 4 5, 0.3053, , 0.0901, , 0.1916, , 0.0867, , 0.0584,NC T NC T NC T NC T NC TT B F T B F T B F T B F T B F      

         
2 2 2 2 26 7 8 9 10, 0.1428, , 0.1679, , 0.1284, , 0.0967, , 0.1493.NC T NC T NC T NC T NC TT B F T B F T B F T B F T B F      
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Fig.4(a) Recognized Optimal Fault Condition Employing Proposed Fuzzy, Neutrosophic Cross 

Entropy and Existing Cosine Similarity Measures [3] 

In this case, the minimum symmetric trigonometric FCEM and NCEM values are 0.0282 and 0.0584 

respectively.  Clearly, these values confirm that vibration fault in turbine occurs due to the defect in 

radial impact friction of the rotor  5B , which is an optimal turbine fault selection, as it can also be 

experienced from Fig. 4(b). The next smallest FCEM and NCEM values are 0.0424,0.0445 and 

0.0584,0.0901 respectively which correspond to the fault types 4B and 2.B This indicates that there 

is a high possibility of pneumatic force couple and oil membrane oscillation. The fault type 9B  

(looseness of bearing block) has low possibility owing to its smaller FCEM and NCEM values 

(0.0448,0.0967). Similarly, the fault types  8B , 6B , 10B , 7B , 3B  and 1B have very low possibility 

owing to their smaller cross entropy values. Thus, the optimal fault recognition order is 

5 4 2 9 8 6 10 7 3 1.B B B B B B B B B B  

Validity Test: In order to perform the validity of NCEM under validity criteria [11], we inter-change 

the degree of true and falsity membership of non-optimal  9B  alternative and worse 

 1B alternatives. The new symmetric trigonometric FCEM and NCEM values can be recalculated   

employing (21) and are given below.  

         
1 1 1 1 11 2 3 4 5, 1.4895, , 0.0385, , 0.2913; , 0.1676, , 0.1327,NC T NC T NC T NC T NC TT B F T B F T B F T B F T B F      

         
1 1 1 1 16 7 8 9 10, 0.2737, , 0.0006, , 0.0401, , 1.5678, , 0.2824.NC T NC T NC T NC T NC TT B F T B F T B F T B F T B F      
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         
2 2 2 2 21 2 3 4 5, 1.1789, , 0.0976, , 1.1882, , 0.0867, , 0.0660,NC T NC T NC T NC T NC TT B F T B F T B F T B F T B F      

         
2 2 2 2 26 7 8 9 10, 0.1428, , 0.1754, , 0.1360, , 0.0967, , 0.1493.NC T NC T NC T NC T NC TT B F T B F T B F T B F T B F      

The results clearly indicate that the optimal fault selection does not change whenever we 

interchange the non-optimal and worse alternatives. This justifies that our proposed NCEM is 

capable of holding the best fault selection whenever worse and non-optimal are interchanged. 

However, the existing measures [2,3] are insufficient for holding the best fault selection. This 

indicates some ambiguity in the enduring fault recognition methods  

                

 

Fig.4(b) Recognized Optimal Fault Condition Employing Proposed Fuzzy, Neutrosophic Cross 

Entropy and Existing Cosine Similarity Measures 

 

Table 4.  Fault Recognition of Turbine employing (a) FCEM (b) NCEM and (b) Existing Cosine 

Similarity Measure [3] Under Sensitive Analysis 

 Description           Measure Values                  Optimal, Worse 

Alternatives Under 

Sensitive Analysis 

NCEM 

 
1

,NC K TT B F  

 
2

,NC K TT B F  

 

NCEM Values 

0.3497   0.0391   0.2920  0.1682  0.1284 

0.2743   0.0012   0.0407  0.2887  0.2831 

0.3059   0.0907   0.1922  0.0873  0.0541 

0.1434   0.1685   0.1290  0.0924  0.1499 

 

Before 

9 1,B B  

 

3 1,B B  

After 

3 1,B B  

 

3 1,B B  
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Sensitive Analysis In order to demonstrate the effectiveness of NCEM under sensitive analysis[11] 

,we slightly change the value   8 , 0.00,0.01,1.00x  of 
1TF to   8 , 0.010,0.010,1.000 .x   

Next, we again compute   , 1, 2
JNC K TT B F J  employing (21) and represent the results in  ranking 

order  of all ten knowledge of system faults is provided in Table 4. A The comparison of the results 

depicted in Table 3 and Table 4 indicate that the optimal and worse alternatives remain unchanged 

whenever there is a small change in the SN set   8 , 0.00,0.01,1.00x  . This clarifies that our 

symmetric trigonometric NCEM is an insensitive measure when subjected to a little change in the 

evaluation values. However, the enduring measures [2,3] have been found sensitive under this 

experiment.  

Intuitive Analysis For the performance of FCEM, NCEM and existing measures [12]  under 

intuitive analysis, we have assumed two fuzzy sets  1 2,F F  and SN sets  1 2,T T  as depicted in 

Table. In this experiment, we have fixed the value of 2F  as  1.000 , 2T  as  1.000,0.010,0.000  

meanwhile, the value of 1 1,F T are increased gradually as presented in Table. The FCEM and NCEM 

values along with existing measure values [] are calculated using (20,21) and the results are 

presented Table 5. The tabulated results reveal that    1 2 1 2, ; ,FS NCT F F T T T
values decrease 

whenever there is a slight increase in the values of 1 1,F T . However, a constant or undefined trend 

was experienced while repeating this phenomenon with the enduring measures [2,3]. This justifies 

that fault information conveyed by proposed cross entropy measures are feasible and meaningful. 

Moreover, this also justifies the superiority and remarkability of proposed methodology over the 

enduring methods [2,3], under intuitive analysis. 

 

 

 

Table 5. Intuitive analysis of (a) FCEM (b) NCEM (c) Existing Measures [2,3]   

Gp. 

No. 

Fuzzy Set            SN Set FCEM  

Values 

NCEM 

Values 

Cosine[3] 

Values 

Measure [3] 

Values  1F  2F  
       1T        2T  

1 0.000 1.000 [0.000,0.010,0.000] [1.000,0.010,0.000] 0.1272 0.1272 0.0009 #NUM! 

2 0.100 1.000 [0.100,0.010,0.000] [1.000,0.010,0.000] 0.0672 0.0672 0.0905 1.1371 

3 0.200 1.000 [0.200,0.010,0.000] [1.000,0.010,0.000] 0.0544 0.0544 0.0908 1.1262 

4 0.300 1.000 [0.300,0.010,0.000] [1.000,0.010,0.000] 0.0457 0.0457 0.0909 1.1163 
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5 0.400 1.000 [0.400,0.010,0.000] [1.000,0.010,0.000] 0.0384 0.0384 0.0909 1.1071 

6 0.500 1.000 [0.500,0.010,0.000] [1.000,0.010,0.000] 0.0316 0.0316 0.0909 1.0984 

7 0.600 1.000 [0.600,0.010,0.000] [1.000,0.010,0.000] 0.0251 0.0251 0.0909 1.0901 

8 0.700 1.000 [0.700,0.010,0.000] [1.000,0.010,0.000] 0.0188 0.0188 0.0909 1.0822 

9 0.800 1.000 [0.800,0.010,0.000] [1.000,0.010,0.000] 0.0124 0.0124 0.0909 1.0745 

10 0.900 1.000 [0.900,0.010,0.000] [1.000,0.010,0.000] 0.0062 0.0062 0.0909 1.0671 

11 1.000 1.000 [1.000,0.010,0.000] [1.000,0.010,0.000] 0.0000 0.0000 0.0909 #NUM! 

Conclusion 

This study has propounded the establishment of novel symmetric trigonometric fuzzy as well as 

single valued neutrosophic cross entropy measures (FCEM and NCEM). To overcome the 

shortcomings faced by non-fuzzy and asymmetrical cross entropy measures and to obtain 

meaningful fault information, the proposed symmetric FCEM and NCEM has the necessary 

capability for recognizing the optimal fault conditions such as antithrust bearing and radial impact 

of friction of rotor, of a huge steam turbine generator. The proposed variants of neutrosophic cross 

entropy measures are compatible for further mathematical treatments under sensitive and intuitive 

analysis because of their symmetric quintessence whereas the enduring measures exhibit 

inconsequential results indicating ambiguity in the evaluation information of fault features 
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