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1. Introduction

The theory of hyperstructure came into existence in 1934 when Marty [1] defined hyper-
groups as being generalized. To propose an overlying homomorphism, Corsini [2] developed
the concept of hypering and general forms of hypering. The H,-ring, the H,-subring, and the
H,-ideals of the H,-ring, all these are modifying the thoughts introduced by Corsini [2], have
been invented by Vougiouklis [3,/4]. Generally, [5] offers a variety of rates in [0, 1] stated by
a single real number. In order to relieve ambiguities, a fuzzy set model was created by the
Turksen (6], which was utilized to assess membership of the fuzzy set framework. An enhance-
ment of fuzzy sets is intuitionistic sets, suggested in 1986 by Atanassov [7]. This approach
was analogous to the interval-valued fuzzy sets described in [8]. Intuitionistic fuzzy sets can
execute flawed data and not inexhaustible information, frequently in real-life [8]. Rosenfeld [9]
launched the fuzzy algebra work, extending it to several fuzzy models such as intuitionistic

fuzzy sets, fuzzy soft sets, and imprecise soft sets. Some artworks related to soft, fuzzy rings
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and ideal vague soft groups, vague soft rings, and soft ideals are also found in [10-13]. In 1998,
to attain these goals, Smarandache suggested the neutrosophic paradigm in [14]. In [15-20],
numerous new neutrosophic theoretical fads were launched.

Wang et al. [8] pioneered the theory of a single-valued neutrosophic set (SVN.S), whereas
Smaranache plithogenic was presented into [21] as a refinement of neutrosophic structure. Hy-
perstructure theory is often used in numerous mathematical ideas. Algebraic hyperstructures
have a wide range of applications, including fuzzy sets, design and data, artificial intelligence,
lattices, automation, and combinatorics, and etc. As a result of fuzzy algebra research, fuzzy
hyperalgebraic theory was produced. Liu [22] created the idea of fuzzy ideals of a ring. A
lot of hyperstructure work has been done over the last two decades, such as fuzzy hyperalge-
bras 23|, fuzzy hyperrings [24], fuzzy topological F-polygroups [25], Bipolar-valued fuzzy soft
hyper BCK ideals [26], fuzzy hypergroup degree [27], fuzzy hypergraphs [28], hyper-spectral
image analysis [29], fundamental relations on fuzzy hypermodules [30], and so on.

There are works available of hyperstructures related to hyperrings in these manuscripts: fuzzy
hyperings [31], I-hyperrings [32], soft hyperrings [33], topological hyperrings [34], and topo-
logical structures of lower and upper rough subsets in a hyperring [35], etc. In [36], Davvaz
initiated the generalization of fuzzy hyperideal. Bharathi and Vimala subsequently established
the notions of fuzzy I-ideal in [37], and the fuzzy l-ideal was then expanded in [3§]. In [39-41],
Selvachandran et al. introduced the hypergroup and hyperring theory for imprecise soft sets,
and some other important works on fuzzy sets are studied in [42-45].

In this paper, we focus on the theories of (w,e,<)-SVNHRs and (w,¢e,s)-SVNHIs in order

to contribute to the advancement of the neutrosophic theory of hyperalgebraic.

2. Preliminaries

Let = be a set of points where 7 refers to a generic element of =.

Definition 2.1. [§] A SVNS T neutrosophic set that is characterized by a truth member-
ship function 7y (n), an indeterminacy-membership function ¢ty (), and a falsity-membership
function F(n), where 7 (n), ty(7), Fy(n) € [0,1]. This set T can thus be written as:

T = {(A, 7r(),vx (), Fr(R)) : 7 € E)}.

The sum of 7 (n), ¢ty (n) and F v (7) must fulfill the clause 0 < 7y (7)) +ey (R)+F y(n) < 3. For
a SVNS T in =, the triplet (7y(n), ty(n), F v(n)) is referred to as a single valued neutrosophic
number (SVNN). Let 7 = (74, ta, F 4) stand for a SVNN.

Definition 2.2. [8] Assume T and I' are two SV N'Ss in a universe =.

0

(1) Y is contained in T, if 7y (f) < m0(R),tv(R) < up(n), and Fy(R) > Fr(n), Vi €
This relationship is denoted as T C I'.
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(2) Y=L'ifYCTand ' C Y.

(3) T¢= ( (Fx(n), L —uy(n),mx(R)),VneE.

(4) YUT = (7, (V(7r, ), V(er, e0), A(F v, Fr))), Vi €
(5) TNT = (7, (A(rr, ), Aler, ), V(F v, Fr))), Vi €

(1

[

Definition 2.3. [1] A hypergroup (H,o) is a set H with an associative hyperoperation
(o) : H+ H — P(H) which satisfies no H = Hon = H,V n € H (reproduction axiom).

Definition 2.4. [36] If the following properties satisfy, a hyperstructure (H,o) is termed a
H,-group:

(1) no(6op)N(nod)op+# ¢,V n,o,p € H, (Hy,-semigroup).

(2) noH=Hon=H,¥VneH.

Definition 2.5. [1] A subset W of H is termed as subhypergroup if (W, o) is a hypergroup.

Definition 2.6. [2] A H,-ring is a multi-valued system (R, +, o) that satisfies the following
axioms:
(1) (R,+) must a H,-group,
(2) (R,o) must a H,-semigroup,
(3) The hyperoperation “o” is weak distributive over the hyperoperation “+”, that is for
each n,6,p € R the clauses no (04 p) N ((Ro o)+ (Rop)) # ¢ and
(n+06)opN((Rop)+ (00p)) # ¢ must satisty.

Definition 2.7. [2] A nonempty subset R of R is a subhyperring of (R, +,0) if (R, +) is a
subhypergroup of (R,+) and V 7,6,p € R, 06 € P*(R'), where P*(R') denotes the set of

all non-empty subsets of R’ .

Definition 2.8. [2] Suppose H,-ring be R. a nonempty subset I of R is called a left (resp.
right) H,-ideal if the following axioms hold:

(1) (I,+) be a H,-subgroup of (R, +),
(2) RolI CI(resp. IoRCI).
If I is both a left and right H,-ideal of R, then I is called H,-ideal of R.
3. (w,e,¢)-Single Valued Neutrosophic Hyperrings

We represent hyperring (R, +,0) by R throughout this section.

Definition 3.1. If T be a single valued neutrosophic subset of = then (w, ¢, ¢)-single valued

neutrosophic T subset of = is categorize as,

T = La, 78 (3), 5 (), F3 ()7 () = \{re(@), =} 5 (0) = Al (), e}, F5(0) = \[{Fx(3), <}, 2 € 5},
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and 0 < 78 (1) +15 (1) +F (1) < 3, where w, e, € [0,1] also 7,¢, F : T — [0, 1], such that 7F,

15, F% represents the functions of truth, indeterminacy, and falsity-membership, respectively.

Definition 3.2. Let T be a (w,e,5)-SVNS over R. Then T is called a (w,e,)-SVNHR
over R, if
(1) Vk€eR,
MNrF (k). 7€ (D} < inf{rF () =1 € b+ 1},
VA (k) 5 (D} = sup{i5 (1) : v € k + 1}, and
VAFS (), (D)} = sup{r () v € &+ 1},

(2) V A,k € R, 31 € R such that k € i + [ and
NTE (1), 7F (k)} < 77 (1),
V{5 (7), 5 (k)} > 5(1), and
V{Fs(n), F5 (15)}2 $(0)

(3) V A,k € R, 31 € R such that k € 7+ 7 and
NFE(R), 7 (k)} < 78 (1),
V{5 (A, 5 ()} > 15 (h), and
VAF S (R, FS(R)} > FS ()

(4) V k,l € R,
/\{TT( ), 7 (I} < inf{r%(m) : m € kol},
V{5 (k), 5 (D)} > sup{e5- () : 1 € k o}, and
VAFS k), F (D)} > sup{F$(m) : i € kol}

Example 3.3. The family of ¢-level sets of (w,e,)-SVNSs over R is a subhyperring of R is

resulting below:
Y& (ke R:rF (k) > t, 5 (k) <t, F (k) <t},¥te(o1].
Then Y over R is a (w,e,5)-SVNHR.

Theorem 3.4. T is a (w,e,5)-SVNS over R. Then Y is a (w,e,5)-SVNHR over R if
and only if T is (w,e,)-single valued neutrosophic semi hypergroup over (R,o) and also a

(w, e,¢)-single valued neutrosophic hypergroup over (R, +).

Proof. The definition readily indicates this proof. g

Proposition 3.5. If T and T" be two (w, ¢, <)-single-valued neutrosophic subset of ring R then
(T m F) (w757§) :T(w,s,g) ﬂ F(W,E,Q) .
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Proof. Assume that T and I" are two (w, €, ¢)-single-valued neutrosophic subset of ring R.

(D)< () = { min{min{rr(R), 7r(2)}, }, min{min{er (@), ()}, e}, max{max{F¢(a), Fr(a)},<} }

= { min{min{7y(n), @}, min{m(7), w}}, min{min{cy (i), e}, max{cr(n), e} }, max{max{F v (), s}, max{F r(n), C}}}

= {min({r# (@)}, {7 () ), min({5 ()}, (5 (), max({F @)} AFH(R)]) | = TESO @09 (@), vi € R.

Theorem 3.6. Let Y and T be (w,e,5)-SVNHRSs over R. Then YNT" is a (w,e,5)-SVNHR

over R if it is non-null.

Proof. Let T and I' are (w,e,¢)-SVNHRs over R. By using Definition and Proposition
3.0

(C D)) = @29 ATE) = ((k (77 A\ )0, 0 A\ BB VR ke R

where

(i N\ k) = N\CFE), 7 (R)).
& N\ k) = ACEER), G HE),
sV k) = Vrs®). rik).
Assuming V k,[ € R, we are only proven to include all four clauses for membership terms 7%,

77 and indeterminacy terms (5, .. Indications for falsity functions of f 5., F }. correspondingly

derived.

D A@F N k), A Dy = NACER),F ), \CE D, 77 1)}
NIAGE R), (1), A\ (k), 7% (1))}

<
< A{inf{rF (h) : i € k + I}, inf {7 (i) : 0 € k + [}}
< inf{ \A(FF(h), ¥ () : 1 € k + 1}
= f{(rf /\ 7)) ek +1}.
= NM@E N\ DB, F N\ DY < wt{(rf )\ 7F)0n) ek + 1}
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Also

Vs A @R, A a0y = VIAGER, E), A0, 50)}
ANV @R, &), \ R (R), (1)}
/\{SUP{LY
sup{ /\ (%

v

m) € k4 1}, sup{i5(mm) : € k+1}}

Y

(
(

m), () s m ek + 1}

Vv

V
)]
o
fo)
—
~
,_gm
3

= Vg A\ DE, (& N\ 03Dy =

Similarly,
VIS Vi@ s V ey = sw{(r i\ rien) o e b+ 1)

(2) 3V @,k € R such that k € 7 + [ then it argues that:

NGEE N )@), 8 N\ )k} = NAGEE®),

I

~

3

Sy 8
= =
x5

m

3

_l_

=

= /\{ ™ /\ ™ )(R), (TF /\ ) (k)}

Vg A\ @)@ s A\ @)@y = VIAG@), & (@

> {0, 50)}
= {(&( /\Lr 0)}.
= V& A @), 0x A SEY = {ON\ED) ket

Similarly,

Virs Vo rom), s Vo k) = {rs@ V@) cken+1}
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(3)V A,k € R 31 € R where k € 7+ 71 can be readily proved that

NGEE N @), F N\ #) Ry = NACE @), 77 @), \(E k), 77 ()}

< NAGE®), 77 (), \(F (), 7 ()}
< {AGE (), 7 (1)}
= (F N\ F)0m).

= NMEF N @), (F N D)0} < {GF N\ 7))k e+ a)

Also, V fi,k € R 31 € R where k € 7 + 7 then it argues that:

Vi N\ @)@ 5 A\ @) = VIAG@. & @), N\ k), 5 (k)

vV
—~—
=
~
,_gm
—~ —~
\/>
~
,..gm
—~
=
N—
SN—
=
o~
—Hm
>
N—
~
&)
—
>
SN—
N—
—

= V& N\ @), (5 N\ R} > {(5m)
Similarly,
VIrs V@) g Vi) = {50\ Fiem) s k€ it i)
(4)Vk, [ €R,
MNEE N\ )R, F N\ D < inf{(7F N\ 7©)0h) :mekoll,
\VALG /\ BE), (5 N\ 0D} sup{(:5 N\ ) () : i € kol},
VA A\ o), (ks N\ FRDY > sup{(Fs /\ FE)(m) s € kol}.
Hence, YNT'is (w,e,5)-SVNHR over R.

N

v

Theorem 3.7. Let T be a (w,e,5)-SVNHR over R. Then for every t € [0, 1], Tgw’e’g) e )

s a subhyperring over R.

Proof. Let T be a (w,e,5)-SVNHR over R. ¥t € [0,1], let k,le Tgw’e’g).
Then 7 (k), 7E (1) > t, 15 (k), 5 (1) <t and [ (k), Fyl) <t
Since T is a (w, €, ¢)-single valued neutrosophic subhypergroup of (R, +), we have the following

~ A

inf{7F () : € k+1} > N\{rF(k), 77 (D} = \{t.t} =1,
sup{si () : i € b+ 1} < \/{i5(k), 5 (D)} < \/{t.t} =1,

and
sup{F () 1 € k+ 1} < \/{re (), Fe(D} < \/{t.t} =t
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This implies that 1 € Tgw@g) and then for every m € k + [, we obtain k +1 C Tgw’a’g)_
As such, for every m € Tgw’e’g), we obtain m + Tgw’s’g) - Tﬁw’e’g),

Now let k, € Y\™%). Then r&(k), & (m) > t, 5 (k), 5(h) <t and [ $(k), F (M) <t
T is a (w,e¢,s)-single valued neutrosophic subhypergroup of (R,+), 3 [ € R such that
ke m+land 78(0) > AE(k), 7F(m)) > t, (1) < V(&K), 5(m) < t, F(l) <

V(F%(k), F5(n)) < t, and this implies that | e Tﬁw’“). Therefore, we obtain Tﬁw’a") -
i+ Y=

As such, we obtain 7 + T,Ew’“) = Tgw’a’g). As a result, Tgw’a’g) is a subhypergroup of (R, +).
Let k0 € Y9 then 72 (k), 72(0) > t, 5:(k), 15(0) <t and FS:(k), F(D) <t Since T is
a (w,e,¢)-single valued neutrosophic sub-semihypergroup of (R, o), then V k,l € R, we have

the following:
inf{rf (m) : m € kol} > N\{7F(k), 7¥ (D)} =t,
sup{e3 () : 1 € ko l} < \/ (& (k), (D) =t,
and

sup{F () i € kol <\/(F$(k), Fs() =t

(w,e,5)

Tgw@g) and consequently kol € T, .

This implies that m €
(w,e,5)

Therefore, for every k,[ € T, we obtain kol € P*(R). Hence Tgw’s’g) is a subhyperring
over R.

Theorem 3.8. Let T be a (w,e,<)-single valued neutrosophic set over R. Then the following
statements are equivalent:

(1) T is a (w,e,5)-SVNHR over R.

(2) YVt €[0,1], a non-empty Tgw’s’g) is a subhyperring over R.

Proof. (1)=(2) ¥V t € [0,1], by Theorem Tgw’s’c) is subhyperring over R.
(2)=-(1) Assume that Tgw’a’g) is a subhyperring over R. Let kI € Tgw’a’g) and therefore
k+1cC TE?’E’O. Then for every i € k + [ we have TE (M) > to, 15 (M) < tg and F 5 (M) < to,

which implies that:

and
\/(F (), £ (D) = sup{F (i) : 1 € & + 1}
Thus, clause (1) of Definition has been fulfilled.

Next, let i, k € Tgﬂ’e’g) for every t; € [0, 1] which means that 3 [ € Tg?’s’g) such that k € Aol
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A A

Since [ € T(w“) we have 7% (1) > t1, 15(I) < t; and F%(l) < t1, and thus we have

7F () 2 tr = N\(F (k), 7F (),

and
Fyd) <t =\ (F5 (), Fy(m).
Thus, clause (2) of Definition has been fulfilled.
Assurance of (3) of Definition can be satisfied in a similar way.
As a result, YT is a (w, ¢, ¢)-single valued neutrosophic subhypergroup of (R, +).

(w7,e,6)

Now since T; is a sub-semihypergroup of the semihypergroup (R, o), we got the following.

Let k,l € ng,a,g) and therefore we have kol e Tg;’v’a’g). Thus for every 7 € ko[, we obtain
TE (M) > ta, 15 (M) < ta and F () < ta, and therefore it follows that:

and

\ (F$(k), F$(0) > sup{F (i) s 1 € ko l}.
which reveals that clause (4) of Definition [3.2]is verified.
Hence T is a (w,e,¢)-SVNHR over R.

4. (w,e,¢)-Single Valued Neutrosophic Hyperideals

Definition 4.1. Let YT be a (w,e,5)-SV NS over R. Then T is (w, ¢, ¢)-single valued neutro-
sophic left (resp. right) hyperideal over R, if,

)} ST%F(Z),
Vg (1), 5 (k)} > i5(0), and
\/{F} n), F(k)} FT(l)

VA (R), FS(R)} = F5 ().
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(4) V k,l € R,
2 (1) < inf{r¥ (1) : m € kol} (vesp. 7¥ (k) < inf{7F () : 7 € kol}),
> sup{i5- (1) : i € kol} (resp. 15 (k) > sup{t5(1h) : m € kol}), and
F (D) > sup{F s (m) : i € kol} (vesp. F(k) > sup{F(m) :m € kol}).
If T is a (w,¢,¢)-single valued neutrosophic left (resp. right) hyperideal of R then T is a
(w, €, ¢)-single valued neutrosophic subhypergroup of (R, +) by clauses (1), (2) and (3).

Definition 4.2. Let Y be a (w,e,5)-SVNS over R. Then T is a (w, e,)-SVNHI over R, if

aforementioned clauses are met:

(1) V k,l € R,
MFE (), 7 (D)} < inf{r () : m € k+1},
V{5 (k), 5(D)} > sup{i5 () : i € k + 1}, and
VAFS(k), FS(D)} > sup{F () s i € b+ 1}
(2) V i,k e R, 31 e Rsuch that k € 2+ [, and
NrE (), 78 (k)} < rF (D),
V{5 (), 5(k)} > 15(0), and
VI{FS(R), FL(R)} = Fe (D).
(3) V 7,k € R, 37 € R such that k € /i + 7, and
NTE (R), TF (k)} < 7F (),
V{5 (), 15(k)} > 15 (), and
Vs @), Fe(k)} = Fi(m)
(4) V k,l € R,
VArE (k), 78 (1)} < inf{rF (i) : i € ko 1},

A~

VA{g (k) 5 (1)} > sup{i5 () s € kol}, a
k ) : /%oz}.

VAFS (), (D} = sup{F 5 (1
T is a (w,¢,¢)-single valued neutrosophic subhypergroup of (R,+) by clauses (1), (2) and
(3). Clause (4) indicate that Y is both (w, ¢, ¢)-single valued neutrosophic left hyperideal and

(w, €, ¢)-single valued neutrosophic right hyperideal.
= Tisa (w,e,¢)-SVNHI of R.

Theorem 4.3. Let T be a non-null (w,e,5)-SVNS over R. Y is a (w,e,)-SVNHI over R if
and only if Y is a (w, &, §)-single valued neutrosophic hypergroup over (R,+) and also Y is both
a (w,e,¢)-single valued neutrosophic left hyperideal and a (w,e,<)-single valued neutrosophic

right hyperideal of R.

Proof. With the help of Definitions [£.1] and [£.2] we get the required proof. g
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Theorem 4.4. Let T and T’ be two (w,e,5)-SVNHIs over R. Then YT NT is a (w,e,s)-
SV NHI over R if it is non-null.

Proof. Let T and T" are (w,e,s)-SVNHIs over R. By using Definition and Proposition
3.5

(T A=) = YEe) N pEes) = (k (77 N\ m7)(E), (5 N\ £)k), (F$ \ FE(E) -k € R},
where
(g N\ k) = N\EEE), (k)
5 N\ k) = N&E), k),
(re \V Fok) = (), Fik)).

Assuming V l;:, [ e R, we are only proven to include all four clauses for membership terms 7%,

w 3 3 13 13
7~ and indeterminacy terms ¢5, (f.

D ANEFE A D)E,F N DY = ANACEER, 7 F), \F D), 7 (1)}
< MNMACEER, w5 D), \GF k), 7 (1)}
< A{inf{rF () : m € k+ I}, inf {7 () : 1 € k + [}
< int{\(rF (R), 7 () : 1 € k + 1}
= inf{(r§ \ ) (m):mek+1}.
= NGEE N\ )k, F N\ )0 < nf{(zF N\ 7#)(m):mek+0}.
Also
Vi A\ @), N\ a0 = VIACE®E, & E), A D), 50)}
> AV & FR), & 0), V(i k), @ (0)}
> Nfsup{i5 () : i € k + 1}, sup{i5() : i € b+ 1}}
> sup{/\ (15 (M), 5:(0)) : i € k + 1}
= sup{(t5(m) /\ £ (m)) : m € k +1}.
= V& A\ E, 0 N\ DY = sup{(e50h) N\ i5(m)) :h € k+1}.

Similarly,

VIS Vo o)k, (rs \ Fed@) = sup{(F5 i) \/ () < i€ &+ ).
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(2) 3V 7, k € R such that k € 7 + [ then it argues that:

NGEE N @), % N\ ) Ey = AIAC

=
—~
2
qﬂ
2
ol
=
ﬂ\]E]
=
=
—

(
= NEE A\ )@, \ )R}y < {@F N\ 7)) ken+i)

Also, 3V 7, k € R such that k € A + [ then it argues that:

Viee A @), 5 A\ @)@y = VIAG@), 56

> (A0, &)}
= {(&ON\FO)}-
= Vix A\ @), x A @)@ = {(&OA\&0) ken+l}
Similarly,
VAES ) @), s\ ro®EYy = {FsO\ FRd) s ken+1}

(3) V¥ A,k € R 31 € R where k € 1 + 7 can be readily proved that

NEE N\ @), (g \ )R}y = NAGE @), @), \(F (k) 7 ()}

< NAGE®). 78 (R), \(F (7). 7 (k))}
< {A\GF (), 7 (1))}
= (% N\ ).

= NMEE N\ ©)@).6F N )0} < {@F N )00) ke i)

Also, V n, k € R 3 m € R where k € i + # then it argues that:

Vg A\ @)@ s A\ &)@y = VIAG@. & @), N\ k), 5(k)}

= {(50n) N\ ()}
= Vg A\ D@5 N\ DR} = {(500) \dn) : ke m+a)

Similarly,

Vi V rp@, s Vo Py = (s \/ Fiom) - ke m+ )

Muhammad Shazib Hameed, Zaheer Ahmad, Said Broumi and Shahbaz Ali, On
Characterizations of (w, ¢, ¢)-Single Valued Neutrosophic Hyperrings and Hyperideals



Neutrosophic Sets and Systems, Vol. 50, 2022 @

=
3y
=
3
==
A
5
5
=
3y
2
3
m
x5
(o)
-~

VA& (E), 5D} > sup{i5(h) : 1 € kol}, and
VAFS ), Fo@)y = supfrs(m) e ko).

Hence, it is verified that T N I'is a (w,e,s)-SVNHI over R.

5. Conclusions

This research has introduced the novel concepts of the (w,¢,¢)-single valued neutrosophic
theory of hyperrings and hyperideals through the introduction of a few hyperalgebraic struc-
tures and the analysis of some basic properties, outcomes, and structural characteristics of
these concepts. We plan to meld more hyperalgebraic theory with real-world applications in
the future for plithogenic sets for (w, ¢, )-single-valued neutrosophic sets and (w, €, ¢)-interval-

valued neutrosophic sets.
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