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Abstract: In this paper, the concept of a neutrosophic stable random variable is introduced. Two 

definitions of a neutrosophic random variable are presented. We introduced both the neutrosophic 

probability distribution function and the neutrosophic probability density function, and the 

convolution with the neutrosophic concept. In addition, we proved some properties of a 

neutrosophic stable random variable, and three examples are discussed. 
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1. Introduction 

    The term stability in probability theory refers to a property of some probability distributions, 

which is that the random variable indicative of a sum of independent and identically distributed 

random variables has the same probability distribution for each of these variables. This property is 

true for a finite or infinite sum of random variables. Variables that achieve this specificity are called 

stable random variables. Stability in this concept is called classical stability, and stable distributions 

represent a large part of the family of all probability distributions. Regarding the tail of the 

distribution, all stable distributions are heavy-tailed except for the normal distribution, which is 

light-tailed. 

    In 1925, Paul Lévy [1] presented stable distributions as a generalization of the normal 

distribution in several ways. The theory of stable distributions was developed in the messages 

exchanged between Lévy (1937) [2] and Khintchine (1938) [3], and work on these results was 

expanded by Gnedenko and Kolmogorov (1949) [4] and then Feller (1970) [5]. Paul Lévy defined a 

stable distribution by defining its characteristic function and used a Lévy- Khintchine representation 

for the infinitely divisible distributions. The second definition is the definition related to the stability 

property of independent and identically distributed random variables, and the third is the 

generalized central limit theorem, in which the stable distributions appear as the end of a set of 

independent and identically distributed random variables without imposing the condition 

contained in the central limit theorem [4], which revolves around the limitation of variance. A recent 

and condensed overview of the theory of stable distributions can be found in [6–12]. 

     Fuzzy logic can be generalized to Neutrosophic logic by adding the component of 

indeterminacy. 

     In probability theory, F. Smarandache defined the neutrosophic probability measure and the 

probability function. Some researchers introduced many other concepts through the neutrosophic 
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concept such as queuing theory, time series prediction, and modeling in many cases such as linear 

models, moving averages, and logarithmic models, more information can be founded at [13–23].  

     In this paper, depending on the geometric isometry (AH-Isometry) [20] (Under publication in 

Neutrosophic Sets and Systems), the concept of a stable neutrosophic random variable is introduced 

and provides two definitions of a neutrosophic stable random variable. We also presented some 

basic properties and present several well-known examples. 

2. Preliminaries  

   2.1.  -Stable distributions 

     Definition 2.1.1. A random variable X  (which is non-degenerate) is said to have a stable 

distribution if for any positive numbers A  and B , there is a positive number C  and a real number 

D  such that 

1 2  ,
d

AX BX CX D    

where 
1 2,  X X  are independent copies of X , and where 

d

  denotes equality in distribution. That 

X  is called strictly stable if the relation 
1 2  

d

AX BX CX D    hold with 0D  . 

     Dedinition 2.1.2. (equivalent to definition 2.1). A random variable X  (which is non-degenerate) 

is said to have a stable distribution if for any 0n  , there is a positive number 
n

C  and a real 

number 
n

D  such that 

1 2 ...  ,n n n

d

X X X C X D      

where 
1 2, ,..., nX X X  are independent copies of X .  

And X  is called strictly stable if 
1 2 ...  n n n

d

X X X C X D      hold with 0
n

D  . 

     Theorem 2.1.3. If 
1 2 ...  n n

d

X X X C X    , 
nC  has the form 1/

nC n  . See [5,9] for a proof.  
     Theorem 2.1.4. If G  is strictly stable with characteristic parameter  , then  

 
1/1/ 1/

1 2
,

d

X B X A B XA
 

    

holds for all 0,  0A B  . See [5] for a proof. 

   2.2. Neutrosophic Functions on ( )R I  

Depending on information in [20], here are some interesting facts : 

     Definition 2.2.1. 

Let  ( ) ;  ,R I a bI a b R    where 
2

I I  be the neutrosophic field of reals. The one-dimensional 

isometry (AH-Isometry) is defined as follows: [19] 

 

: ( )T R I R R   

( ) ( , ).T a bI a a b    

Some properties of an algebraic isomorphism T : 
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1. T  is bijective.  

2. T  is invertible by 

1
: ( )T R R R I


   

1
( , ) ( )a b a b a IT


    

3. 

        T a bI c dI T a bI T c dI        

   And 

        . .T a bI c dI T a bI T c dI     .  

And more can be found in [20]. 

3. Neutrosophic Stable Random Variables 

Definition 3.1. Aneutrosophic random variable 
N

X X YI   is said to have a neutrosophic 

stable distribution if for any positive numbers 
1 2N

A A A I   and 
1 2N

B B B I   , there is a positive 

number 
1 2N

C C C I   and a number 
1 2N

D D D I   such that 

(1) (2)
   (1),                                                              

N NN N N N N

d

X X C X DA B    

where 
(1)

1 1N
X X Y I   and 

(2)

2 2N
X X Y I   are independent copies of 

N
X , and where "

d

 " denotes 

equality in distribution. 

     Remark 3.1. The right hand side of (1) takes the form 

1 1
[ ]

N N N N
C X D C X I L C X D    , 

where 
1 2

,  C C L X Y     . 

Proof By taking T  for the left hand side of (1) we obtain 

 (1) (2)

1 1 2 1 1 1 1 1 2 2 2 2
( , )( , ) ( , )( , )

N NN N

d

A X B X A A A X X Y B B B X X YT       , 

                                       
1 1 1 2 1 1 1 2 1 2 2 2

( , ( )( )) ( , ( )( ))

d

A X A A X Y B X B B X Y     , 

                                      
1 1 1 2 1 2 1 1 1 2 2 2

( , ( )( ) ( )( ))

d

A X B X A A X Y B B X Y      . 

By taking 
1

T


 for both sides we obtain 

(1) (2)

1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2
[( )( ) ( )( ) ]

N NN N
I

d

X X A X B X A A X Y B B X Y A X B XA B          . 

Since 
1 11 1 1 2
X D

d

A X B X C  , 
1 2 1 1 1 2 2 2 1 2 1 2

( )( ) ( )( ) ( )( ) ( )

d

A A X Y B B X Y C C X Y D D           then 

1 1

(1) (2)

1 11 2 1 2
[ )( )( ) ( ) ( ]

N NN N
X D

d

X X C I C C X Y D D C X DA B         , 
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and                     
1 1

(1) (2)

11 2 2
[( )( ) ]

N NN N
X X

d

X X C I C C X Y C D D IA B       . 

Finally 

                             
1 1

[ ] .                                                            (2)
N N N N

C X D C X I L C X D     

     Definition 3.2. A neutrosophic stable random variable is called neutrosophic strictly stable if 

(1) holds with 0 0 0
N N

D I   . 

     Definition 3.3. Aneutrosophic random variable 
N

X X YI   is referred to as neutrosophic 

stable if there exist constants 
( ) ( ) ( )

1 2
0

N

n n n
A A A I    and 

( ) ( ) ( )

1 2N

n n n
B B B I   such that 

( ) ( ) ( )
,                                                                                               

1

(3)
N N

n n n

NN

n

i

d

X B A X



   

where 
(1) ( 2)

, , ...
N N

X X  are independent neutrosophic random variables each having the same 

distribution as 
N

X .  

Again, if 
( )

0
N

n

N
B  , then 

N
X  in (3) is called neutrosophic strictly stable, i.e. 

( ) ( )
,                                                                                               

1

  (4)
N

n n

NN

n

i

d

X A X



  

     Theorem 3.1. In relation (4), the constant 
( )n

N
A  has the form 

 ( )
,    

1 / 1 / 1/ 1/1/ 1/
0 ,   .

N NN Nn

N N
A n n n I n n n I I

    
           

Proof Rewriting (4) as the sequence of sums 

(1) (2) (2)

(1) (2) (3) (3)

(1) (2) (3) (4) (4)

                          ...                                                                                             

N NN N

N NN N N

N NN N N N

d

X X A X

d

X X X A X

d

X X X X A X

 

  

   

                  (5)

 

We cosider only those sums which contain 2
k

 terms, 1, 2, ... :k   

1 2

(1) (2) (2)

(1) (2) (3) (4) (4)

(1) (2) (3) (4) (5) (6) (7) (8) (8)

(1) (2) (2 ) (2 ) ( )

                                              ...

  

...

k k k

N NN N

N NN N N N

N NN N N N N N N N

N NN N N N

d

X X A X

d

X X X X A X

d

X X X X X X X X A X

d

X X X X A X


 

   

       

    

                                            ...
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Making use the first formula, we transform the second one as follows: 

 
2(4) (1) (2) (3) (4) (2) (1) (2) (2)

.( ) ( ) ( )
N N N NN N N N N N

d d

S X X X X A X X A X        

Here we keep in mind that 
(1) (2) (3) (4)

N N N N

d

X X X X   . Applying this reasoning to the third formula, we 

obtain 

   

   

(8) (1) (2) (3) (4) (5) (6) (7) (8)

(2) (1) (2) (2) (5) (6)

2 2(2) (1) (2) (5)

2 3(2) (1) (5) (2)
       .

( ) ( ) ( ) ( )

    ( ) ( )

    

( )

N N N N N N N N N

N NN N N N

N NN N

N N NN N

S X X X X X X X X

d

A X X A X X

d

A X A X

d

A X X A X

       

   

 

  

 

For the sum of 2
k

 terms, we similarly obtain 

( 2 )(2 ) ( )
.

kk
k

N N N NN

d d

S A X A X   

Comparing this with (4), with 2
k

n  , we obtain: 

   
(log )/log 2( ) (2) (2)

;

k nn

N N NA A A   

hence   

( 2)
(2)( ) (log )/log2

.log [(log ) / log 2] log log
Nn

N N

A
A n A n   

Thus, for the sequence of sums we obtain 

( 2 )
1 /( )( ) (2) (2)

,   ,    log 2 / log =2 ,    1, 2, ... .                                            (6)NNn k

N N N
A n A n k


    

     Choosing now from (5) those sums which contain 3
k

 terms, and repeating the above 

reasoning, we arrive at  

            
( 3 )

1 / ( )( ) ( 3 ) ( 3 )
,   ,    l o g 3 / l o g = 3 ,    1 , 2 , . . .                                              (7)NNn k

N N N
A n A n k


    

In the general case, 

 
( )

1 /( )( ) ( ) ( )
,   ,    log / log = ,    1, 2, ...                                             (8)

m
NNn m m

N N N

k
A n m A n m k


    

     We set 4m  . By virtue of (8), 

(4) (4)
,log 4 / log

N N
A   

whereas (6) with 2k   yields 
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 ( 2)(4)
.log 1 / log 4

N NN
A   

Comparing the two last formulae, we conclude that  

( 2) ( 4)

N N
  . 

By induction, we come to the conlusion that all 
( )m

N
  are equal to each other: 

( )
.

m

N N
   

The following expression hence holds for the scale factors 
( )n

N
A : 

( ) 1 /
,           =1,2,3,...                                                               (9)N Nn

N
A n n


  

 whereas (4) takes the form 

( )( ) 1 /
,                                                                               

1

(10)Nn N

NN

n

N

n

i

d

X XS n




  

   

 

 

 

1 /

1,2
1 1

,2
( )

(1/ ,2/(2 )) 1/ 1/

0

= .

( , )

                ( , ) ,

N N

I I
T

I IT n T T n In n n

n n n n

  
   

   

 

   

   
      
 
 



 

By taking 
1

T


 for both sides of the last relation, then                      

 1 / 1/ 1/ 1/
.N Nn n I n n

   
                                       

     Remark 3.2. The right hand side of the relation (4) takes the form 

 1 / 1/ 1/ 1/
( ) .N N

N
n X n X I n X Y n X

   
     

In fact 

 

     
 

 

   

   

11

( 1, 1)
1/ ,1/2

1 / ( ) (1 )( ) (1 )

2 (1,2) ) (1,2)

1/ 2/2 1/

0

, = ,

,

( , ) ( )
                     ( , ) ( , )

                     

                     ,

N N
T

NN
N

T I TI
T n X T T X YI T n I T X YI

X X Y X X Y

X X Y

n

n n n n

n n n

   

  

 





 


    

 



 
 
 



   1/
, ( ) .X X Yn 



 

Note that 1 1N I  , and in the neutrosophic field: 11
1 .N

N N

N




 . 

By taking 
1

T


 for both sides of the last relation, the proof will be completed.  

Let us prove the relation 11
1 .N

N N

N




  in the general case where 
1 2N I    : 
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 
 

         

 

1 2 1 2 1 1 2 1 1 2

1 1 ( 1)1

1 2 1 2 1 2

( 1, 1)

1 1 2

1 1 2 1 1 2

1,21 11 1 1 2
, ,

,

1 . 1 1 1

1 1 1 2
           =(1,2) , (1,2) , , .

N N

N N

T

N N

I I
T T

I I

I I T I I T I T I

           

      

  
     

  

 

      
         

       

         
 

   
     

    

. 

     Theorem 3.2. If 
N

G  is a neutrosophic strictly stable distribution with characteristic parameter 

N
I     then 

     (1) (2)1 / 1 / 1/
,

N NN N

N N

d

NA X B X A B X
  

   

for 0,  A B  . 

Proof By recognizing the relation (10), for any positive numbers ,,  A B let 

 number B number

( )
,  ,1,2,..., 1,..., .

A

i

N
X i A A n   

be neutrosophic strictly stable random variables. 

Then, we have 
( ) ( )

1

A i

NN

A

i

S X


  , 
( ) ( )

1

B i

NN

n

i A

S X
 

  , and 
( ) ( )

1

A B i

NN

A B

i

S X






  , hence 

 
( ) ( ) (1)1/

1

A i

N NN

dA

i

S X A X






  , 
( ) ( ) (2)1/

1

B i

N NN

n d

i A

S X B X




 

  , and  ( ) ( ) 1/

1

A B i

N NN

A B d

i A

S X A B X






 

  . 

Since 
( ) ( ) ( )A B A B

N N N
S S S


  , then      (1) (2)1 / 1 / 1/

.
N NN N

N N

d

NA X B X A B X
  

                      

The neutrosophic convolution 

     Let 
N

X  be a neutrosophic random variable, its neutrosophic density function is ( )
N NXf x . We 

stand for the neutrosophic probability distribution function by ( )
N NXF x  and we define it as 

   ( ) P  .
N

N

N

N

N N NN NX

x

F x X x f dtt



     

What the right hand side form is? 

Suppose that 
N

X X YI  , and the probability density functions of ,  X Y  are ,  f g  respectively. 

By taking T  for both sides, we obtain 

 

   ( ) .                                                             (11) 
N

N

N N NN

N

XT F x T

x
f t dt

 
 

   

 

        (12) .                                                   
NN

N N N N N N

N
N

xx

T T T f Tf t dt t d t





 
    
 

 
 
 

 



Neutrosophic Sets and Systems, Vol. 50, 2022     427  

 

 

Azzam Mustafa Nouri, Omar Zeitouny and Sadeddin Alabdallah, Neutrosophic Stable Random Variables 

 

By taking ,
N

N

x

I

x yI x yx

T T

 

 

 

    
       
       

      
,        1 1 2),( *N N X X YT f f f gt t t t  , 

and            1 2 1 2 1 1 2 1 1 2(, , )NT T d t t I T dt Idt dt dt dt dt d t td t        . 

Hence, the right hand side of (12) becomes 

            

   

1 1 2 1 1 2

1 1 1 2 1 2

, ) (

= ) (

,( , )*

                                                     , ( ) .*

N

N N N X X Y

N

X X Y

x yx

x yx

x

T T f T f f g dt d t t

f dt f g d t t

t d t t t t

t t t



 













 





  

   
        
    

    
      
      

 

Now, the relation (11) becomes 

     1 1 1 2 1 2( ) ) (, ( )*
N

X X YNX

x yx

T F x f dt f g d t tt t t 



 

 

   
        
    

 

By taking 
1

T


 for both sides, we obtain 

 1 1 1 2 1 2 1 1
( ) ( ) ( ) ( ( ) ( (13)) ) .                              

*N NX

x yx

X X Y X

x
F x f t dt I f g t t d t t f t dt




  

        

     Definition 3.4. Suppose that ,  
N N

X Y  are two independent neutrosophic random variables. 

( ),
N NXF x  ( )

N NYG y and ( ),
N NN Xf f x  ( )

N NN Yg g y are their neutrosophic probability 

distribution functions and neutrosophic probability density functions respectively. The 

neutrosophic convolution of ( )
N NN XF F x  and ( )

N NN Y yG G  can be defined as 

         (14)*  ,                                                             *

N

N

N

x

N N NN N N
F f g d tG



   

where 

     * ( 1 5 ).                                        
N

N

N N N N NN N N N
f dyg f t y g y





   

     Theorem 3.3. According to the above hypotheses, the relations (14) and (15) hold, and (15) 

takes the form 

1 1 2 11 2 1 2
*

1 1 1 1
( )( )+ ( )( + ) ( )( ) (16)

* * *
,                          

NN N X Y X X Y Y X Y
f f g t I f g t t f g tg

 
  

 
 

where 
1 21 2 1 2

( )( + )
*X X Y Y

f g t t
 

is the convolution of the variables 
1 2

X X X   and 
1 2

Y Y Y  . 

Proof Because of the independence of ,  
N N

X Y : 

    ( (*  ) )
N N

N N

N NN N N NN N N
F G f x y d x d yg

 

 

    
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   

   

   

= ( (

= ( (

= ( ( ).

                  ) )

                  ) )

                 )

N N

N N

N

N N

N N

N

N

N N

N

N

N

N N

N

N

N

N

N N N N

N N N

N N N N

t y

x

t y t

x

t y

f d x y d y

f d y d y

f y d y d t

x g

g

g



 



 



 

 
  
 
 

 
  
 
 

 
  
 
 

 

Prove the relation (16) is similar to prove (13).                                                     

Based on the previous facts, the convolution can be generalized for n .   

4. Applications  

There are three fundamental and well-known examples of stable laws, let ( )q x  is the probability 

density function of stable random variable X : 

     4.1. Gaussian Distribution  

In (16), two classical convolutions are well-known for the gaussian distribution. Because of the 

independence and identically in distribution for stable random variables, 

1 21 2 1 2
( )( + )

*X X Y Y
f g t t

 
becomes the convolution of four gaussian random variables with one 

dimensional. The same applies to the rest of the examples. 

We have 

 
 

2

2

2

1
; , exp ,    ,    0.

22

x a
q x a x 



  
       

  

 

Since (See [9]) 

2 2

1 1 2 2 1 2 1 2( ; , ) ( ; , ) ( ; , ),q x a q x a q x a a      

2 2 2 2

1 1 2 2 3 3 4 4 1 2 3 4 1 2 3 4( ; , ) ( ; , ) ( ; , ) ( ; , ) ( ; , ),q x a q x a q x a q x a q x a a a a                  

then  

2 2 2 2 2 2 2 2

* 1 2 1 2 1 2 3 4 1 2 3 4 1 2 1 2( ; , ) ( ; , ) ( ; , ) .
NN Nq q q x a a I q x a a a a q x a a                    

 
 

     4.2. Cauchy Distribution  

Without losing generality, it is known that the convolution of a Cauchy probability density function 

with a scale parameter equal to one is  

1 2

1
( ) ( ) .

2 2
X X

x
q x q x q 

 
   

 
 

And 
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1 2 3 4

1
( ) ( ) ( ) ( ) .

4 4
X X X X

x
q x q x q x q x q   

 
     

 
 

Then 

1 2 1 2 3 4 1 2*

1 1 1
.

2 2 4 4 2 2NN N X X X X X X X X

x x x
q q q I q q    

      
        

      

 

     4.3. Lévy Distribution 

We have for Lévy Distribution that       

( ) ( ) (1 4) ( 4).q x q x q x   

And 

           ( ) ( ) (1 4) ( 4).

( ) ( ) ( ) ( ) (1 16) ( 16).

q x q x q x

q x q x q x q x q x

 

   
 

Then 

 * (1 4) ( 4) (1 16) ( 16) (1 4) ( 4) .
NN Nq q q x I q x q x    

 

5. Conclusions 

     In this paper, we suggested some basic definitions of the neutrosophic stable random variable 

and generalize some of the main properties of the classical stable distributions to the neutrosophic 

field. We also defined both the neutrosophic probability distribution function and the neutrosophic 

probability density function, then we defined the convolution with the neutrosophic concept.  

Finally, we supported the article with three examples of stable distributions with the neutrosophical 

concept, which are famous distributions in classical stability. Later, we will extend the work in the 

field of neutrosophic stability and work to generalize and prove more profound facts.   

 

Funding: This research received no external funding. 

Conflicts of Interest: “The authors declare no conflict of interest.” 

References 

1. P. Lévy: Calcul des probabilités. Gauthier-Villars Paris, 1925. 

2. P. Lévy: Theorie de l'addition des variables aleatoires. Paris, Gauthier-Villars, 1937a. [2nd edn, Paris, 1954.]  

3. A. Y. Khintchine: Limit laws of sums of independent random variables (in Russian). ONTI, Moscow, 1938. 

4. B. V. Gnedenko, A. Kolmogorov: Limit distributions for sums of independent random variables. 

Addison-Wesley, 1954. 

5. W. Feller: An Introduction to Probability Theory and its Applications. (2nd ed.), Volume 2. Wiley, New 

York, 1971. 

6. G. Samorodnitsky, M. S. Taqqu: Stable non-gaussian random processes:Stochastic models with infinite 

variance. Chapman & Hall, 1994. 

7. J. P. Nolan: Univariate Stable Distributions: Models for Heavy Tailed Data. Springer, 2020. 

8. V. M. Zolotarev: One-dimensional Stable Distributions. Volume 65 of Translations of mathematical 

monographs, American Mathematical Society, Translation from the original 1983 Russian edition, 1986b. 

9. V. V. Uchaikin, V. M. Zolotarev: Chance and Stability. Utrecht: VSP Press, 1999. 



Neutrosophic Sets and Systems, Vol. 50, 2022     430  

 

 

Azzam Mustafa Nouri, Omar Zeitouny and Sadeddin Alabdallah, Neutrosophic Stable Random Variables 

 

10. Gerd Christoph, Karina Schreiber: Discrete stable random variables. Statistics & Probability Letters. 

https://doi.org/10.1016/S0167-7152(97)00123-5 

11. Saralees Nadarajah, Stephen Chan: The exact distribution of the sum of stable random variables. Journal of 

Computational and Applied Mathematics. https://doi.org/10.1016/j.cam.2018.09.044 

12. Emanuele Taufer: On the empirical process of strongly dependent stable random variables: asymptotic 

properties, simulation and applications. Statistics & Probability Letters. 

https://doi.org/10.1016/j.spl.2015.07.032 

13. M. Abobala: AH-Subspaces in Neutrosophic Vector Spaces. International Journal of Neutrosophic Science, 

Vol. 6 , pp. 80-86. 2020. 

14. M. Abobala: A Study of AH-Substructures in n-Refined Neutrosophic Vector Spaces. International Journal of 

Neutrosophic Science, Vol. 9, pp.74-85. 2020. 

15. H. Sankari, M. Abobala: AH-Homomorphisms In neutrosophic Rings and Refined Neutrosophic Rings. 

Neutrosophic Sets and Systems, Vol. 38, pp. 101-112, 2020. 

16. F. Smarandache, M. Abobala: n-Refined Neutrosophic Vector Spaces. International Journal of Neutrosophic 

Science, Vol. 7, pp. 47-54. 2020. 

17. H. Sankari, M. Abobala: Solving Three Conjectures About Neutrosophic Quadruple Vector Spaces. 

Neutrosophic Sets and Systems, Vol. 38, pp. 70-77. 2020. 

18. M. Abobala: On The Representation of Neutrosophic Matrices by Neutrosophic Linear Transformations. 

Journal of Mathematics, Hindawi, 2021.  

19. M. Abobala, A. Hatip: An Algebraic Approach to Neutrosophic Euclidean Geometry. Neutrosophic Sets and 

Systems, Vol. 43, 2021. 

20. M. Abobala, M. B. Zeina, F. Smarandache: A Study of Neutrosophic Real Analysis by Using the 

One-Dimensional Geometric AH-Isometry. Under publication in Neutrosophic Sets and Systems. 

21. Ahteshamul Haq, Umar Muhammad Modibbo, Aquil Ahmed, Irfan Ali. Mathematical modeling of 

sustainable development goals of India agenda 2030: a Neutrosophic programming approach. 

Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01928-6 

22. Mohammad Faisal Khan, Ahteshamul Haq, Irfan Ali, Aquil Ahmed. Multiobjective Multi-Product 

Production Planning Problem Using Intuitionistic and Neutrosophic Fuzzy Programming. IEEE Access. 

https://doi.org/10.1109/ACCESS.2021.3063725 

23. Ahteshamul Haq, Srikant Gupta, Aquil Ahmed. A multi-criteria fuzzy neutrosophic decision-making 

model for solving the supply chain network problem. Neutrosophic Sets and Systems . 

https://doi.org/10.5281/zenodo.5553476 

 

 

  

 

Received: Feb 7, 2022. Accepted: Jun 3, 2022 

https://www.sciencedirect.com/science/article/abs/pii/S0167715297001235?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0167715297001235?via%3Dihub#!
https://doi.org/10.1016/S0167-7152(97)00123-5
https://doi.org/10.1016/j.cam.2018.09.044
https://doi.org/10.1016/j.spl.2015.07.032
https://doi.org/10.1007/s10668-021-01928-6
https://doi.org/10.1109/ACCESS.2021.3063725
https://doi.org/10.5281/zenodo.5553476

