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1. Introduction

Neutrosophic set is a part of neutrosophy which studies the origin, nature, and scope
of neutralities, as well as their interactions with different ideational spectra. Neutrosophic
set is a powerful general formal framework that has been recently proposed. The theory of
neutrosophy and neutrosophic set was introduced by Florentin Smarandache in 1999 [18]. The
neutrosophic set is the generalization of classical sets, fuzzy set [22] and so on. The con-
cept of fuzzy set and intuitionstic fuzzy set unsuccessful when the relation is indeterminate.
Neutrosophic sets are powerful logics designed to facilitate understanding of indeterminate
and inconsistent information. A neutrosophic set consider truth-membership, in-determinacy-
membership and falsity-membership which are completely independent. A neutrosophic set
N is classified by a Truth membership T, Indeterminacy membership Iy, and Falsity mem-
bership function Fy, where Tx, Iy, andF)y are real standard and non-standard subsets of
10—, 17
Wang etal. [20] introduced the notion of interval-valued neutrosophic sets. The interval neutro-
sophic set are characterized by an interval memebership degree, interval indeterminacy degree,

and interval nonmembership degree.
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Neutrosophic sets and methods have recently gained popularity in a variety of domains
and it has lot of applications. For example, on similarity and entropy in neutrosophic sets
were discussed in [16]. Subsequently, on entropy and similarity measure of interval valued
neutrosophic sets was discussed in [1]. Multi-criteria decision-making method based on a
cross-entropy with interval neutrosophic sets were discussed in [19]. An interval neutrosophic
linguistic multi-criteria group decision-making method and its application in selecting medical
treatment options were discussed in [13].

The concept of single valued and interval valued neutrosophic set applied in automata
theory. It was introduced by Tahir Mahmood et. al in [14,|15]. Consequently, J. Kavikumar
et.al were introduced neutrosophic general finite automata and composite neutrosophic finite
automata [11,/12]. Later, the concept interval valued neutrosophic automata applied in re-
trievability, subsystem, strong subsystem and characterizations of submachines were discussed
in [4H7].

Products is important concept in automata theory since it produce a new automata
with the existing automata by taking products. The Cartesian composition of automata was
discussed by W. Dorfler in 1977 [3]. Cartesian product of fuzzy automata was discussed by D.
S. Malik et.al [17]. Later number of authors have worked in these lines. Generalized products
of directable fuzzy automata were discussed in [8]. Generalized products of A-synchronized
fuzzy automata were discussed in [9]. Cartesian products of interval neutrosophic automata
were discussed in [10].

In this paper, we introduce direct and restricted direct prodcut of interval neutrosophic
automata and prove that direct and restricted direct product of cyclic, retirevable of interval

neutrosophic automata are cyclic, retirevable interval neutrosophic automata.

2. Preliminaries

Definition 2.1. [18] Let U be the universe of discourse. A neutrosophic set (NS) N in U is
defined by a truth membership T, indeterminacy membership Iy and a falsity membership
Fy, where T, Iy, and Fy are real standard or non-standard subsets of ]0~, 17 [. That is

N ={{(z,(Ty(z), IN(z), FN(2))),z € U, Tn,In,Fy €]07,17[ } and

0~ < sup Tn(x) + sup In(z) + sup Fn(z) < 3T. We use the interval [0, 1] instead of J0~, 1.
Definition 2.2. [20] Interval neutrosophic set (INS for short) is of the form N =
{{an(z), Bn (), n(2)) |2 € U}

= {(=, [inf an(z),sup an(x)], [inf S (), sup Bn ()], [inf v (2), supyn (2)])},

z e U, any(x), n(x), yv(x) C[0,1] and

0 <sup an(z) + sup Bn(z) + sup yn(z) < 3.
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Definition 2.3. [20] An INS N is empty if inf ay(z) = sup ay(x) = 0, inf By(z) =
sup Ay (z) =1, inf yy(x) =sup yn(z) =1 forall z € U.

Definition 2.4. [14] Interval neutrosophic automaton M = (Q, 3, N) (IN Aforshort), where
Q@ and ¥ are non-empty finite sets called the set of states and input symbols respectively, and
N = {{an(z),Bn(z),yn(x))} isan INS in Q X ¥ X Q.

The set of all words of finite length of 3 is denoted by %*. The empty word is denoted by e,
and the length of each x € ¥* is denoted by |z|.

Definition 2.5. [14] Let M = (@, X, N) be an interval neutrosophic automaton and extended
interval neutrosophic set is defined as N* = {{an=(z), Bn=(z), yn+(2))} in Q@ x ¥* x Q by

1,1] ifg =g

aN*(Qi7 €, QJ) = .

Bn+(gi, €, q;) = ' ’
[L,1] if g # g
[0,0] if g = g;

IN=(4> € q5) = '
[1,1] if ¢ # g

an=(¢i, w, qj) = an=(gi, 1Y, q;) = Ve,eqlan-(¢, T, ¢-) N an+(gr, Y, 4j)],

Bn+(gis w, q5) = Bn+(gis 7Y, 45) = NgpelBn+(ai, T, 4r) V BN+ (ar, Y, 45)]

YN+ (gis w, g5) = YN+ (i, 7Y, 45) = Ngre@lIN+ (2, T, ¢) V YN+ (ar, Y, 45)], Vi, 45 € Q,
w=zxy,r € X*and y € X.

3. Products of Interval Neutrosophic Automata

Definition 3.1. Let M; = (Q;,%;, N;),i = 1,2 be interval neutrosophic automata. Let
M x My = (Q1 x Q2,%1 X X2, N1 X Na), where
(an, % any)((4,q5) (a,b), (ks @) = an, (s @, ) A any (a5, 0 q1)
(Bny x BN;) (445 95), (a,b), (ak, @) = By (gis @, qr) V By (45, b, q1)
(

(7]\71 X 7N2) (qZ7 QJ)7 (a) b)7 (QIm QI)) = TN (sz a, Qk) Vv YNo (QJa b7 QZ)
V(gi, 45), (qr, 1) € Q1 X Q2,(a,b) € X1 x Xo. Then M; x M is called direct product of interval

neutrosophic automata.
Definition 3.2. Let M; = (Q;,%, N;),i = 1,2 be interval neutrosophic automata. Let
M x My = (@1 x Q2,%, N1 x Na), where
(any x an,) (4, 45)s @, (s @) = any (Gis @, qi) A an, (g5, a, q1)
(B, % Br:) (45 65), @, (qk, @) = BN, (465 @, k) V BNz (g5, @, i)
(

(vvy X N2 (45 95)s @, (ar, @) = v, (6 @, ak) V Vv, (5, @5 qu)-
V(gi, 45), (qr, 1) € Q1 X Q2,a,€ X. Then My x My is called restricted direct product of interval

neutrosophic automata.

V. Karthikeyan, R. Karuppaiya, Products of Interval Neutrosophic Automata.



Neutrosophic Sets and Systems, Vol. 49, 2022 4H

Definition 3.3. Let M = (Q, X, N) be an interval neutrosophic automaton. M is said to
be cyclic if 3 ¢; € @ such that Q = S(g;).

Definition 3.4. Let M = (Q, ¥, N) be an interval neutrosophic automaton. M is said to
be connected if V ¢, ¢; and 3 a € ¥ such that either

an(gi,a,q;) > [0,0], Bn(gi,a,q;) < [1,1], v (g, a,q;) <[1,1] or

an(gj,a,q) > [0,0], Bn(gj,a,q) <[1,1], v (g5, a,q) < [1,1].

Definition 3.5. Let M = (Q, X, N) be an interval neutrosophic automaton. M is said to be
strongly connected if for every ¢;, ¢; € @, there exists u € ¥* such that o (gi, u, ¢;) > [0,0],
Ba (g, v, ¢;) < [1,1],v8 (@, w, gj) < [1,1]. M is strongly connected if it has no proper

subautomaton.

4. Properties of Products of Interval Neutrosophic Automata

Theorem 4.1. Let M; = (Q;,%;, N;),i = 1,2 be interval neutrosophic automata. Let
M; x My = (Q1 X Q2,31 x X2, N1 x N3) be the full direct product of M; and My. Then
Ve € ], 20 € X5, 21,22 # €
(an, % ang)* (¢ 65), (1, 22) (ks @) = any= (66, 215 ) A any=(a5, 22, @)
(B, % Brg )™ ((ai5 45), (21, 22)(qk, @) = By (@i, 215 qk) V By~ (455 72, @)
(g X Yve)* (43, 45) s (w1, 22) (qrs @1)) = Yvp* (G35 21, qr) V Yo (45, T2, q1)
Y(qis q5), (@ @) € Q1 x Q.
Proof. Let z; € X3, zo € X5, 21,20 # €. Let |x1| = |ra] = m. The result is trivial if
m = 1. Suppose the result is true Yu; € ¥j, ug € X5, |u1| = |uz] = m —1,m > 1. Let
1 = aiu1, T2 = aguz where a; € X1, ag € X9 and u; € X7, ug € X*. Now,
(an, ¥ any)* (¢, ¢5), (arur, aguz)(qk, @) =
(an, % any)* (¢4, ¢5); arus, (e, @) A (a1 x a2)* (4, ¢5), azuz, (e, @)
{Vigraneuxqa(any x any)((gi,g5); a1, (gr,65)) A (any ¥ any)* (@ gs)s s (ars @)} A
{V ()i x @ {(any X any)((ai,95), a2, (qus @) A (e, X any)* ((qus @), w2, (g, @)}
= {Vgeq{an (¢ a1,qr) N ajy, (grsut, ) b A {Vg,eqa{an: (g5, a2, qu) A oy, (qu, uz, @1) }
= {ay, (@i, arur, g A oy, (g5, azuz, qi) }
= {ay, (@i, 21, g1 Ny, (g5, T2, @1) }
(B, % Bnz)* (935 45), (arus, agua)(qr, a1)) =
(B, % BNe )™ ((ai5 45), arwn, (g, @) V (Bny % By )* (435 45), azuz, (qk, @1))
= {N@ras)e@ix@a (BN X BNy ) (15 G5)s a1, (r, a5)) vV (Bny X Bn,)*((ar5 4s)s ua, (g, @)}V
{ A g1 x @ L (BN, X BN, ) (66, )5 a2, (qus @) V (BN, X BNy )* ((Guy @), w2, (s 1)) }
= {Nge {Bn (@, a1, 4) V B, (@, w1, @) 1V {Ngue@u{BN: (45, a2, qu) V By, (qu, w2, i) }}
= {Bx, (@i, a1z, g V By, (g5, azuz, q1) }
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= {8, (@i, 1, qx V B, (45, 22, @)}

(vne % e )* (435 45), (arua, aguz)(ak, @) =

(YNy X YN ) (35 G5)s arua, (g, @) V (Y X YN, ) (35 G5), a2z, (g, @1))

= {Ngrg)c0ix0: (N X YN (G405 45), a1, (gry gs)) V' (vvy X YNo) (G 4s), ur, (qr, @)}V
{AGuane@ix@a L (v X e ) (45 45)5 a2 (qus @) V (YN; X Yve) " ((us @0) 2, (qr, @)}

= {Nge@i{vn (s a1,0r) VYR, (s ur, ai) bV {NGu e ATN: (65, a25 qu) V YN, (qus w2, @1)

= {Vn, (@i> a1u1, gk V Yy, (g5, azuz, @) }

= {7N, (@ 21, a1 V Y8, (@5, T2, @1) }

Theorem 4.2. Let M; = (Q;,%, N;),i = 1,2 be interval neutrosophic automata. Let M; X
My = (Q1 x Q2,%, N1 X Na) be the restricted direct product of M; and Ms. Then Va € ¥*
(an, X ang)* (¢ 45), 2(ak: @) = any= (¢, T, k) N any= (g5, 2, 1)

(B % Brg )™ (435 45) @ (ars @) = By (ais @, k) V By (a5, T, @)

(YN X v, )" (35 65)s 2(qrs @) = Yy = (66, 2, ) V Y= (95, @, @1)

V(qirq5), (ar, @) € Q1 x Q2.

Proof. We prove the result by induction on |z| = n. If n = 1 then the result is obivious.
Suppose the result is true for all x € ¥*. Let © = au, where a € ¥X,u € ¥*, |u| =m —1,m > 1.
Then

(an; X an,)* (¢ a5), T, (@ @) = (ny X an,) (a4, 5)s aus (ks @1))

= {V(gra)e@ix@s L lan: x any) (6, ¢5), a; (e, @)} A (o, x any)* (43, 45), ws (e, @)

= {V(gra0e@ixQa {1an (4is @, 4r) A any (45, a, 65) Ny, (@ w, @) N oy, (G55 ws qr) Y

= aly, (i, au, qr) A oy, (g5, au, q)

= oy, (@i, T, q1) N oy, (g5, 2, qr)

By % Brg)* (15 45) 2 (ks @) = (Bry % Bng)* (445 45), au, (qr, @)

= { N\ ra)e@i x> LBy X Bn,) (435 45), as (qr, @)} V A{(BNy *x Bne)* (665 45) 5w, (s @)}

= {Naras)€Q1 x @2 18N (@i, a5 r) V BN, (g5, a,q5) V By, (Grs ws ar) V Biy, (s, ws i) }

= By, (@i, au, qr) V By, (g5, au, qi)

= B, (@i T, qk) V BN, (45, T, @1)

(v X e )* (465 45), 5 (ais @) = (Yvy % we) " (66, 45) 5 aws (aks @)

= {Narg0€Q1x@x Lvmy X e ) (a6 45)s a5 (q @)}V {(vwy X e )™ (065 45), s (g @) 3}

= N @ra0)€Qix@ 11 (405 @, 4r) VYN, (45 @ 45) VR, (@, s k) V VR, (4w, ) Y

= YN, (@i, au, qr) V VN, (45, au, q1)

=N, (@i 7, qk) V Y, (05, T, @1)

Theorem 4.3. Let M; = (Q;,%;, N;),i = 1,2 be interval neutrosophic automata. Then full
direct product of My x Ms is cyclic if and only if M; and My are cyclic.

Proof. Let x be full direct product.Suppose M; and My are cyclic, say Q1 = S(¢;) and
Q2 = S(p;) for some ¢; € Q1, pj € Q2. Let (qu, ;) € Q1 X Q2. Then Iz € £ and such
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that a}"vl(qi,x,qk) > [0,0],ﬁ}"vl(qi,x,qk) < [1, 1],77\,1(qi,x,qk) < [1,1] and

an, (@5, y, @) > 10,01, B, (g5, v @) < [1,1],78, (g5, v, @) < [1,1], Thus

(any x an,) (46 45), (2, ), (ar @) = oy, (@G, T, qi) Ay, (5,9, @) > [0,0]

(Bny % BNy ) ((gi5 45)s (2, 9), (ak, 1)) = By, (@i, @, ax) V By, (a5, v, @) < [1,1]

(YN X vv,) " (35 65)s (2,9)s (@, @) = Y, (@6 2 a) V YN, (45, 9, @) < (1,1

Hence (qx,p1) € S((gi,pj)). Thus Q1 x Q2 = S((gi, p;)). Hence My x My is cyclic. Conversely,
suppose My x My is cyclic. Let Q1 x Q2 = S((gi,p;)) for some (g;,pj) € Q1 x Q2. Let
g € Q1 and ¢ € Qa.

(an, X any)*((9i, ), (%, 9), (ar, @) = aNl(qu ar) N aj, (g5, 9, @) > [0,0]

(Bny % By ) ((gi595)s (T9)s (ars @) = Bi, (@i, @, qk) V B, (45, v, @) < [1,1] and

(Yvy X YN )" (35 5)s (2, ), (ar, @) = BNl(qi,x,qk) V B, (@5, v @) < [1,1].

Theorem 4.4. Let M; = (Q;, 3, N;),i = 1,2 be interval neutrosophic automata. If restricted
direct product of interval neutrosophic automata M; x M, is cyclic, then M; and My are
cyclic.

Proof. Let x be restricted direct product. Suppose M; x My are cyclic. Q1 x Q2 = S((¢;, g;))
for some ¢;,q; € Q1 x Q2. Let gx € Q1,q1 € Q2. Then (an, X an,) (¢, ), %, (qk, @) =
o, (@i, 7, q8) N any) (g5, 2,q) > 0,01 (Bny, x Bny) (905 45)s @5 (ak, @) = By, (@i T qr) V
Bne) (g, 2, q1) < [1,1] (v X vwy)* ((ai5 43), 5 (qrs @) = v, (@6 25 ae) V vvs) (g, @, @) < [1,1].
Thus g, € S(¢;) and ¢ € S(gj). Therefore Q1 = S(g;) for some ¢; € Q1 and Q2 = S(g;). Hence
M and Ms are cyclic.

Theorem 4.5. Let M; = (Q;,%;, N;),i = 1,2 be interval neutrosophic automata. Then the
full direct product of interval neutrosophic automata M; x My is retrievable if and only if M;
and Mo are interval neutrosophic retrievable automata.

Proof. Let x be full direct product. Suppose that M; and My are interval neutrosophic

retrievable.

Let (i, q5), (tk, 1) € Q1 X Q2 and (x,y) € (X1 x X2)* be such that

(an, X any ) (9, 45), (2, 9), (t, 1)) = oy, (60> T, tk) A oy, (g5, 9, 81) > [0, 0]
BNy % Bny) (435 45): (2, 9), (b, s1)) = By, (@6 @, ti) V B, (45,95 s1) < [1,1]

)"
(vvy X ng) (@i @), (2,9), (B 51)) = Y, (@ @5 ) V YN, (45595 81) < [1,1]
Since M; and My are interval neutrosophic retrievable Ju; € X7, us € X3 such that
o, (qr, u1,¢i) > [0,0], By, (qk, w1, i) < [1, 1], vy, (qk, w1, i) < [1,1]
o, (@, uz, q5) > [0,0], By, (@, uz, @) < [1, 1], 77, (@ u2, ;) < [1,1].
v, (qr, u1, gi) A oy, (q,u2, q5) (any X any)* (g, @), (u1, uz2), (4, q5)) > 10,0] By, (qk, w1, q:) V
B, (@, uz, q5) (Bny X B, )* ((ak @1), (w1, u2), (gi5 ¢5)) < [1, 1 YN, (@r, w1, @) VAR, (@15 u2, 47) (v, X
o) ((gk, @), (w1, u2), (gi, q;)) < [1,1]. Thus, M; x M, are interval neutrosophic retrievable.

Conversely, suppose M; x My are interval neutrosophic retrievable. Let (g;, q;) € Q1 x Q2 and
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(z,y) € (X1 x X2)*, I(qr, @) € @1 X Q2 such that

(any X an,)*((4i45): (%), (g, @) > [0, 0]

(B % Brz)* (465 45), (2, 9), (ars @) < [1,1]

(vvy < YN2) " (945 45), (2, ), (s @) < [L, 1],

Then 3(u1,uz) € (X1 x ¥2)* such that (an, x any)*((gk, @), (v1,u2), (gk, @) > [0, 0]

By X By (> @), (ur, u2), (g, @1)) < [1,1]

(vvy X g ((aws @) (un, u2), (g, @) < [1,1]

(o, (@ks w1, @) A (o, (ai, uz, g5) > [0, 0]

(B, (ar, w1, i) V (BN, (@, u2, ¢5) < [1,1]

(Y (s w1, 66) V (s, (@i, w2, q5) < [1,1].

Hence, M7 and M, are interval neutrosophic retrievable.

Theorem 4.6. Let M; = (Q;,%;,N;),i = 1,2 be interval neutrosophic automata. Then
restricted direct product of interval neutrosophic automata M; x M, is interval neutrosophic
retrievable then M; and My are interval neutrosophic retrievable.

Proof. Let x be interval neutrosophic resticted direct product. suppose M7 x M, is interval

neutrosophic retrievable. Let (g;,q;), (qr, 1) € @1 X Q2,2 € ¥ such that

(an, X an,)* (4 ¢5), 2, (g, @) > [0,0]

By % Brg)*((gi545)s 2, (qr, @1)) < [1,1]

(YN, X Ne) (435 45), @, (g, 1)) < [1,1] Then Ju € ¥* such that

(an, x an,)*((qr, @), u, (¢, 45)) = OZNI(%U @) A oy, (@, w, g5) > [0, 0]
BNy X Bny)* (@ @), s (66, 65)) = By, (@ s @) V By, (@, w, q5) < [1,1]
(vay X ) ((aw, @), ws (g3, g5)) = le(qk,u,qi) Vv, (@, q5) < [1,1].

Hence M and M, are interval neutrosophic retrievable.

5. Conclusions

In this paper, we introduced direct product, restricted direct product of interval neu-
trosophic automata and prove that direct, restricted direct product of cyclic and retrievable

of interval neutrosophic automata are cyclic and retrievable interval neutrosophic automata.
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