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1 Introduction

Zadeh was the introducer of the fuzzy set and interval-valued fuzzy theory [2] in 1965. Many
researchers afterward followed the notions of Zadeh. The cubic set was defined by Jun et al. [9, 10]
They used the notion of cubic sets in group and initiated the idea of cubic subgroups. The algebraic
structures like BCK/BCI-algebra was introduced by Imai et al. [1] in 1966. This algebra was a field of
propositional calculus. Many algebraic structures like G -algebra, BG -algebra, etc. [19, 4] are
structured as an extension of Q-algebra. Quadratic B-algebra was investigated by Park et al. [22].
Molodstov gave the concept of soft sets [14] in 1999. Cubic soft set with application and subalgebra
in BCK/BCl-algebra were studied by Muhiuddin et al. [15,16]. Senapati et al. [13] generalized the
concept of cubic set to B-subalgebra with cubic subalgebra and cubic closed ideals. Subalgebra, ideal
are studied with the help of cubic set by Jun et al. [12]. The intuitionistic fuzzy G-subalgebra is
studied by Jana et al. [18]. L-fuzzy G-subalgebra was studied by Senapati et al. [7]. As an extension
of B-algebra, lots of work on BG-algebra have been done by the Senapati et al. [8]. The idea of a
neutrosophic set which was the extension of intuitionistic fuzzy set theory and neutrosophic
probability were introduced by Smarandache [20,21]. The notion of neutrosophic cubic set introduced
truth-internal and truth-external were extended by Jun et al. [11] and related properties were also
investigated by him. Rosenfeld’s fuzzy subgroup with an interval-valued membership function was
studied by Biswas [3]. The characteristics of the neutrosophic cubic soft set were studied by Pramanik
et al. [5]. Cubic G-subalgebra with significent results were investigated by jana et al. [17]. The bipolar
fuzzy structure of BG-algebra was interrogated by Senapati [6]. Neutrosophic cubic soft expert sets

were studied for its applications in games by Gulistan M et al. [23]. Neutrosophic cubic graphs and
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find out the applications of neutrosophic cubic graphs in the industry by defining the model which
are based on the present time and future predictions was studied by Gulistan M et al. [24]. Complex
neutrosophic subsemigroups with the Cartesian product, complex neutrosophic (left, right, interior,
ideal, characteristic function and direct product was observed by Gulistan M et al. [25]. Results
showed the most preferred and the lowest preferred metrics in order to evaluate the sustainability of
the supply chain strategy are studied by Abdel-Basset et al. [26]. Hybrid combination between
analytical hierarchical process (AHP) as an MCDM method and neutrosophic theory to successfully
detect and handle the uncertainty and inconsistency challenges proposed by Abdel-Basset et al. [27].

In this paper, the notion of neutrosophic soft cubic subalgebras (NSCSU) of G-algebras is introduced.
And some relevant properties are studied. This study also discussed the homomorphism of
neutrosophic soft cubic subalgebras and several related properties.

2 Preliminaries
Definition 2.1 [13] A nonempty set Y with a constant 0 and a binary operation * is said to be G-
algebra if it fulfills these axioms.
Gl: t; xt; = 0.
G2: ty * (t; xty) = t,, forall ty,t, €Y.
A G-algebra is denoted by (Y,*,0).
Definition 2.2 [3] A nonempty subset S of G-algebra Y is called a subalgebraof Y if t; xt, € S V
t,t, € S.
Definition 2.3 [3] Mapping t|Y = X of G-algebras is called homomorphism if t(t; * t;) = t(ty) *
T(ty) V t,t, €Y.
Note that if T|Y - X is a g-homomorphism, then t(0) = 0.
Definition 2.4 [11] A nonempty set A in Y of the A = {< t;,9,(t;) > |t; € Y}, is called fuzzy set,
where 9,(t,) is called the existence value of t; in A and 9,(t;) € [0,1].
For a family A; = {< ty,94,(t1) > |t; € Y} of fuzzy setsin Y, where i € h and h is index set, we
define the join (V) meet (A) operations like this:
A A= (igh 0a,)(t1) = sup{9,,|i € h},
and
A Ay = (ié\h 94,)(t1) = inf{9,,|i € h} respectively, V t; €Y.

Definition 2.5 [11] A nonempty set A over Y of the form A = {< t;,d,(t;) > | t; € Y}, is called
IVFS where 9,|Y - D[0,1], here D[0,1] is the collection of all subintervals of [0,1].
The intervals 9at; = [95(t;),9%(t;)] ¥V t; €Y denote the degree of existence of the element
t; to the set A. Also 9% = [1 — 95 (t;),1 — 9% (t;)] represents the complement of 9,.
For a family {A;|i € k} of IVFSsin Y where h is an index set, the union G = iLEJh 9 a;(t1) and the

intersection F = ﬂh 5Ai (t;) are defined below:
i€

G(t1) = (Uien 9a;)(t1) = rsup{Dy, (t,)]i € h}
and
F(ty) = (Nien 9a,)(t1) = rinf{d4,(t;)|i € K}, respectively, V t; €Y.

Definition 2.6 [12] Consider two elements K,,K, € D[0,1]. If K; = [f,f}] and K, = [f;,f]], then
rmax(K;, K,) = [max(f], f; ), max(f{", f;)] which is denoted by K; V" K, and rmin(K;,K,) =
[min(f;, ), min(f}, £)] which is denoted by K; A" K,. Thus, if K; = [f,f"] € K[0,1] for i =

1,2,3, ..., then we define rsup;(K;) = [sup;(f), sup;(f)], i.e, Vi K; = [v; (f7), Vv; (fi)]. Similarly we
define rinf,(K;) = [inf,(f7), inf, ()], i.e, ALK, = [A; (), A (). Now K, > K, < f; > f; and
f > f}. Similarly the relations K; < K, and K; = K, are defined.
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Definition 2.7 [13] A fuzzy set A = {< t;,95(t;) > |t; € Y} is called a fuzzy subalgebra of Y if
Oa(ty *t) = min{O,(t;), 94(t2)} V ty, 8, €Y.

Definition28[22] A pair P, = (A, A) iscalled NCSwhere A = {(t;; Ar(ty), Ai(ty), Ap(ty)) |t; € Y} isan INS in
Y and A = {{ty; Ap(t1), A1 (t1), Ap (1)) t; € Y } isaneutrosophicsetin Y.

Definition 2.9 [3] Let C = {(t;, A(t,),A(t,))} be a cubic set, where A(t;) isanIVFSinY, A(t;) isa
fuzzy setin Y and Y is subalgebra. Then A is cubic subalgebra under binary operation * if it
fulfills these axioms:

C1: A(t; *t;) = rmin{A(t,), A(tz)},

C2: Aty *t3) < max{A(ty), A(ty)} V ty,t, €Y.

Definition 3.0 [14] Let U be an universe set. Let NC(U) represents the set of all neutrosophic cubic
sets and E be the collection of parameters. Let K © E then Px = {(ty, Ae; (t1), Ae; (t1))|t1 € U, € € K},
where A, (t;) = {(Ag,(t1), (A)g, (t1), (A, (t))|t; € U}, is an interval neutrosophic soft set, A (t;) =
{(A&; (t), (A&, (t) (1), E, (t))|ty € U} is a neutrosophic soft set. B, is named as the neutrosophic
soft cubic set over U where P is a mapping given by P|K — NC(U). The sets of all neutrosophic soft
cubic sets over U will be denoted by CJ.

3 Neutrosophic Soft Cubic Subalgebras of G-Algebra

Definition 3.1 Let P, = (Ae; A¢;) be aneutrosophic soft cubic set, where Y is subalgebra. Then Py
is NSCSU under binary operation # if it holds the following conditions:
N1:
Ag;(ty * t) 2 rmin{Ag, (t,), Ag (t2)}
Alei (ty *ty) = rmin{Alei(tl),Alei (t2)}
A, (ty * t5) = rmin{Ag, (t,), Ag, (t2)},
N2:
Ag (ty * t5) < max{Ag, (t,), A, (t2)}
A (ty * t5) < max{Ay, (t,), A (t2)}
A (ty * t) < max{Ag, (t,), Ag (t2)}.
For simplicity we introduced new notation for neutrosophic soft cubic set as
P = (A" 0 = (A% A8) = {(tn, Ag, (1), 2, (t))}
and for conditions N1, N2 as
N1: A%i (t *t) = rmin{A%i (t1)’AQei (t2)},
N2: A2 (t; * t;) < max{Ag, (t1), A3, (t)}-
Example 3.2 Let Y = {0,cy, ¢y, C3,C4,C5} be a G-algebra with the following Cayley table.

% 0 C1 C, C3 Cy Cs
0 0 Cg Cy C3 C2 €1
Cq (o 0 Cs Cy C3 C,
C, Cy o 0 Cs Cy C3
C3 C3 C2 C1 0 Cs Cy
Cq Cq C3 Cy Cq1 0 Cs
Cs Cs Cq C3 Cy (o) 0

mohsin khalid, rakib igbal and said Broumi, Neutrosophic soft cubic Subalgebras of G-algebras



Neutrosophic Sets and Systems, Vol. 28, 2019 262

ANSCS P, = (43, 4¢,) of Y is defined by

* 0 C1 C; C3 Cy Cs

AEi [0.6,0.8] | [0.5,0.7] | [0.6,0.8] | [0.5,0.7] | [0.6,0.8] | [0.5,0.7]

AL |[0.5,0.4] | [0.4,0.3] | [0.5,0.4] | [0.4,0.3] | [0.5,0.4] | [0.4,0.3]

AR 105,0.7] [ [0.3,0.6] | [0.5,0.7] | [0.3,0.6] | [0.5,0.7] | [0.3,0.6],

and

* 0 o Cy C3 Cy Cs

AL, | 03| 05 ] 03| 05| 03|05

AL | 05 | 07 | 05 | 07 | 05 | 07

Agi 0.7 0.8 0.7 0.8 0.7 0.8.

Definition 3.1 is satisfied by the set Py. Thus P = (A3, Ae,) isa NSCSU of Y.

Proposition 3.3 Let = {(t;, A% (t)), Ag, (t1))} isa NSCSU of Y, then V t; €Y, A? (t;) = Ag.(0)
and A, (0) < Ag.(ty). Thus, A% (0) and Ag,(0) are the upper bounds and lower bounds of A%, (t;)
and Agi(tl) respectively.

Proof. For all t; €Y, we have A% (0) = Ag (t; *t;) = rmin{A? (t;), A%, (t)} = A%, (1) = A}, (0) =
Ag,(ty) and A3, (0) = Ag, (t; * t;) < max{Ag, (t,), Ag, (t)} = Ag,(t) = Ag,(0) < Ag, (ty).

Theorem 3.4 Let P, = {(tl,AQei (tl),kgi (t1))} be a NSCSU of Y. If there exists a sequence {(t;),} of Y
such that limy_q,A% ((t;)y) = [1,1] and lim,_eAg, ((t)n) = 0. Then A%, (0) = [1,1] and A, (0) = 0.
Proof. Using Proposition 3.3, A¢.(0) = Aq.(t;) V t; €Y, ~ A (0) = A%.((t;),) for n € Z*. Consider,
[1,1] = AG,(0) = limy_q,A% ((t)n) = [1,1]. Hence, A (0) = [1,1]. Again, using Proposition 3.3,
A0 <A (t) V. €Y, A (0) <A ((ty)n) for neZ* . Consider, 0<Ag(0) <
limy, e, ((t1)n) = 0. Hence, Ag,(0) = 0.
Theorem 3.5 The R-intersection of any set of NSCSU of Y is also a NSCSU of Y.
Proof. Let P, = {(t1'A%i'7\gi)|t1 € Y} where i € k, be set of NSCSU of Y and t;,t, € Y. Then

(NAZ)(t; * t) = rinfAg, (t; * t;)

> rinf{rmin{Ag, (t,), Ag, (t2)}}

= rmin{rinfAj, (t,), rinfA?, (t;)}

= rmin{(N A%)(t,), (N A%)(6,)}

= (N AL) (4 * ) = rmin{(N A%)(t,), (N A2)(t))

and

(V}\gi)(tl *ty) = SUPAgi (ty *t2)

< sup{max{A2,(t,), 1, (t,)}}

= max{supA?, (t,), supA?, (t,)}

= max{(VA%) (t,), (VAS) ()

= (VAL (6 * &) < max{(VAS)(t), (VAS) ()},
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which show that R-intersection of P, isa NSCSU of Y.

Remark 3.6 This is not compulsary that R-union, P-intersection and P-union of NSCSU are also

the NSCSU.

Example 3.7 Let Y = {0, c;, c;, C3,¢4,C5} be a G-algebra with the following Cayley table.

% 0 Cq Cy C3 Cy Cs
0 0 Cy Cq C3 Cy Cs
Cq C1 0 Cy Cs C3 ()
C; C; Cq 0 Cy Cs C3
C3 C3 Cy Cs 0 €y C2
Cy Cy Cs C3 C, 0 Cq
Cs Cs C3 (o C1 C; 0.

Let A, = (Agl,/lgl) and A,,

= (A2, 7)) are neutrosophic soft cubic sets of ¥ defined by

0 C1 Cy C3 Cy Cs
A, T [0.5,0.4] [0.1,0.2] [0.1,0.2] [0.5,0.4] [0.1,0.2] [0.1,0.2]
Ag,l [0.6,0.7] [0.2,0.3] [0.2,0.3] [0.6,0.7] [0.2,0.3] [0.2,0.3]
A F [0.7,0.8] [0.3,0.4] [0.3,0.4] [0.7,0.8] [0.3,0.4] [0.3,0.4]
A,,T [0.6,0.7] [0.2,0.3] [0.2,0.3] [0.6,0.7] [0.2,0.3] [0.2,0.3]
Al [0.5,0.4] [0.1,0.2] [0.1,0.2] [0.1,0.2] [0.5,0.4] [0.1,0.2]
Ag,F [0.4,0.3] [0.2,0.4] [0.2,0.4] [0.2,0.4] [0.4,0.5] [0.2,0.4]
and

0 cy Cy C3 Cy Cs

Ae, T 0.2 0.8 0.8 0.3 0.8 0.8

Ae, 1 0.3 0.7 0.7 0.4 0.7 0.7

Ae, F 0.5 0.6 0.6 0.5 0.6 0.6

Ae, T 0.3 0.5 0.5 0.5 0.4 0.5

Ae, | 0.4 0.7 0.7 0.7 0.5 0.7

Ae, F 0.5 0.9 0.9 0.9 0.6 0.9

Then A, and A, are neutrosophic soft cubic subalgebras of Y but R-union, P-union and P-

intersection of A, and A, are not neutrosophic soft cubic subalgebras of Y. (U A%i)(c3 *Cy) =

([0.2,0.5],[0.2,0.3],[0.3,0.4]), =
(0.1,0.2,0,3), = max{(AAg)(c3), (AAg)(ca)}-

rmin{(U AQei)(c3), (U Aii)(c4)} and (/\?\gi)(c3 *cy) = (0.7,0.6,0.8), £
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We give the conditions that R-union, P-union and P-intersection of NSCSU are also NSCSU. Which
are at Theorem 3.8, 3.9, 3.10.

Theorem 3.8 Let P, = {(tl,A%i,lgthl €Y} where i €k be set of NSCSU of Y, where i€k. If
inf{max{kgi (tl),kgi ()} = max{inf)\gi(tl),inf)\gi (tz)} V t; €Y. Then the P-intersection of Py is also
aNSCSU of Y.

Proof. Suppose that P, = {(tl,Aii,kgi)lt1 €Y} where i€k be set of NSCSU of Y such that
inf{max{kgi (tl),kgi )} = max{inf)\gi (tl),inf)\gi (t2)} Vv t,t; €Y. Then for t;,t, €Y. Then
(N AL (t; * tp) = rinfAg (t; * t;) = rinf{rmin{A? (t,), A%, (tz)}} = rmin{rinfAg (t,), rinfAg (t,)} =
rmin{(N A%)(62), (N AS)(E)} = (N AL (4 * tp) = rmin{(N A%)(6), (N A% (&) and
(AR (6 * £) = infg, (& * £5) < inf{max{Z, (62), A8, (62)}) = max{ine, (t,), infA%, (t,)} =
max{(AAg) (t1), (AR (t2)} = (AR (ty * tz) < max{(ARg)(ty), (AR (t;)}, which show that P -
intersection of P, is a NSCSU of Y.

Theorem 3.9 Let P ={(t;, A%, A2)|t; €Y} where i€k be set of NSCSU of Y . If
sup{rmin{Ag, (t;), A¢, (t;)}} = rmin{supAg (t,),supAg, (t,)} V t;,t, €Y. Then the P-union of Py is
also a NSCSU of Y.

Proof. Let P = {(t;,As,Ae)It; €Y} where i€k be set of NSCSU of Y such that
sup{rmin{Ag, (t;), A¢, (t;)}} = rmin{supAg,(t;), supA¢,(t;)} V t; €Y. Then for t;,t, €Y, (U Ag)(t; *
tz) = rsupAg, (t; * t;) = rsup{rmin{Ag,(t;), Ag,(tz)}} = rmin{rsupAy, (t;), rsupAg, (t;)} =

rmin{(U Ag)(t1), (U Ag)(t2)} = (U AL (ty * t5) = rmin{(U Ag)(t1), (U A)(t2)}

an (V?xgi)(t1 *t;) = suplq (t; *t;) < sup {max{lgei (t1), Ae, (tz)}} = max{sup)\‘éi (t1), supAg, (t)} =

max{(ngi)(tl), (ngi)(tz)} = (V?xgi)(tl *xt,) < max{(ngi)(tl), (V?\ﬁi)(tz)}, which show that P-union
of P, isa NSCSU of V.

Theorem 3.10 Let P = {(t;, A, A¢.)|t; € Y} where i € k be set of NSCSU of Y. If

inf{max{A¢, (t), A, (t2)}} = max{infag (t,), infAg, (t;)} and sup{rmin{Ag (t,), A, (t2)}} =

rmin{supAy, (t,), supAs (t,)} V t;,t, € Y. Then the R-union of $y is alsoa NSCSU of Y.

Proof. Let H = {(t;, A%, Ae)It; €Y} where i€k be set of NSCSU of Y such that
inf{max{A¢, (t;), A, (t2)}} = max(infAg, (t;), infAg, (t,)}  and  sup{rmin{Ag(t,), A%, (t2)}} =
rmin{supAg, (t;),suphe, (t1)} V t; €Y. Then for t;,t, €Y, (U A%)(t; *t;) = rsupAg (t; xt;) =
rsup{rmin{Ag, (t;), A¢, (t2)}} = rmin{rsupAg, (t;), rsupAg, (t;)} = rmin{(U A?)(ty), (U Ag)(t2)} =

U A%i)(tl * 1) = rmin{(U A%i)(tl): U A%i)(tz)} and (A)\gi)(t1 *ty) = inf)\gi(ﬁ *ty) <
inf{max{Aq, (t1), A, (t2)}} = max{infAg, (t,), infAg (t2)} = max{(AA) (t1), (AR (t2)} = (AXg))(ty * t5) <
max{(/\lgi)(tl), (/\Agi)(tz)}, which show that R-union of P, isa NSCSU of Y.

Proposition 3.11 If a neutrosophic soft cubic set P, = (Aii, Agi) of Y is a subalgebra. Then V t; €Y,
A% (0% ) = A2 (t;) and Ag (0 *t;) < Ag(ty).
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Proof. For all t; €Y, Ag(0*t;) =rmin{A} (0),A (1))} =rmin{A} (t; *t;),Aq (t)} =
rmin{rmin{Ag,(t,), Az, (t,)}, A%, (t1)} = A%, (t;) and similarly A3 (0*t;) < max{Ag (0),A3 (t,)} =
A2 (t).

Lemma 3.12 If a netrosophic soft cubic set P, = (A%i,lgi) of Y is a subalgebra. Then P (t; *t,) =
Pty * (0% (0%t,))) V ty,t, €Y.

Proof. Let Y bea G-algebra and t;,t, € Y. Then t, = 0 * (0 * t;) by ([9], Lemma 3.1). Hence Aii (tq *
ty) = Ag(ty * (0% (0% t5))) and Ag(ty * tp) = Ag,(ty * (0 * (0 % t))). Therefore, P (t * t;) = Pr(ty *
(0% (0*t3)))

Proposition 3.13 If a NSCS % = (Ag,Ae,) of Y is NSCSU. Then V t,t, €Y, A2 (t; * (0 *t;)) =
rmin{Ag, (t1), Ag, (t2)} and Ag;(t; * (0 * t5)) < max{Ag, (t,), Ag, (t2)}-

Proof. ILet t;,t; €Y. Then we have A%i(t1 *(0xty)) = rmin{Aii(tl), AQei 0t} =
rmin{A%, (t,), A% (t)} and 28 (t; * (0 *t,)) < max(q (6), 0, (0 + tp)} Smax (A (6) 28 (&)} by

Definition 3.1 and Proposition 3.11. Hence proof is completed.

Theorem 3.14 If a NSCS P, = (A%i,lf!i) of Y satisfies the following conditions. Then P, refers to a
NSCSU of Y.

L Ag(0%t) = Ag (t;) and Ag (0% t;) SAg.(X) V t; €Y.
2. Aty * (0% t3)) = rminfAg (t;), Ag, (t2)} and Ag,(t; * (0 * t)) < max{Ag (t1),Ag,  (t2)} V
tl' tz ey.

e
Lemma 312, A% (t; *t;) = A% (t; * (0 * (0 * t5))) = rmin{A2 (t;), A% (0 * t;)} > rmin{A2, (t,), A% (t,)}
and Ag (ty * t;) = Ag;(ty * (0 * (0 * t5))) < max{Ag, (t1),2¢,(0 * t5)} < max{Ag,(ty), Ag, (t2)} V ty,t; €Y.
Hence P, isNSCSU of Y.

Proof. Assume that the neutrosophic soft cubic set P, = (Aei, ?\ﬁi) of Y satisfies the above conditions. Then by

Theorem 3.15 A neutrosophic soft cubic set P = (Ag,Ae,) of Y is NSCSU of Y iff (A3)7, (As)"

and kgi are fuzzy subalgebras of Y.

Proof. Let (A3)”,(As)" and Ag are fuzzy subalgebra of Y and t;,t, €Y then (A3)7(t; *t;) =
min{(A3)~(t), (A" (t2)} . (AeD*(ty *t2) = min{(AL)*(t,), (AL)*(t2)}  and  2Ag(ty *tp) <
max{lgi (t1), )\gi (t2)} . Now, A%i (ty*ty) = [(Aeei)_(t1 *ty), (A%i)+(t1 *t3)] 2
[min{(A¢,)™ (t1), (A?) ™ (t2)}, min{(A)* (t1), (AZ)* (t2)}] = rmin{[(AZ) ™~ (t,), (AL)* (t1)]
(AR (t2), (AR (t)]} = rmin{Ag (t;), Ag, (t,)}. Therefore, P isNSCSUof Y.

Conversely, assume that , isaNSCSUof Y.Forany ty,t; €Y, [(Aii)'(t1 *t,), (Aii)"(t1 *t,)] = A%i(t1 *
ty) 2 rmin{Ag, (t,), A%, (t2)} = rmin{[(A?) " (t1), (AeD* (t)],
[(A%)™(t2), (A2)* (t)]} = [min{(A?)™(ts), (A%,)™(t2)}, min{(AG)* (t1), (AZ) T (t2)}]. Thus, (A%)™(t; *
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tz) 2 min{(A3)~(t1), (AL)(t2)} , (Ae)*(t1*tz) = min{(Ag)*(ty), (Ag)* (t2)} and 2g(ty *t;) <
max{Ag, (t,), Ag, (t2)}. Hence (A2)7, (A3)" and A, are fuzzy subalgebras of Y.

Theorem 3.16 Let P, = (A%i,lgi) be a NSCSU of Y and let n € Z*. Then

i) Aii(ﬂn ty*ty) = A%i (t;) for n € 0.

i) A5 (IInt; *t;) < Ag (t;) for n € 0.

iii) A, (LInt; *t;) =A% (t;) for n € E.

iv) kgi(]_[nt1 xt) = A%i(tl) for n € E.
Proof. Let t; €Y and suppose that n is odd. Then n=2p —1 for some p € Z*. We prove the
theorem by induction.
Now  Ag(t; *t) =A% (0) 2 AQ(t,) and  Ag(t; *t) =245 (0) <Ag(t;) . Suppose that
A?ei((HZp—ﬂ (ti*ty)) =2 Aii(tﬂ and Agi((HZp—l) (ty xt1)) < Agi (t1) . Then by assumption,
AQei((HZ(p+1)—1(t1 *ty)) = AQei((H2p+1) (t1*t)) = AQei(HZp—l PRICEICER)) A%i((HZp—l) (ty *
t)) = A%i(tﬂ and }\(Qei((HZ(p+1)—1 (ty*ty)) = }\gi((HZp+1 (ty*xty)) = Agi(Hqu PRICEICER"D))
Aﬁi zp-1 1 *t) < kgi (t;), which proves (1) and (2). Similarly, cases (3) and (4) has the same proofs.

These sets denoted by I Al and I;\gi are subalgebras of Y. Which were defined as

Lpe =t € YIAL (t2) = A, (00}, e ={t € YIAG, (1) = ¢, (0)}.
Theorem 3.17 Let P, = (Agi,lﬁi) be a NSCSU of Y. Then the sets 1 s and 17‘31 are subalgebras of Y.
Proof. Let t,t, € IAgi. Then A (t;) = A%, (0) = Az (tz) and so, Ag (t; *t;) = rmin{Ag (t,), Aq, (t2)}
= A%i(O). By using Proposition 3.3, we know that A%i (t; xty) = AQei (0) orequivalently t; *t, € I AL

Again suppose ti,t, € IAg_. Then Kgi(tl) =7\§i(0) =7\§i(t2) and so, ?\gi(tl*tz)s

max{kgi (t), Aﬁi (t2)} =7\§i (0). Again by using Proposition 3.3, we know that Aﬁi (ty*ty) = Agi (0) or

equivalently t; *t, € I,oc. Hence thesets I,e and A,c are subalgebras of Y.
€j €j €j

Theorem 3.18 Assume B is a nonempty subset of Y and P, = (A%i, Agi) be a neutrosophic soft cubic

[&rF,0 ET i), ifty €B AT () = Yo ift; €B
, , otherwise, &1 7 |§
[Br,E,» BriE,]

Y [&r1e, TR, ) [Brir,, Brie,] € D[0,1] and vy, 8, € [0,1] with [&r1r,,§r1E,] = [BriF,, Brir,] and
Yo < 8,. Then Py is a nuetrosophic soft cubic subalgebra of Y < B is a subalgebra of Y. Moreover,

. e —
setof Y defined by Ag(t;) = { . otherwise,

Tpe = B= Lo .

Proof. Let P, be a NSCSU of Y. Let t;,t, € Y such that t;,t, € B. Then Aii(tl*tz) >

rmin{Agi(tﬂ'Agi(tz)} = rmin{[&r 15, ST, ) [Srur, STuE 1Y = [Brury, Smur,] and Agi(t1*t2) <

max{Ag (t,), Ag, (t2)} = max{y,, vo}= Y, Therefore t, xt, € B. Hence, B is a subalgebra of Y.

Conversely, assume that B is a subalgebra of Y. Let t;,t, € Y. Now take two cases.
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Case 1: If t;,t, € B, then t; *t, € B, thus A2 (t; *t;) = [Ep1r,, §rir,] = rmin{Ag (t,), A¢, (t,)} and
Agi (t1xt) =y, = max{kgi (t1)'7\§i (t2)}-

Case 2: If t; & B or t, & B, then A2 (t; *t;) = [Bryr,, Brir,] = rmin{A? (t)), A% (t;)} and Ag (t; *
t;) < 8, = max{Ag, (t;), ¢, (t;)}. Hence % is a NSCSU of Y.

Now, IA§_={t1 €y, Aii(ﬁ) = A%i(O)}= {ti ey, A?ai(tl) = [&r1r, ST ir,]} =B and ngf{tl €y, )\gi (t) =

Ag, (0)}={t1 € Y,2,(t1) = yo}=B.

Definition 3.19 Let P, = (A%i,lgi) be a neutrosophic soft cubic set of Y . For
[Wr,, Wr, ], [Wi,, Wi, |, [Wg,, W, | € D[0,1] and tr,t;,tg, € [0,1] , the set
U(A%il([WTlﬂsz]' [wi,, Wi, ], [Wg,, Wg, 1)) = {t; € Y|AF,(t;) = [wr,, wr,], A%, (t;) = [wy,, wy, ], AL (t;) =
[Wg,, wg,]} is called upper ([wr,, wr,], [wi,wy,], [Wg,, wg,]) -level of P and L(A§i|(tT1,t11,tF1))
={t; € Y|AL,(t,) < tg, Ay, (1) <ty AL (ty) < tg,} is called lower (tr,,ty,, tg,)-level of Py.

For convenience, we introduced the new notions for upper level and lower level of % as,
U(A%il[WT,I,FlﬁwT,I,F2]={t1 € Y|A$_~i(t1) > [Wrip,, WriF,]} is called upper ([wrr,, wrF,])-level of P

and L(Ag, |ty r,)={t; € Y|Ag,(t;) < tryp,} is called lower tr;,-level of B.

Theorem 3.20 If P, = (A%i,lgi) is neutrosophic soft cubic subalgebra of Y, then the upper

[Wr,F,, Wt F,]-level and lower ty g, -level of Py are subalgebras of Y.

Proof. Let t;,t, € U(Ag|[Wrir, Wrir,]) - Then AQ(t)) = [wrp, wrir,] and AR (t;) =
[Wrir, Wrie, ] It follows that AR (t; *t;) = rmin{A? (t,), A% (t)} = [Wrpp, Wrip,] = ti*t, €
U(AS, | [Wr,1k,» WriE, ). Hence, U(AR |[Wrir,, Wrp,] is a subalgebra of Y.

Let t,,t, € L(?\f}iltTlllpl). Then Kgi(tl) < trr, and kﬁi(tz) < tyir, - It follows that Agi(tl *t,) <
max{Ag (t,),Ag, (t2)} < trpp, = t; *t, € L(Ag|trir,). Hence L(AG |ty r,) is a subalgebra of Y.

Corollary 3.21 Let H=(Ag,A;) is NSCSU of Y . Then A([Wrir, Wrip,) trie,) =
U(A?ail[WT,LFl'WT,I,FZ]) n LO\thT,LFl):{H € YIA?ai (t) = [WT,I,FlfWT,I,FZ]')\gi (t1) < tryr,} is a subalgebra
of Y.

Proof. We can prove it by using Theorem 3.20.
This example shows that the converse of Corollary 3.21 is not true
Example 3.22 Let Y = {0, ¢y, ¢,, C3,C4, €5} be a G-algebra in Remark 3.6 and P, = (A%i, ?\gi) isa

neutrosophic soft cubic set defined by

0 C Cy Cs3 Cy Cs
AL, [0.3,0.5] [0.3,0.4] [0.3,0.4] [0.3,0.4] [0.1,0.2] [0.1,0.2]
A%, [0.5,0.7] [0.2,0.3] [0.2,0.3] [0.5,0.7] [0.1,0.1] [0.1,0.1]
AL, [0.4,0.6] [0.2,0.5] [0.2,0.5] [0.2,0.5] [0.1,0.2] | [0.1,0.2],
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and
0 o Cy C3 Cy Cs
AEi 0.1 0.4 0.4 0.6 0.4 0.6
AIei 0.2 0.5 0.5 0.7 0.5 0.7
Agi 0.3 0.6 0.6 0.8 0.6 0.8

We take [wrpp, wrpp,] = ([0.41,0.48],[0.30,0.36],[0.13,0.17]) and tryp, = (0.3,0.4,0.5). Then
A([Wrir, WriE, ) trie,) = U(A%i|[WT,l,Fl'WT,I,FZ])ﬂLO\gi|tT,1,F1) = {t: € Y|A%i(t1) 2
[Wrp, Wrir, b Ae, (1) < trip,} = {0,¢1,¢2,¢33N{0,¢1, €5, ¢4} = {0, ¢, ¢,} is a subalgebra of Y, but H, =
(A%, Ag,) is mot a NSCSU, since Af, (¢; * ¢3) = [0.2,0.3] £ [0.4,0.5] = rmin{Af, (c;), A, (c3)} and A, (c; *
cy) = 0.4 £ 0.3 = max{Ag, (c;), A¢,(ca)}.

e

Theorem 3.23 Let P, = (Aei, Agi) be a neutrosophic soft cubic set of Y, such that the sets
U(AS, [[Wr1p,» Wrir,]) and L(Ag |tr;r,) are subalgebras of Y for every [wrr,, Wr,r,] € D[0,1] and
trir, € [0,1]. Then Py = (A%, Ag,) is NSCSU of Y.

Proof. Let U(A¢, | [Wr,r,, Wr,1r,])and L(Ag, |ty r,) aresubalgebrasof Y forevery [wr,ir,, W, r,] € D[0,1] and
trir, €[0,1] . On the contrary, let (t;)o,(t2)o €Y be such that A2 ((t)o * (t2)o) <
rmin{Aii((tﬂo)'A%i((tz)o)}- Let AQei((t1)o) = [b1, $2], A%i((tz)o) = [¢3, $4] and A%i((tﬂ)o *(t2)o) =
[WT,I,Fl' WT,I,FZ]- Then [WT,I,Flr WT,I,FZ] < rmin{[¢, O, ], [P3, D4} = [min{d,, 3}, min{d,, db4}]. So,

wrp, < min{ey, ¢} and  wrpp, < min{e, ¢, Let us consider, [py, pa] =5 [A% (1o * (t2)o) +
rmin{AQei((tﬂo),A%i((tz)o)}] = %[[WT,I,FIrWT,I,FZ] + [min{¢,, ¢3}, min{d,, d4}]] = [% (Wr e, +
min{¢;, §s}), > (Wr 5, + min{dz, ;})]. Therefore, min{ds, ¢3} > p; = 5 (Wr i, + min{dy, ¢3}) > wryp,

and min{¢,, ¢4} > p, = ;(WT,I,F2 + min{¢,, d4}) > wr g, Hence, [min{¢q, ds3}, min{d,, d,}] >

[P1,P2] > [Wrir,, Wrir,] SO that (ty)g * (t2)o & U(A%iI[WT,l,Flin,I,FZ]) which is a contradiction since
Ag, ((t1)0) = [d1, 2] = [min{dy, ds}, min{dy, b4}] >[pppz]  and AL ((t2)o) = [ds, dal 2
[min{¢y, 3}, min{d,, d4}] > [py, p2]. This implies (t;)q * (t2)o € U(AL, [[Wrir,, Wi, ]1). Thus A2 (t; *
t;) = rmin{Ag, (t;), Ag, (t2)} V ty, t; € Y.

Again, let (t;)o, (t2)o € Y besuch that 7‘&(("1)0 * (t2)o) > max‘p\gi((tl)o)» 7\31(0)}- Let 7\gi((tﬂo) =
NT,LF, Agi((tz)o) =T, and 7\%1((%)0 * (t2)0) = trip,- Then trp, > max{{rr,.rF,}- Let us consider

trir, = %[)\gi((tﬂo * Vo) + max{kgi((tl)o), )\gi (0)}]. We get that trip, = %(tT,I,Fl + max{Qr r,, rF, -

1 1
Therefore,  Grpp, < trip, = E(tT,l,Fl + max{Qrr,, Grip,)) <trpe, and  Crpp, <trpp, = 2 (trir, +

max{Grir,, rir,}) < tror,. Hence, max{Grir,,Crir,} < trir, <trir, = }\gi((tﬂo' (t2)0), so that (t;)o *
(t2)o € L(AgiItT,I,Fl) which is a contradiction since )\Qei((tl)o) = Crir, < max{Qrr,, rip,) < trie, and

7\gi((tz)o) = Crur, < Max{Qrir,, Oror,} < trir,. This implies (t;)o, (t2)o € L()\giltT,l,Fl)- Thus 7\§i (ty *
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ty) < max{kﬁi (tl),kgi (t2)} V t1, t, € Y. Therefore, U(A%i|[WT‘LF1,WT,LF2]) and L()\gi|tT,LF1) are subalgebras of
Y.Hence, P, = (A%i,kgi) isSNSCSU of Y.

Theorem 3.24 Any subalgebra of Y can be consider as both the upper [wr g, W F,]- level and

lower tr g, -level of some NSCSU of Y.

Proof. Let WV, be a NSCSU of Y, and P be a neutrosophic soft cubic set on Y defined by

e _ {[ET,LFl:ET,LFZ] if t; € N e — {BT,I,Fl if t, € M

e [0,0] otherwise.” 0 otherwise .

Y [&11F,, ST, ] € D[0,1] and Br;r, € [0,1]. We consider the following cases.

Casel: If V t,t, € Ny then A%i (t1) = [Briry ST, Agi (t1) = Bryr, and AQei (t2) = [§riry STIE,]
7\§i (t2) = Brip,- Thus A%i (ty * t3) = [Er1ry ST1F, ] = rMin{[&r 1k, ST 1F, ] (&L, ST E, 1} =
rmin{A‘;)_.i(tl),A%i (t2)} and 7\(7; (t1 * tz) = Brir, = max{Brir,, Brir,} = max{?\ﬁi(tl), Agi(tz)}-

Case2: If t; € Ny and t, & WV, then A%i(tﬂ = [&r1r, STE, ] Agi(tﬂ = Bryr, and Aii(tz) = [0,0],
A (tz) = 1. Thus Ag,(t; * t;) = [0,0] = rmin{[&r,r,, 1,15, [0,0]} = rmin{Ag (t;), A, (t2)} and Ag,(t; *
tz) < 1= max{Br,r,, 1} = max{Ag, (t1), A, (t2)}-

Case3: If t; ¢ Vi and t, € N, then AR (t)) =[0,0], Ag(t;) =1 and A¢(t)) = [Erir, §rir,],
Agi(tz) = Brir, - Thus Agi(tl *t;) = [0,0] = rmin{[0,0], [§riF,, STir,1} = rmin{Aii(tl),Agi(tz)} and
Mg, (ty * tp) < 1= max{1, By, } = max{Ag, (t;), Ag, (t2)}.

Case4: If t; & Ny and t, & Vi, then Ag (t;) =[0,0], A (t;) =1 and A} (t,) =[0,0], Ag (t;) = 1.
Thus A%i(t1 *t,) = [0,0] = rmin{[0,0],[0,0]} = rmin{A‘ii(tl),AQei(tz)} and Aﬁi(tl xt) < 1=
max{1,1} = max{Ag, (t;), A, (t;)}. Therefore, Py is a NSCSU of Y.

Theorem 3.25 Let Vy, be a subset of Y and P, be a neutrosophic soft cubic set on Y which is given
in the proof of Theorem 3.24. If P is realized as lower level subalgebra and upper level subalgebra

of some NSCSU of Y, then N isa neutrosophic soft cubic one of Y.

Proof. Let P be a NSCSU of Y, and t,t, € M. ThenAg (t;) = Ag.(t)) = [Erir, >&rir,] and
2 (t) = 28, (t2) = By, Thus A2, (1 * 1) = rmin{A2, (t,), A2 (1)) =
rmin{[ET,l,Fl' ET,I,FZ]' [ET,I,Fl' ET,I,FZ]} = [ET,LFlr ET,I,FZ] and Agi (ty *ty) < max{?\ﬁi (t1), 7\51 (t) =

max{Brr,, Brir,} = Brir, @t ¥t € Ny.. Hence 2V is a neutrosophic soft cubic one of Y.

4 Homomorphism of Neutrosophic Soft Cubic Subalgebras

Suppose T be a mapping from a set Y into a set Y and P=(Aq,, A,) be a neurosophic soft cubic setin Y.
Then the inverse-image of Py is defined as T*(Py) = {(ts, T (AZ), T Qe )|ty € Y} and T2 (AS)(ty) =
A, (t(t,)) and T (A (t1)=Ag, (T(ty)). Itis dear that T=*(Py) is aneutrosophic soft cubic set.

Theorem 4.1 Let T|Y — X is a homomorphic mapping of G-algebra. If P = (A3, Aq.) is a NSCSU
of X. Then the pre-image ™ (P)={(t;, T (A}), T (X)) It; € X} of P under T isa NSCSU of Y.
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Proof. Assume that P = (A3, Xe,) is a NSCSU of Y and t;,t, €Y. Then T '(Ag)(t; *t;) =
A%, (t(ty * 1)) = Ag, (t(ty) * T(tz)) = rminf{A? (t(t,)), Ag, (t(t2))} = rmin{t™* (A (t,), T (A%, ) (t2)}
and TG (b * 1) = Ag, (T(ty * £)) = Ag, (t(ty) * T(t2)) < max{Ag, (t(ty)), Ag, (t(t2))} =
max(t1(A%)(t,), T (A8)(t,)}. Hence T1(F) = {(t;, T2 (A%), T 1 (A2))It, € Y} is NSCSU of Y.

Theorem 4.2 Let t|Y - X is a homomorphic mapping of G-algebra and $ = (Ai],,lgj) isa NSCSU
of X where jek . If inf{max{kgej (tz),Agj O} = max{infkg], (tz),infkg], (t;)} VvV t, €Y. Then

T_l(r'llﬁ P, isa NSCSU of Y.
j
Proof. Let F = (A%i,kgej) be a NSCSU of Y where j€ek  satistying
inf{max {?\gj (ty), Agi (tz)}} = max{infkgej (tz),infkgej (t;)} V t; €Y. Then by Theorem 3.8, Elﬁ Py is a
NSCSU of Y. Hence T_I(OEE P) is also a NSCSU of Y.

j
Definition 4.3 A neutrosophic soft cubic set P, = (Af_.i, kf_.i) in Y is said to have sup-property and inf-

property if for any subset S of Y, 3 sy € T such that A% (so) = rsupAg,(s,) and Ag,(so) = inf Ae, (to)
s 0

So€
respectively.
Definition 4.4 Let t be the mapping from the set Y to the set X. If B, = (Aii,lgi) is neutrosphic
cubic set of Y, then the image of P, under t denoted by t(#) and is defined as
T(PO={(t1, Trsup (A, Tinf(Ag))[ts € Y}, where

Ay (), if Tt #

Trsup(A%i)(tZ) = { tET(tp)
[0,0], otherwise,

and

. 2 (), O TE) # ¢
Tinf()\ei)(tZ) =t eti(ty)
1, otherwise .

Theorem 4.5 Assume t|Y - X is a homomorphic mapping of G — algebraand P, = (A%i,lgi) isa
NSCSU of Y, where i € k. If inf {max{}q,(t;), e (t))}} = max{infAg (t,),infAg (t)} V t; €Y.

Thent(Np Py) isaNSCSUof Y.
ik
Proof. Let P = (Ag,As) be NSCSU of Y where i€k satisfying inf{max{Ag (t;), A (t)}} =
max{inf Ag (t,), inf A, (t,)} V t; € Y. Then by Theorem 38, Np Py is a NSCSU of Y. Hence t(Np P) is a
iek iek

NSCSUof Y.

Theorem 4.6 Suppose T|Y — X is a homomorphic mapping of G-algebra. Let H, = (AQi,?\gi) be

e

NSCSU of Y where i € k. If rsup{rmin{A}, (t,), A¢, (t,)}}= rmin{rsupAg (t,), rsupA? (t,)} V ty,t, € X.

Then t(Up Py) isaNSCSU of X.
iek
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Proof. Let P = (A%i,lﬁi) be NSCSU of Y where iek satisfying

rsup{rmin{Af3i (tl),Af3i (tz)}}=rmin{rsupA?ei (ty), rsupA‘fei (t.)} V t, t, € Y.Then by Theorem 3.8, Up Py

iek

isa NSCSU of Y. Hence t(Up ) isaNSCSUof X.

iek

Corollary 4.7 For a homomorphism t|Y — X of G-algebras, these results hold:

1. If v i€k, P are NSCSU of Y, then t(Ng (Py)) is NSCSU of X
iek

2. If Vv i€k, N are NSCSU of X, then t=*(Ng (M) is NSCSU of Y.
iek

Proof. Straigtforward.

Theorem 4.8 Let T be an isomorphic mapping from a G-algebra Y to a G-algebra X. If P isa
NSCSU of Y. Then 1 1(t(#)) = Py

Proof. For any t; €Y, let t(t;) = t,. Since T is an isomorphism, t1(t;) = {t;}. Thus T(B)(t(ty)) =

1(P)(ty) = . Etgl(t )ﬁk(tl) = P (t,). For any t, €Y, since t is an isomorphism, t™(t;) = {t;} so
1 2

that t(t;) = t,. Thus (P (t;) = Pe(t(ty)) = Pi(ty). Hence, T 1(t(F)) = v (Py) = P

5. Conclusions
In this paper, the concept of neutrosophic soft cubic subalgebra of G-algebra was investigated
through several useful results. Homomorhic properties of NSCSU were also investigated. For future

work this study will provide base for t-soft cubic subalgebra, t-neutrosophic soft cubic subalgebra.
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