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Abstract: In this paper, a hybrid intelligent structure called “Double Bounded Rough Neutrosophic
Sets” is defined, which is a combination of Neutrosophic sets theory and Rough sets theory. Further,
the Attribute based Double Bounded Rough Neutrosophic Sets was implemented using this hybrid
intelligent structure for Facial Expression Detection on real time data. Facial expression detection is
becoming increasingly important to understand one’s emotion automatically and efficiently and is rich
in applications. This paper implements some of these applications of facial expression such as:
differentiating between Genuine and Fake smiles, prediction of Depression, determining the Degree of
Closeness to a particular Attribute/Expression and detection of fake expression during an examination.
With the onset of COVID - 19 pandemic, majority of people are choosing to wear masks. A suitable
method to detect Facial Expression with and without mask is also implemented. Double Bounded
Rough Neutrosophic Sets proposed in this paper is found to yield better results as compared to that of
individual structures (Neutrosophic sets theory or Rough sets theory)
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1. Introduction

Non-verbal communication constitutes a key part of understanding one’s emotion, thought process
and mentality. Facial expressions, body language and movements/gestures primarily make up non-
verbal communication. Hence, biometrics like facial recognition are essential for conversational user
experience. Facial recognition is being employed as a standard safety feature in various applications.
With latest developments, it is getting increasingly efficient to detect emotions and sentiment through
the facial expression of a person. These expressions can further be used to differentiate between different
emotions, such as sad, angry, happy, etc.

Counselling systems, lie detection, etc are some among the wide array of applications that
automatic facial expression detection has. Facial expressions form a critical aspect of how we
communicate, interact and develop impressions of people who we observe and are influenced by.
Behavioural scientists like Darwin in 1872 [1,2,3] and Suwa et al in 1978 presented an early attempt to
automatically analyse facial expressions by tracking the motion of 20 identified spots on an image
sequence.
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Following this, computer systems were developed which helped us understand and use this
natural form of human communication. Research carried out by psychologists [4] indicates that only
7% of the actual information is transmitted orally, and 38% by auxiliary language, such as the rhythm
and speed of speech, tone, etc. 55% of information is transmitted by the expression of face. Thus, most
of the valuable information can be obtained by facial expression recognition and it provides the best
way to judge a person's mental state.

Having said this, there have been numerous methodologies to determine facial expressions. Some
of these methodologies involve Neutrosophic sets theory and Rough sets theory which have been
implemented in “Facial Expression Recognition Based on Rough Set Theory and SVM” [5], “Face
Recognition with Triangular Fuzzy Set-Based Local Cross Patterns in Wavelet Domain” [6], “Facial
Expression Recognition based on Fuzzy Networks” [7], etc. These methods are certainly emerging as
powerful tools for managing uncertainty, indeterminate, incomplete and imprecise information. This
paper mainly focuses on a hybrid intelligent structure called “Rough Neutrosophic Sets” and also
introduces “Double Bounded Rough Neutrosophic Sets” which are used for facial expression
recognition. The significance of introducing these hybrid set structures is that the computational
techniques based on any one of these individual structures will not always yield the best results, but a
fusion of two or more of these often provide better results.

2. Materials and Methods

In this section, we give the definitions that are required to study the forth coming sections.

The source code for detection of Facial Expression is publicly available at:

https://github.com/Nethraasivakumar/Facial-Expression-Detection-Using-Double-Bounded-Rough-
Neutrosophic-Sets-

https://github.com/poojasrini/Facial-Expression-Detection-using-Double-Bounded-Rough-
Neutrosophic-Sets

2.1 Preliminaries:

Definition 2.1.1: Fuzzy set [8]

Fuzzy sets can be considered as an extension and gross oversimplification of classical sets. If X is a
collection of objects denoted generically by x, then a fuzzy set A in X is a set of ordered pairs:

A= {(x,p(x)|x € X}

Heis called the membership function or grade of membership (also degree of compatibility or degree of
truth) of x in A that maps X to the membership space M (when M contains only the two points 0 and 1,
A is nonfuzzy and p,(x) is identical to the characteristic function of a nonfuzzy set). The range of the
membership function is a subset of the non-negative real numbers whose supremum is finite. Elements
with a zero degree of membership are normally not listed.
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Definition 2.1.2: Rough set [9]

Let! = (U, A)be aninformation system, where U is a non-empty set of finite objects, called the universe
and A is a non-empty finite set of fuzzy attributes defined by u,:U — [0,1], a € 4, is a fuzzy set.
Formally for any set P € A, there is an associated equivalence relation called Indiscernibility relation
defined as follows:
IND(P) = {(x,y) €U?|Va€P,ua(x) = pa(y)}
The partition induced by IND (P) consists of equivalence classes defined by:
[x], = {y € Ul (x,y) €IND(P)}
For any X € U, define the lower approximation space p_(X) such that
P-(X)={x€U|[x]p < X}

Also, define the upper approximation space p~(X) such that
p (X)={xe Ul|[x], n X # g}

A rough set corresponding to X, where X is an arbitrary subset of U in the approximation space P, we
mean the ordered pair {p_(x),p~(X)} and it is denoted by RS(X).

Definition 2.1.3: Neutrosophic set [10]

Neutrosophic sets are described by three functions: a membership function, indeterminacy function
and a non-membership function that are independently related. The Rough Neutrosophic Set takes the
form:

N ={(x,aN (x), BN (x),yN (x))|x € X}

which is characterized by a truth-membership function aN , an indeterminacy-membership function
BN and falsity-membership function yN where the functions aN : X -»]0—,1+[,fN: X —=]0—,1+[
and yN : X -»]0—,1 + [ are real standard or non-standard subsets of ]0—, 1 + [. There is no restriction
on the sum of aN (x), SN (x) and yN (x), therefore 0— < aN (x) + BN (x) + YN (x) < 3 +.

2.2 Attribute based Double Bounded Rough Neutrosophic Sets
In this section, we define Double Bounded Rough Neutrosophic Sets and some operations on these sets.

Let I = (U, A) be an information system where U is a non-empty finite set of objects and 4 is a
finite set of attributes possessed by the objects in view.

Let F:A - p(U) be a mapping such that for each a € 4, F(a) € U, containing those elements of U
possessing the attribute a , we assume that U F(a) = U,a € A.

Also let N:U — p(U) is a mapping that associates each x € U to a subset N(x) consisting of the
neighbours of x.

Note that the functions F and N are defined according to the systems under consideration and also
using the expert knowledge. The function N can also be defined using the relation that prevails among
the elements of U.

Now I = (U,A,F,N) is called as a covering based N-information system. Throughout this section we
consider this covering based N-information system.
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Definition 2.2.1:

Let I = (U,A,F,N) be a covering based N-information system. For any subset X of U define N(X) =
UN(x),xeX

Definition 2.2.2:
Let I = (U, A, F,N) be a covering based N-information system. For any subset X of U define:
DR_(a~X) = N(F(a) N N(x)),

"DR(a~X) = NX) U (N(F(a) ) n N(X)) and

DR™ (a~X) = N(F(a)) U (N(F(a)) n N(X))
DR_(a~X) is called as the lower approximation of X with respect to the attribute a;
"DR(a~X) is called the left upper approximation of X with respect to the attribute a;
DR™ (a~X) is called the right upper approximation of X with respect to the attribute a;
Definition 2.2.3:

For any subset X(U) define DRS(a~X)= (DR_(a~X), "DR(a~X),DR™ (a~X)) is called as the Double
Bounded Rough Set of X with respect to the attribute a.

This rough set gives the definite, possible and unascertainable elements of X possessing the attribute a.
Note that for each a € 4, DRS(a~X) can be attained. This method of defining the Attribute based Double
Bounded Rough Set will play a significant role in analysing the elements of X with respect to A.

Also, by evaluating the attribute based DBRS for various subsets of U with respect to a single attribute
a € A, the significance of a € A on the subsets can be easily compared.

This DBRS is called as the Attribute based Double Bounded Rough Set of X. Further if there is a set of
parameters P defining the attributes and let for each

p € Py, : U — [0,1] be a fuzzy set describing the degree of existence of the parameters on the elements
of U . Then a Neutrosophic set can be defined for each DRS(a~X) as follows,

Let,

DR = {DRS(a~X)|X S U,a € A}
DR_ = {DR_(a~X) |X S U,a € A}
DR ={"DR(a~X)|X € U,a € A}

DR™ ={DR™ (a~X) |X S U,a € A}

Definition 2.2.4:

Define a fuzzy set u_: DR_ — [0,1] as follows,
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H-(DR_(a~X)) = max{min(p,(x)} ,x € DR_(a~X)

similarly, "u: "DR — [0,1] by

“u("DR(a~X)) = max{min(u,(x)} ,x € "DR(a~X) and

u~:DR™ - [0,1] by
- (DR™ (a~X)) = max{min(u,(x)} ,x € DR™ (a~X)
Hence fuzzy set,
n:DR — [0,1] X [0,1] X [0,1] defined by
H(DRS(a~X)) = (n-(DR_(a~X)), "u("DR(a~X)),p~ (DR™ (a~X)))

constitutes a Neutrosophic fuzzy set on the set of all Attribute based Double Bounded N- rough sets.

Definition 2.2.5:
From the Neutrosophic fuzzy set, it is possible to predict the facial expression of the object/image.
The attribute value can be calculated using the following expression:
Let: n_(DR_(a~X)) be denoted by T,
“u("DR(a~X)) be denoted by I,

n~ (DR (a~X)) be denoted by F,

General Formula to calculate Attribute “a” Value: [12]

Vo) — 2 (max<<TA ; IA),<1+ 12— FA)>_min(<TA ; 1A>’<1+ 1,42— FA>>>

Example 2.1:
LetU ={x;,x5,%x3,%4,%5}, A = { ay,a,, a3}
F:A - P(U) is defined by F(a,) = {x1,x3 },F(a;) = {x3,x,},F(az) = { x5}

Let P = { P1,P2}.The fuzzy set y, and p,, are tabulated below

u\U X1 X3 X3 X4 Xs
Kp, 0.1 0.3 0.2 0.4 0.7
Hp, 0.4 0.3 0.8 0.6 0.9

Table 1: Fuzzy set values for objects x;,%,,X3, %y, Xs5
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N(x) = {x1,x5,x3}

Lower approximation:
* DR_(a;~x) =F(a;) N N(x1) = {x,x3}N{xy, x5, %3} ={x1,%3}
u_(DR_(ay~x;)) = max{min{yty, (¥1) , iy, (¥3)} ,miniy, (1) ,y, ()3}

= max{min{0.1,0.2}, min{0.4,0.8}} = max{0.1,0.4} = 0.4

* DR (az~x1) = F(az) N N(x;) = {x3}

W-(DR_(az~x)) = max{min{y,, (xz)}, min{iy,(x2)}} = 0.3

e DR (a;~x;) = F(az) N N(x;) = { }

u_(DR_(as~x,)) = max{min{ }, min{ }} = 0

Left upper approximation:

e "DR(a;~x;) =N(x) U (F(a;) NN(x1))
= {x1,%2,%33U ({xq,x3 } N {x1, %5, %3})
= {x1,%2,%3} U {x,x3} = {xx1,x3,x3}

“W(DR(ay~1)) = max{min{ity, (¥3), tp, (2), o, (45}, My, (61, Uy (2, Uy (2303

= max{min{0.1,0.3,0.2}, min{0.4,0.3,0.8}} = max{0.1,0.3} = 0.3

e "DR(a~x;) =N(x)U ((F(az)) NN(x)) = {x1,%,x3}
“u(TDR(az~x1)) = max{min{u,, (x1), Kp, (x2), Hp, (x3)}, min{u,, (x1), Wy, (X2), Kp, (x3)}}

=0.3

e "DR(azg~x;) =N(x)U ((F(a3)) NN(Qxq)) ={x1,x;,%3}
“u( DR(az~x1)) = max{min{iy, (v, W, (X2), by, ()}, min{iy, (1), My, (62), Wy, (301}

=0.3

Right upper approximation:

e DR (a;~x) = (F(a)) U ((F(a1)) N N(x1))
= {x,x3}U ({23 10 {x1,%,,x3})
= {x1,x3} U {x3,x3} = {x1,x3}
K (DR™ (@y~x1)) = masx(min{uy, (x1), p, (55} My, (1), b, (65)))
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= max{min{0.1,0.2}, min{0.4,0.8} } = max{0.1,0.4} = 0.4

e DR (az~xy) = (F(az)) V ((F(az)) NN(x)) = { x3,%4}

Result:

w (DR™ (az~xq1)) = max{min{upl (x2), Hp, (xa)} min{upz (x2), Hp, (x4)}}=03

* DR (az~x;) = (F(a3)) V ((F(a3)) NN(x)) = {xs}

W (DR™ (az~xy)) = max{min{u,, (x5)}, min{yy,, (xs)}}

=0.7

Table 2: Attributes versus Double Bounded Rough Neutrosophic Sets

a\approximation H-(DR_(a~x)) "w("DR(a~x)) u~ (DR~ (a~x))
a 04 0.3 04
a 0.3 0.3 0.3
as 0 0.3 0.7

2.3 Implementing Attribute based Double Bounded Rough Neutrosophic Sets to Detect Facial
Expressions

The concepts of Double Bounded Rough Neutrosophic Sets were implemented in the decision-making
process of detecting facial expressions of humans on real time data.

Objective: To determine the facial expression of a person by classifying into 4 expressions: Sad, Angry,
Happy and Surprised.

Data: A is a finite set of attributes possessed by the objects in view. The image of the person’s face
constitutes an object. Any object possesses one of the four attributes present in A: Sad, Angry, Happy
and Surprised.

A = {S,A H,SU}
Where: S represents Sad
A represents Angry
H represents Happy

SU represents Surprised

U is a non-empty finite set of objects/images. In this illustration, we have taken 200 objects as Universal
set, U. The nth object is denoted xn.

The images and the respective parameter values were obtained from the Kaggle Dataset provided by
Dr Yoshua Bengio of the University of Montreal. [11]

U = {x1,x2;x3;---x200}
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The real time data constituted the position of 15 feature points located at pivotal parts of the face/object.
Each of these 15 feature points were divided into their respective x and y coordinates, hence resulting
in a set of 30 parameters. These 30 parameters were represented by P.

Where:

P = {Pl,Pz,P3,...P30}

The 15 Facial Feature Points are:
AP ,Py)
B (P;,P,)
C(Ps,Ps)
D (P;,Pg)
E (Py,Pyo)
F (Py1,P12)
G (P13, P1s)
H (Pys, P16 )
[ (Py7,P1g)
J (P1g,Py)
K (Py1,Pp;)
L (Py3,P24)
M (Pys5, Py )
. . . N (Py7,P2g)
Figure 1: Location of facial feature 0 (Pyo,Psg)
points on the face

Each of the 200 objects consists of these 30 parameters which are used to define their attribute. The
tabulated form of the objects and their respective parameter values are given below. The values of the
30 attributes lie between [0,1].

Table 3: The parameter values for x; and x,

Parameter Name Hp;(X1)  pp;(x2)
Py left_eye_center_x 0.6701  0.6680
P, left_eye_center_y 0.3643  0.3572
P right_eye_center_x 0.3120 0.3081
P, right_eye_center_y 0.3484  0.3452
Ps left_eye_inner_corner_x 0.6131  0.6021
Pg left_eye_inner_corner_y 0.3674  0.3662
P; left_eye_outer_corner_x 0.7367  0.7190
Pg left_eye_outer_corner_y 0.3769  0.3572
Py right_eye_inner_corner_x 0.3754 0.3621
Py right_eye_inner_corner_y 0.3579  0.3512
Py right_eye_outer_corner_x 0.2549 0.2511
Py, right_eye_outer_corner_y 0.3453  0.3452
Py3 left_eyebrow_inner_end_x  0.5624 0.6111
Py, left_eyebrow_inner_end_y  0.2945  0.2822
Pys left_eyebrow_outer_end_x  0.8191  0.7940
P left_eyebrow_outer_end_y  0.3167  0.3032

Py right_eyebrow_inner_end_x  0.4451  0.4191
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Pig right_eyebrow_inner_end_y 0.2724  (0.2822
P right_eyebrow_outer_end_x 0.1757 0.2031
Py right_eyebrow_outer_end_y 0.2819  0.2882

Py, nose_tip_x 0.5021  0.4881
Py nose_tip_y 05798  0.5521
Py3 mouth_left_corner_x 0.5877  0.5811
Py, mouth_left_corner_y 0.7953  0.7351
Pys mouth_right_corner_x 0.3659  0.3531
Py mouth_right_corner_y 0.7922  0.7321
Py, mouth_center_top_lip_x 0.4863 0.4701
Pyg mouth_center_top_lip_y 0.7319  0.6781

Py mouth_center_bottom_lip_x 0.4736 0.4731
P3g mouth_center_bottom_lip_y 0.8904 0.8131

The parameter values for x; and x, are given above. All the values lie in [0,1].

Let F: A - p(U) be a mapping such that foreach a € A, F(a) € U. F(a) constitutes those images which
possess attribute ‘a’ such that a € A. Therefore, the 200 images in U are categorised into the 4 attributes
present in A. The four attributes are S (Sad), A(Angry), H (Happy) and SU (Surprised).

Table 4: F(a) versus the attribute a

a F(a)
S {x19, X209, X30, X36) X38, X39, X42, X47, X51, X509, X65, X709, X837,

X91,X97, X107, X117, X126) X127, X129, X145, X146, X147, X150, X156, X158,

X163, X167, X168, X170, X171, X173, X177, X181, X182, X183, X184, X185, X188, X189, X190,
X191, X192, X194, X195, X196, X197, X198, X199, X200}

A {X24, X28, X31, X33, X34, X35, X40, X44) X50, X52, X54, X56, X58, X70, X530, X83, X092, X03, X04)
X95, X96, X99, X100, X105, X108, X111, X112, X114, X115, X120, X121, X128, X132, X133, X134,
X135, X136 X137, X138, X139, X142, X143, X152, X153, X160, X174, X180, X186, X187, X193}
H {x3, X4, X5, Xo, X25, X32, X37, X41, X46, X53, X55, X67, X72, X78, X84, X85, X865 X103,
X104 X109, X110, X113, X116, X122, X123, X124, X125, X130, X131, X140, X141, X144, X148, X149,
X151, X154, X155, X157, X159, X161, X162, X164, X165, X166, X169, X172, X175, X176, X178, x179}
SU {x1. X2, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16, X17, X18,
X20, X21, X22, X23, X26, X27, X43, X45, X48,

X49,X57, X60, X61, X62, X63, X64, X66, X68) X69, X71, X73, X74, X75,
X76, X77, X81, X82, X88, X89, X90, X98, X101, X102, X106, X118, x119}

For an image x,, from the Universal Set, the neighbours of x,, are denoted by N(x, ).

N(x, ) is a subset of the Universal Set and consists of images from the Universal set which lie in the
neighbourhood of the given image x,,.

In order to compute N(x,, ), following steps were implemented.
Algorithm:
For each image x,, €U,

And for each parameter P; (i = 1,2,3....,30),
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1. Let’q’ be the absolute difference between the value of P; for image x,, , and the
mean value of P;, where x,, is the given image under consideration.

2. Let’r’ be the absolute difference between the value of P; for image x,,,, and the
mean value of P;.

3. The absolute difference of ‘q” and ‘r’ is computed and is denoted by ‘s’.

4. The value of ‘s’ is compared with the threshold value for the parameter P; .

The image x,, is said to fall in the neighbourhood of image x,, if at least 25 out of the 30
values of ‘s’ fall within the threshold.

Threshold and number of parameters are subject to the system under study.

In this manner, the neighbourhood of a given image x,, is computed by carrying out the above steps
for each image in the Universal Set. Hence, N (x,, ) is determined and is a subset of the Universal Set.

In the following table, we give examples for calculating the neighbourhood set.

Table 5: Neighbourhood sets N(x,, ) versus the object x,,

Xn N(xy)

X1 {x1, X36, X41, X62) X66) X33, X178, X189}
X2 {x2, X6, X16) X111}

X3 {x3, X12, X24, X509, X80, X111, X122}

X4 {XaX7,X13, X15, X17, X20, X21, X22, X25, X27, X36) X38,
X49, X50, X71, X76, X81, X88, X89, X90, X93, X94, X106,
X108, X109, X114, X118, X124, X138, X147, X152, X153,
X163, X168 X171, X178, X186, X189}

Now I = (U, A, F,N) is a covering based N-information system.

When X = {x3},

e
<

Figure 2: Image/object x3

NX) = {x3’x12;x24’x59;x80:x111:x122}

Following table shows the Double Bounded Rough Sets with respect to X for each attribute.
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Table 6: Double Bounded Rough Sets with respect to X versus attribute a

DR_(a~X)

" “DR(a~X)

DR (a~X)

S {x3, X6, X12, X14, X27, X36,
X59, X7, X91, X109, X117, X122,
X127, X142, X163,
X180, X188) X189}

{x3, X6, X12, X141 X24, X27, X36,
Xs59, X80, X87, X91, X109,
X111, X117, X122, X127, X142,
X163, X180 X188, X189}

{x1, X3, X4, X5, X6, X7, X12,
X13,X14,X15 -+, X191, X192,
X193, X194, X195, X196,
X197, X198, X199, X200}

A {x2, X3, X6, X8, X12, X16, X 24 {x2, X3, X6, X8, X12, X16) X2, {x1, X2, X3, X4, X5, X6, X7,
X30, X35, X46, X52, X58, X30, X35, X46, X52, X58, X59, Xg, X9, X11,--+, X189, X190,
X80, X99, X111, X116, X80, X99, X111, X116, X122/ X191, X192, X193, X194,
X128 X130, X131, X142} X128, X130, X131, X142} X195, X196, X198, X199}
H {x3, X6, X12, X24, X36, {x3, X6, X12, X24, X36, X44, {x1, X3, x4, X5, X6, X7,
X 44, X59, X70, X80, X82, X59, X70, X80, X82, X101, X9, X11, X12, X13- .+, X186,
X101 X111, X118, X122, X111, X118, X122, X127, X187, X189, X190, X192,
X127, X130, X138, X158} X130, X138, X158} X193, X194, X195, X198, X199}
SsU {x3; Xe6)X12,X13,X17, {x3; Xe6)X12,X13,X17, X20, X21, {xp X2,X3, X4, X5, Xe,

X20, X21, X22, X24, X27,
X36,X59, X67, X69, X70,
X77,%107, X116, X118, X122,
X137, X161, X186, X192, X197}

X22,X24)X27,X36, X59, X67,
X69, X70, X77, X80, X107,
X111, X116, X118, X122, X137,
X161, X186 X192, X197}

X7,Xg8,X9,X10- -, X190,
X191, X192, X193, X194,
X195, X196, X197, X198, X199}

From the Double Bounded Rough Sets, the elements of Neutrosophic set are obtained as follows:

Table 7: Neutrosophic sets versus attribute a

w_(DR(a~X))

wCDR(a~X)) W (DR (a~X))

S 0.7816 0.7786 0.7597
A 0.7627 0.7627 0.7597
H 0.7786 0.7786 0.7676
sU 0.786 0.7786 0.7597

The Neutrsophic fuzzy set on the set of all attribute for the image x; is given by:

W(DRS(S~X)) = { 0.7816, 0.7786, 0.7597}
W(DRS(A~X)) ={0.7627, 0.7627, 0.7597}
w(DRS(H~X)) = { 0.7786, 0.7786, 0.7676)

W(DRS(SU~X)) =1{0.7860, 0.7786, 0.7597}

From this Neutrosophic fuzzy set, it is possible to predict the facial expression of the object/image.

)
). (Lhm))
) (L))

The attribute value can be calculated using the following expressions:

V(s) =2 (max(( 3

V(A) =2 (max((TA -2|_ La

w+ Iy

T,
V(H) =2 (max(( >

1+ Ig- Fs

()
(£

1+ Iy~ Fy

) (=

>>_min(( 2
-
s

1+ Ig- Fs

) (=
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VSU) = 2 (max<(TsU ;r Isu)'(1+ ISZU— FsU))_min((Tsu '2|- ISU) ’(1+ 1512,— FS,,)))

Substituting Values from the fuzzy Neutrosophic Set, the following are obtained:
V(S)=0.5413

V(A) =0.5224

V(H) =0.5462

V(SU) =0.5457

The attribute having the highest value is most likely to be the attribute possessed by the image.

Conclusion: The Person is Happy.

3. Results

Implication of Attribute Based Double Bounded Rough Neutrosophic Sets to Detect Facial
Expressions:

3.1 By implementing Attribute based Double Bounded Rough Neutrosophic Sets, it is possible to
detect the expression of a person with real time data.

a‘ 5
o A

V(s) = 0.5466 V(s) = 0.5272
V(A) = 0.2403 V(A) = 0.5852
V(H) = 0.2324 V(H) = 0.5366
V(SU) = 0.5343 V(SU) = 0.5577

Person is Sad. Person is Angry.

0.

V(S) = 0.5272 V(S) = 0.2403
V(A) = 0.5303 V(A) = 0.2403
V(H) = 0.5422 V(H) = 0.2324
V(SU) = 0.5272 V(SU) = 0.7164
Person is Happy. Person is Surprised.

Figure 3: Values of attributes and predicted facial expression for each image
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3.2 Clinicians realize that making an accurate diagnosis relies on the provision of reliable
information by patients and their family members and that timely, astute, and compassionate
care depends on effective bidirectional communications (between the patient and the
physician) [13]. Unfortunately, both patients and physicians are often challenged by
complicated communications; each group withholds, distorts, obfuscates, fabricates, or lies
about information that is crucial to the doctor-patient relationship and to effective treatment.
Such untruths and manipulation of information can damage relationships and compromise
clinical care.

Facial cues lead to detection of lies and hence can be incorporated in order to detect any sort of
miscommunication by the patient.

It is possible to differentiate between genuine smiles and fake smiles using our proposed
method. This is often not obvious when seen with naked eye. The advantage of this is that we
get a deeper and more realistic insight about the patient’s emotion. Below are two images of a
patient taken at different instances. A lower (indeterminacy + non-membership) value indicates

a realistic smile. As the (indeterminacy + non- membership) value increases, the smile becomes
fake.

V(S) = 0.2403 V(S) = 0.5272
V(4) = 0.2403 V(4A) = 0.5343
V(H) = 0.5422 V(H) = 0.5352
V(SU) = 0.2403 V(SU) = 0.5343
The patient is smiling. The patient is smiling.
D(S)= Ty +1; = 15571 D(S)=Ts +1; = 15272
D(A) =T, +1, = 1.5571 DA =T, +1, = 15343
DH) =Ty +1, = 15422 D(H)= Ty +1, = 1.5352
D(SU) = Ty + Iy = 1.5571 D(SU) = Tey +Isy = 1.5343
D(H) is NOT the Highest. D(H) is Highest.
GENUINE SMILE! FAKE SMILE!

Figure 4: [llustration showing the distinction between detection of genuine and fake smile

3.3 Sadness is most often the primary emotion that gets transformed into anger. As a result
of suppressing their full expression, the energy “becomes” anger. Sadness turns into anger
when we realize all our sadness won’t resolve the problem. The combination of sadness and
anger generally indicates depression. This kind of emotion can be detected when the V(S) =
V(4).
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V(S) = 0.6141
V(A) = 0.6141
V(H) = 0.2324
V(SU) = 0.2403

Person is Sad and Angry
(Possibly Depressed)

Figure 5 : Detection based on combination of expressions

3.4 While detecting facial expressions, it is very important to know how closely the person’s
expression resembles the detected expression, i.e., the surety/precision of the output.

Using Double Bounded Neutrosophic Sets, we can predict how closely an image resembles any
expression. This degree of closeness is denoted by Q(a).

V(S) = 0.2403
V(A) = 0.5659
V(H) = 02324
V(SU) = 0.2403

The Preson is Angry.

Q(S) = 25.03%
Q(A) = 58.94 %
Q(H) = 2421%
Q(SU) = 25.03%

The degree of closeness to Anger is 58.94 %

Figure 6: Calculation of degree of closeness to the detected attribute

3.5 With the onset of the corona virus pandemic, most people are choosing to wear masks on a
regular basis. Thus, many of the feature points on the face will be hidden, which makes it
difficult to detect the person’s actual expression. However, by using Attribute based Double
Bounded Rough Neutrosophic Sets the person’s true expression can be detected just by using

the feature points in and around the eyes. The image below shows that the prediction of the
person’s actual expression is possible with and without the mask.

V(S) = 0.5652 V(s) = 0.5376 V(S) = 0.2403 V(S) = 0.2403
V(4) = 0.5413 V(A) = 0.2403 V(A) = 0.6452 V(A) = 05193
V(H) = 0.2324 V(H) = 0.2403 V(H) = 0.2324 V(H) = 0.2403
V(SU) = 0.2403 V(SU) = 0.2403 V(SU) = 0.5681 V(SU) = 0.2403
Person is Sad Person is Sad Person is Angry Person is Angry
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V({S) = 0.5272 V(S) = 0.2403 V(S) = 0.2403 V(S) = 0.2403
V(A) = 0.5303 V(4) = 0.2403 V(A) = 0.2403 V(A) = 0.2403
V(H) = 0.5422 V(H) = 0.5413 V(H) = 0.2324 V(H) = 0.2403
V(SU) = 0.5272 V(SU) = 0.2403 V(SU) = 05457  V(SU) = 0.5275
Person is Happy Person is Happy Person is Person is
Surprised Surprised

Figure 7: Detection of facial expression with and without mask

3.6 All over the world various educational institutes are now slowly moving towards conducting
exams online, even competitive exams like GRE, GMAT and English language tests like TOEFL.
As more and more exams are conducted online, students tend to involve themselves in various
malpractices. Proctors find it difficult to assess each and every student’'s movement and
expression because some might be faking it. But, using this Attribute based Double Bounded
Rough Neutrosophic Sets, it becomes easy for the invigilators to detect if the student is actually
faking an expression or not. Thus, it ensures that the students don’t cheat and helps the
universities in getting quality results.

W(DRS(S~X)) = {0.7869,0.7869,0.7597 }
w(DRS(A~X)) = {0.8256,0.8256,0.7597 }
w(DRS(H~X)) = {0.7911,0.7911,0.7676 }
w(DRS(SU~X)) = {0.8109,0.8109,0.7597}

V(S) = 0.5465
V(4) = 0.5852
V(H) = 0.5587

V(SU) = 0.5705
From above values, we can say that person is
Angry.

D(S) =Ts +1Ig = 1.5465
D(A) = Ty +1, = 1.5852
D(H) = Ty +1y; = 15587
D(SU) = Tsy +1Isy = 15706

However, Sum of Falsity and Non-Membership
Value is maximum for Anger. Hence, it can be
concluded that person is faking the expression.

Figure 8: Cheating detection

4. Applications

Human beings have continually been seeking personal possessions (like nourishment, garments,
vehicles, houses, fundamental information and data), ever since the birth of first mankind. It is turning
out to be progressively significant that such important resources be preserved and protected by
methods for security control. The types of technologies used in the access control systems are countless,
throughout history. Traditional methodologies include security guard checks, elementary keypads,
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locks, passwords and entry codes. However, organisations now seek more progressed technologies
with greater security and suitability. They seek an economical way for property protection, particularly
in today’s multifaceted society.

Fingerprint recognition, iris recognition, voice recognition, and facial recognition systems are some
of the popular biometric systems in use today. These systems are being used in various organizations
like banks, airports, social services offices, blood banks and other highly sensitive organizations.
Biometrics play a very crucial role in today’s society as they offer the most accurate authentication
solution, and hence as a result of fast increasing technology, facial expression recognition becomes very
important. The expressions that we emote are signals that carry high biological value. The key job that
these facial articulations perform is that they transmit flags about the expresser's feeling, aims and
conditions which are effective in social connection. It has always been a topic of discussion that the
evolution of facial expression signalling systems have assisted adaptation. Hence the creditable
transmission and decoding of such signals by human operators are of much significance.

Nonverbal communication cues such as facial expressions and other gestures play an important
role in interpersonal relations. These cues assist speech by helping the listener to interpret the intended
meaning of spoken words. Data from the images or any other visual feed are used in a variety of fields
especially for Human Computer Interaction like computer vision, biometric security, social interaction,
emotional and social intelligence.

5. Conclusions

A hybrid intelligent structure called “Double Bounded Rough Neutrosophic Sets” was defined. The
Attribute based Double Bounded Rough Neutrosophic Sets was implemented for Facial Expression
Detection and the following implications were discussed:

Detecting the facial expression of a person using real time data
Differentiating between Genuine and Fake smiles
Predicting if person might be Depressed

Determining the Degree of Closeness to a particular Attribute/Expression

S S

With the onset of the corona virus pandemic, most people are choosing to wear masks on a
regular basis. By using Attribute based Double Bounded Rough Neutrosophic Sets the
person’s true expression can be detected just by using the feature points in and around the
eyes.

6. To check if a person is faking an expression or trying to cheat during an examination.

The results from our work helped us to understand the importance of Attribute based Double Bounded
Rough Neutrosophic Sets and we were able to apply it for Facial Expression Detection and its various
implications. The future work in this direction is to explore various other applications of double
bounded rough Neutrosophic sets and detection of facial expressions using various other concepts.
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