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Abstract: Multi-objective assignment problems (MOAPs) emerge in a wide range of real-world 

scenarios, from everyday activities to large-scale industrial operations. In this study, a MOAP with 

fuzzy parameters is investigated, and the fuzziness is represented by a Type-2 fuzzy logic system. 

Because the T2FLS is more efficient in dealing with the uncertainty of a decision-making process, the 

current problem's many parameters are represented by Type-2 trapezoidal fuzzy numbers 

(T2TpFNs). T2TpFNs are first reduced to Type-1 fuzzy numbers, then to crisp numbers. Finally, the 

neutrosophic compromise programming technique (NCPT) is applied to produce a problem 

compromise solution. A numerical problem is used to demonstrate the validity and applicability of 

the NCPT for the current MOAP. Furthermore, a comparison of NCPT to other techniques such as 

FPT and IFPT shows its superiority. 

Keywords: Multi-objective Optimization; Assignment Problem; Type-2 Fuzzy Logic; Neutrosophic 

Programming; Fuzzy Goal Programming; Intuitionistic Fuzzy Programming. 

 

 

1. Introduction 

An (AP) is a combinatorial discrete optimization decision making problem arising in operations 

research and project management. It is an indispensable part of human resource project management, 

one of the main project management areas. It includes selection, development and 

management/control of the project team. In literature, the assignment problem has also been called 

the maximum weight matching problem. It has a wide range of applications in many real-life projects 

related to, for instance, education [16], production planning in telecommunication [67], rail transport 

[70] and medicine [74]. A classical assignment problem deals with allocating n tasks to n agents so 

that each agent is assigned to a single task and only one agent performs each task to optimize a pre-

defined objective. This may involve maximizing efficiency or minimizing assignment cost or 

execution time of the tasks.  

Generally, a cost-minimizing assignment problem (CMAP) aims to find an assignment 

schedule that minimizes the total assignment cost. A time minimizing assignment problem (TMAP), 

also known as a bottleneck assignment problem, focuses on minimizing the overall execution time of 

all the tasks. The first polynomial-time algorithm, viz., Hungarian algorithm for solving a CMAP, was 

proposed by Kuhn [33] in 1955. Later, Ravindran and Ramaswamy [60] used the Hungarian approach 
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to solve a single objective bottleneck assignment problem. Various researchers have discussed a 

number of   variants of the CMAP as well as the TMAP [11,47,53,66,69,76].  Bogomolnaia and Moulin 

[11] discussed a random assignment problem with a unique solution in which probabilistic serial 

assignment has been characterized by efficiency in an ordinal sense and envy-freeness.  Maxon and 

Bhadury [47] discussed a multi-period assignment problem with repetitive tasks and tried to integrate 

a human aspect into their analysis. Nuass [53] suggested an optimizing and heuristics approach for 

solving generalized assignment problems. Sasaki [66] discussed axiomatic characterizations like 

consistency and monotonicity of the core of assignment problems in his research. Sourd [69] 

addressed a persistent assignment problem to solve scheduling problems with periodic cost 

functions. Vatow and Orden [76] discussed a personnel assignment problem.  A number of books are 

also available in the literature that discuss assignment problems and their variants thoroughly 

[12,22,51,72]. 

While making strategic planning decisions in many real-life situations related to economics, 

science and engineering, often there is a suggested need to optimize more than one objective 

simultaneously. It gives rise to multiobjective optimization problems (MOOPs). In MOOPs, the 

multiple objectives are mostly conflicting in nature, and therefore, a single optimal solution may or 

may not exist. One has to search for trade-off/compromising solution(s) that involves a loss in one of 

the objective values in return for the gains in the others.  It is easy to determine the superiority of a 

solution over the others in a single objective optimization problem, but in a MOOP, compromising 

solutions’ consistency is determined by the concept of dominance. Therefore, these compromising 

solutions form the so-called Pareto frontier of the problem and are called Pareto optimal solutions 

that give rise to non-dominated points of the problem in its criteria space.  Likewise, depending upon 

various market segments in this competitive world, a business industry might choose a strategy to as-

sign various jobs to various agents in such a way that some objectives are optimized simultaneously. 

These objectives may either involve minimizing total assignment cost or that of the overall execution 

time or both at a time. For instance, many business firms either follow low-cost strategies or follow 

better responsiveness and customer service rules. Assignment problems in which both these factors 

are taken into account become time-cost trade-off problems as the solution providing the lowest cost 

may not provide the least time as well. Such problems fall in the category of bi-

objective/multiobjective assignment problems. These problems have been investigated intensively in 

literature by many researchers [1,6,7,19,23,30,48,55,57,75,77]. Adiche et al. [1] proposed a hybrid 

algorithm for solving MOAPs. Bao et al. [6] studied the 0-1 programming method to transform and 

solve a MOAP by transforming it to a single objective assignment problem (SOAP). Geetha et al. [19] 

discussed the cost-time trade-off in a multicriteria assignment problem, whereas Hammadi [23] 

solved a MOAP using a tabu search algorithm. Yadaiah et al. [77] discussed an assignment problem 

with multiple objectives viz., time-cost-quality using the Hungarian algorithm. Furthermore, in 

several real-world optimization issues, the decision-makers are not always able to assign precise 

values to the problem's many parameters. 

Only a vague information may be available based on abrupt changes in the environmental 

conditions, sudden breakdown of machinery, changes in government policies like complete or partial 

lockdown in the concerned region (specifically, in the epidemic/pandemic scenario like Covid-19) that 

may result in sudden shortage of products with high demand or an increase in demand of the newly 

launched products etc. This vagueness may also be based on past experiences and knowledge about 

the related situations. Thus, there is uncertainty in the values of parameters which may be very large 

as well. The theory behind fuzzy techniques is based on the notion of relative graded membership, 

inspired by human perception and cognition processes. It can deal with information arising from 

cognition and computational perception that is partially true, imprecise or without sharp boundaries.  

In 1965, Lotfi A. Zadeh[80] published his first famous research paper on fuzzy sets. Since then, 

various computational optimization techniques based on fuzzy logic have been developed for pattern 

recognition and identifying, optimizing, controlling, and developing intelligent decision-making 
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systems. It can also provide an effective means for conflict resolution of multiple criteria and assess 

the available options in a better way. Later, Zadeh [81] also discussed the concept of a linguistic 

variable and its application to approximate reasoning.  

Assignment problems performed in turbulent times (e.g., economic crisis, pandemic, risks 

etc.) may also have complex parameter estimation that leads to the discussion of these problems in a 

fuzzy environment. Researchers have thoroughly discussed various SOAPs/MOAPs and their 

variants under fuzziness [9,13,14,17,25,26,33,37,38,39,40,41,42,43,44,49,59,61,65,71]. Biswas and 

Pramanik [9] discussed a MOAP in the context of military affairs with fuzzy costs as trapezoidal 

fuzzy numbers. To transform their problem into a crisp single objective assignment problem, they 

applied Yager’s ranking method. Chen [13] proposed a fuzzy assignment paradigm that treated all 

individuals as having the same abilities. De and Yadav [14] proposed an algorithm to solve a MOAP 

with exponential (nonlinear) membership using an interactive fuzzy goal programming approach 

whereas Feng and Yang [17] discussed a bi-objective assignment problem and constructed a chance-

constrained goal programming model for the problem. Huang et al. [25] discussed a fuzzy 

multicriteria decision-making approach for solving a bi-objective personnel assignment problem 

whereas Huang and Zhang [26] developed a mathematical model for a fuzzy assignment problem 

(FAP) with a set of qualification constraints. Then, they designed a tabu search algorithm based on 

fuzzy simulation to solve the problem. Kagade and Bajaj [31] solved a MOAP with cost coefficients of 

the objective functions as interval values. Li et al. [40] discussed FAPs and presented a metric 

uncertainty model of concentrated quantification value. The convergence of the solution algorithm 

developed by combining genetic algorithm and assignment problems has been analyzed using 

Markov chain theory. Lin and Wen [41] also considered an FAP with assignment costs as fuzzy 

numbers and proposed a methodology that reduces the problem, either to a linear fractional 

programming problem or to a bottleneck assignment problem. They used a labelling algorithm to 

solve the related linear fractional programming problem. Lin et al. [42] studied an FAP and 

performed advanced sensitivity analysis viz., Type II and Type III sensitivity analysis.  Type II 

sensitivity analysis determined the range of perturbation so that the optimal solution remains optimal 

whereas Type III sensitivity analysis determined the range for which the rate at which the optimal 

value function changes remains unchanged.  Liu and Gao [43] designed a genetic algorithm to solve 

the fuzzy weighted balance equilibrium multi-job assignment problem whereas Liu and Li [44] 

presented a fuzzy quadratic assignment problem with three penalty costs and developed a hybrid 

genetic algorithm to solve the problem. Mukherjee and Basu [49] proposed a fuzzy ranking method 

for solving assignment problems with fuzzy costs. Pramanik and Biswas [59] studied a MOAP in 

which time, costs and inefficiency were represented by generalized trapezoidal fuzzy numbers and 

developed a priority-based fuzzy goal programming method.  A traffic assignment based on fuzzy 

choices has been discussed by Ridwan [61].  Sakawa et al. [65] used interactive fuzzy programming 

for the linear and linear fractional programming workforce and production assignment problems. 

Tada and Ishii [71] also discussed a bi-objective FAP. For some other fuzzy models of the assignment 

problem and its variants, one may refer to the works of Gupta and Mehlavat [21], Jose and Kuriakose 

[28], Majumdar and Bhunia[46], Mukherjee and Basu [50], Nirmala and Anju [54], Pandian and 

Kavitha [56]and Thorani and Shankar [73], Yang and Liu [78], Ye and Xu [79]. 

Generally, in fuzzy optimization theory, Type-1 fuzzy set (T1FS) is employed that represents 

the uncertainty of the parameters by the membership functions which are   crisp numbers lying in the 

interval [0, 1].  From the beginning, one of the major issues with the T1FS is that it cannot handle the 

uncertainty of the parameters efficiently, specifically, in situations where there is further uncertainty 

associated with the membership functions of the parameters. There is a need to depict such 

uncertainties by fuzzy sets that have blur boundaries.  Then, a Type-2 fuzzy set (T2FS) came into 

existence. Membership functions of T2FS are three dimensional that allow some additional degrees of 

freedom to manage these uncertainties in a better way. In recent years, researchers have discussed 

various decision-making problems using T2FS [15,20,27,29,34,35,36,45,52].  The   problem studied in 
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this paper is a MOAP with fuzzy parameters, represented by T2TpFNs. Firstly, a two-stage 

defuzzification process is used to convert these T2TpFNs to equivalent crisp values and then, the 

neutrosophic logic is applied to solve the problem.  The definition of neutrosophic logic and the 

related literature review is provided in the next subsection.  

1.1 Literature Review on Neutrosophic Logic 

As mentioned in the previous section, the theory behind fuzzy techniques is based on the notion of 

relative graded membership, i.e., the degree of belongingness of a parameter in an interval or a fuzzy 

set. Nevertheless, sometimes it is important to discuss the non-belongingness or non-membership of 

that parameter to cater   a more realistic scenario.  Atanassov [5] proposed a generalization of fuzzy 

sets viz, intuitionistic fuzzy logic that incorporates both the aforementioned factors.  In this approach, 

two different real numbers representing the degree of truth and degree of falsehood are associated 

with each parameter. However, a half-true expression in this logic is not always half false; there may 

be some hesitation degree as well. Many researchers have developed a number of intuitionistic fuzzy 

programming approaches which gained significant popularity among the existing multiobjective 

optimization techniques. Angelov [3,4] first discussed optimization in an intuitionistic fuzzy 

environment. Later on, various researchers discussed this technique to study assignment problems as 

well. Jose and Kuriakose [28] presented an algorithm for solving an assignment model in an 

intuitionistic fuzzy context. Mukherjee and Basu [50] solved an intuitionistic fuzzy assignment 

problem using similarity measures and score functions.  Roy et al. [63] presented a new approach for 

solving intuitionistic fuzzy multiobjective transportation problems in which supply, demand and 

transportation costs are considered as intuitionistic fuzzy numbers. But certain real-world situations 

involve another factor called indeterminacy. In such problems, the indeterministic feature of 

ambiguous data plays an essential role in making a rational decision outside the reach of intuitionistic 

fuzzy set theory. Each membership function of the neutrosophic set is precisely quantified and 

independent. One obtains better and more refined results whenever the optimization is carried out in 

a neutrosophic or generalized neutrosophic setting. Many researchers have applied neutrosophic 

logic to solve various multiobjective optimization problems [2,18,32,58,62,64,82]. Aggarwal et al. [2] 

thoroughly discussed neutrosophic modelling and control. Freen et al. [18] discussed multiobjective 

nonlinear four-valued refined neutrosophic optimization. Kamal et al. [32] considered a 

multiobjective nonlinear selective maintenance allocation of system reliability and used a 

neutrosophic fuzzy goal programming approach to get the optimal solution.  

Pintu and Tapan [58] presented a multiobjective nonlinear programming problem based on 

the neutrosophic optimization technique and discussed its application in the Riser Design problem.  

Rizk-Allah [62] also discussed a multiobjective transportation model under a neutrosophic 

environment. Şahin and Muhammed [64] studied a multicriteria neutrosophic group decision-making 

method based on TOPSIS for supplier selection. Zhang et al. [82] discussed neutrosophic interval sets 

and their applications in multicriteria decision-making problems. Next subsection discusses the 

motivation behind the present study. 

1.2 Study Motivation 

This paper aims to present an efficient algorithmic solution procedure based on neutrosophic logic for 

a MOAP with conflicting objectives viz., assignment cost and execution time in which T2TpFNs are 

used to represent these parameters. Using the output processor of T2FS these T2TpFNs are initially 

reduced to Type-1 fuzzy numbers and then to crisp numbers.   The proposed solution procedure is 

named as Neutrosophic compromise programming technique (NCPT).  The selection of T2FS for the 

present study is due to the fact that its membership functions allow some additional degrees of 

freedom to manage the uncertainties/vagueness in the parameters (here, time and cost) in a better 

way. However, the advantage of neutrosophic logic, as mentioned in the previous subsection, is that 

it offers a neutral perspective to decide the best possible compromise solution(s) of a MOOP. It is 
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shown that NCPT is the best solution technique for dealing for dealing with inaccurate, missing, and 

inconsistent information of the present MOAP when compared to the available solution techniques 

viz., fuzzy and Intuitionistic fuzzy programming techniques. This comparison has been done with the 

help of a numerical problem. LINGO software, created by LINDO Systems Inc., is used for all 

calculation-based frameworks.  

The rest of the paper is structured as follows: In Section 2, mathematical statement of the present 

MOAP is given. It explains the basic as well as the fuzzy model of the problem viz., “Model 1” and 

“Model 2”, respectively. Section 3 discusses some basic mathematical preliminaries related to fuzzy, 

intuitionistic fuzzy and neutrosophic sets. Section 4 discusses the defuzzification process of T2TpFNs. 

In Section 5, three different solution techniques that are applied to the present MOAP have been 

discussed in detail. In Section 6, some real-world applications of the present MOAP are given. The 

efficacy of the proposed NCPT solution technique for a MOAP instance is addressed in Section 7. 

Section 8 discusses the performance and outcome of the proposed solution technique. It also provides 

its comparative study with the other two solution techniques. Advantage of using the NCPT solution 

technique instead of other commonly used techniques has been addressed in Section 9. Section 10 

provides conclusion and the future aspects of the present study.   

2. Mathematical Statement of MOAP 

Nomenclature 

Indices: 

i - Index for n workers, (i=1, 2,…, n) 

j - Index for n tasks, (j=1,2,…, n) 

Decision Variable: 

ijx -Binary variable that takes the values 1 and 0 if jth taskis assigned and not assigned to ith worker, 

respectively. Equivalently,  






otherwise

woritoisassignedtaskjif
x

thth

ij
,0

ker,1
 

Parameters: 

ijc  - Assignment cost of jt h task to the ith worker 

ijt  -execution time when ith worker performs jth task 

 

Model 1: 

The mathematical formulation of a MOAP with the above-mentioned parameters is as follows: 
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In Model 1, time ( ijt
~~

) and cost ( ijc
~~ ) parameters are assumed to be T2TpFNs. 

Model 2: 
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3. Mathematical Preliminaries 

Some basic definitions of fuzzy, intuitionistic fuzzy and neutrosophic set are discussed. 

Definition 3.1 Fuzzy Set or Type I Fuzzy Set (T1FS) [10] 

A fuzzy set C
~

 is defined on the set Y  of real numbers. Its membership function )(~ y
C

  can be 

characterized as: 

  1)(0 ;1,0: ~~  yY
CC

 ,        

Thus, a T1FS can be defined as:  YyyyC
C

 :)(,(
~

~ . 

Definition 3.2 Defuzzification of T1FS [10] 

Defuzzification is a process of transforming a fuzzy inference into a crisp output. For a Type-1 fuzzy 

number (T1FN) also, there exists an associated crisp quantity which is called defuzzified form of that 

T1FN. Let ),,,(
~

4321 ccccC   be a Type-1 Trapezoidal Fuzzy Number (T1TPFN). Using probability 

density function, defuzzified value of C
~

 can be computed as:  
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Definition 3.3 Type-2 Fuzzy Set (T2FS) [10] 

Generalization of interval-valued fuzzy sets is known as T2FS, if the intervals are fuzzy. A T2FScan be 

expressed in four TIFS. . That means four membership functions of a T2FS are T1FSs, which depict the 

uncertainty of T2FS in a justified manner. Therefore, a membership function of T2FS is of the form 

])1,0([:~  Y
C

 where ])1,0([ denotes the set of all T1FSs defined on the interval [0, 1].  

Definition 3.4 Type-1 Trapezoidal Fuzzy Number (T1TPFN) [10] 

A T1TPFN ),,,(
~

4321 ccccC   on Y with the membership function can be defined as:  
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Definition 3.5 Type-2 Trapezoidal Fuzzy Number (T2TpFN) [10] 
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4. Defuzzification Technique of a T2TpFN 

Since ijc
~~  and ijt

~~
 in model 1 are assumed T2TpFN, therefore under this section, the defuzzification 

process of T2TpFNs is discussed. From definition 3.5, T2TpFN can be defined by four T1TpFNs and 

for each point of the universe of discourse of the T2TpFN, a T1TpFN corresponds as a secondary 
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membership function. Therefore, a technique that defuzzifies a T1TpFN would be sufficient to 

provide a defuzzified value of the T2TpFN. The present defuzzification technique is divided into two 

stages.  Stage-1 reduces T2TpFN into its equivalent T1TpFNs; however, Stage-2 defuzzifies these 

T1TpFNs to get the crisp values of the associated T2TpFN.   
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Stage 2. 

T1TpFNs are further defuzzified at this stage to generate the final defuzzified version of the T2TpFN 

as follows:  
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The same procedure can be followed for T2TpFNs ijt
~~

 to obtain their crisp values. 

After the above defuzzification procedure, the resultant MOAP model finally takes the form 

Model 3: 
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5. Methodology  

In this section, we discuss three different solution techniques viz., 

(i) Neutrosophic compromise programming technique 

(ii) Fuzzy programming technique 

(iii)  Intuitionistic fuzzy programming.  

The method of transforming a multiobjective optimization problem into a related single-objective 

optimization problem is also discussed for all the suggested approaches. 
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5.1 Neutrosophic Compromise Programming Technique (NCPT) 

The extended version of the fuzzy and intuitionistic fuzzy sets has been classified as a neutrosophic 

set (NS) (defined below) with an additional membership function called indeterminacy. In some 

specific real-life decision-making problems, there are many cases in which decision-makers have 

indeterminacy or unbiased reasoning in decision-making. The principles of indeterminacy often lie 

between those of Truth and Lies. Literally, neutrosophic means neutral thought or awareness of 

indeterminacy, therefore, a NS has three distinct membership features viz., truth, indeterminacy and 

falsehood. On the other hand, in a fuzzy set, we maximize the degree of membership function which 

indicates that the element belongs to that set. In contrast, in an intuitionistic fuzzy set, two types of 

membership functions viz., the degree of membership (also known as the degree of truth) and the 

degree of non-membership (also known as the degree of falsehood) of an element, are considered. To 

be more specific, an NS maximizes the degree of truth and indeterminacy while decreasing the degree 

of falsehood. A NS represents a major touchstone in a decision-making process where the decision-

maker can be entirely satisfied (with truth), partly satisfied (with indeterminacy) and dissatisfied 

(with falsehood). In any decision-making problem, these factors increase the strength of making the 

right decision or achieving an optimal solution. Since for MOOPs with conflicting objectives, the 

challenge of finding the best solution using classical approaches is a significantly complicated issue, 

the NCPT would be a useful technique for achieving the best compromise solution due to its 

aforementioned features.  

Definition 5.1   Neutrosophic Set [63] 

Let Y be the universe of discourse and Yy . A neutrosophic set (NS) P  over Y is the set of triplets 

consisting of a truth membership function )(yTP
, indeterminacy membership function )(yI P

and a 

false membership function )(yFP
, for Yy . Mathematically; 

 }|)(),(),(,{ YyyFyIyTyP PPP      

Here, )(yTP
, )(yI P

 and )(yFP
are real non-standard or standard functions with range [1,0] 

,  

i.e.,  [1,0]:)( YyTp , [1,0]:)( YyI p and [1,0]:)( YyFp .  Assume that 

  
  3)(sup)(sup)(sup0 yFyIyT ppp    

 

Now, the general formulation of a MOOP can be defined as: 
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where, LlxZl ,...,3,2,1;)(  denotes the lth objective function, Mmxgm ,...,3,2,1;)(  denotes the 

constraints and x  denotes the decision variables. 
 
In 1970, Bellman and Zadeh [8] introduced the 

definitions of fuzzy decision (D), fuzzy goal (G) and fuzzy constraint (C) that are useful for solving 

any real-life optimization problems under uncertainty. Consequently, a fuzzy decision set is 

described as:     CGD    
 

On the same lines, a neutrosophic decision set ND , with neutrosophic goal set LG  and neutrosophic 

constraints mC can be defined as follows: 

  ))}(),(),(,()(){( 11 xFxIxTxCGD DDDm

M

mL

L

lN     
where 
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Here )(xTD
, )(xID

 and )(xFD
are the truth, indeterminacy and false membership functions, 

respectively, defined under the neutrosophic decision ND . 

To find the compromise solutions for a multiobjective decision making optimization issue, 

membership functions are created for each objective function and the lower and upper bounds are 

calculated as iL  and iU  respectively, by solving them individually under the stated constraints:  

 )}({max XZU l
l

l  and )}({min XZL l
l

l   for all Ll ,...,2,1            (1) 

Further, upper and lower bounds for 
thl  objectives under the NS can be determined as follows: 
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where la and lb are predetermined real values assigned by the decision-makers that lie in the 

interval (0, 1). Further, the linear membership function ))(( xZT ll of truth, ))(( xZI ll  of 

indeterminacy and ))(( xZF ll of falsity under the neutrosophic environment can be constructed as 

follows: 
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It should be noted here that LlLU ll ,...,2,1,(.)(.)  . 
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If  LlLU ll ,...,2,1,(.)(.)  , the membership value will be assumed to be 1. 

Since the development of achievement functions helps to achieve the highest level or degree 

of satisfaction based on the priorities of the decision-makers, we also define a specific achievement 

variable for each membership function. The decision-maker may establish a target in a decision-

making process to attain the maximum possible degree of satisfaction for the truth and indeterminacy 

membership functions while minimizing the degree of untruth as much as possible. After considering 

the linear membership of truth, indeterminacy and falsehood under neutrosophic nature, the 

mathematical expression of the neutrosophic compromise programming problem is given as 
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By using auxiliary parameters, the above problem P1 can be transformed into a new problem, say, P2 

as follows 

P2: 
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Here  ,   and   are the auxiliary variables for the truth, indeterminacy and false membership 

functions, respectively. Further, the above problem P2 can be expressed in the purest form as the 

problem P3 as follows 

P3: 
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 Based on the above formulations of a neutrosophic compromise programming technique, 

Model 2 of the present MOAP can be presented as a neutrosophic programming model in the 

following manner: 

Model 4: 
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The following steps will be followed to discuss the present MOAP using NCPT.  
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Step  1. Formulate a   MOAP under an uncertain environment as given by Model 2. 

Step 2. Convert each fuzzy parameter of this problem into a crisp number using the defuzzification 

method discussed in Section 4. 

Step 3. Calculate the best and worst solutions corresponding to each objective function under the 

given set of constraints using optimization software LINGO and create a payoff matrix (refer to Table 

5).  

Step 4. Determine the upper lU  and  lower lL  bound, respectively, of each objectives using equation 

(1). 

Step 5. With the help of these lU  and lL  values, find the upper and lower bound for all the 

membership functions (truth, indeterminacy and falsehood) using equations (2)-(4). 

Step 6. Construct the linear membership function for the truth, indeterminacy and falsehood using 

equations (5)-(7). 

Step 7. Construct the neutrosophic problem as problem P2 and transform it into problem P3. 

Step 8. Solve the MOAP model as Model 4 and obtain the compromise solution using the 

Optimization Software Packages LINGO 16.0. 

5.2 Fuzzy Programming Technique (FPT) 

The problems involving undefined and imprecise parameters with multiple objectives are known to 

be typical mathematical problems. The fuzzy programming technique (FPT) is an effective and 

versatile solution technique for such a problem. Zimmermann [83] developed it in 1978, specifically to 

tackle MOOPs. A fuzzy programming model aims to optimize multiple objectives simultaneously, by 

reducing deviations from the goal features. Fuzzy programming needs the decision-makers to set a 

level of expectation for each target which is challenging as several uncertainties must also be 

considered in nature.   

The general mathematical formulation of a fuzzy programming problem with l objectives and j 

constraints, with i decision variables, can be described as:  
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The following steps of the fuzzy programming technique can solve the MOAP given by Model 2. 

Step 1. Find the optimal value of each objective function of the MOAP subject to the given set of 

constraints by ignoring all other objectives (use the optimization software LINGO). 

Step 2. Calculate the best lU  and worst lL  values for each objective function separately and create a 

payoff matrix (Table 5). 

Step 3. Define the membership function for each objective using equations (8) and (9) given below 

(refer [78]). 

Membership function ))(( xZ ll for lth objective function of minimization type 
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Membership function for lth objective function of the maximization type 



Neutrosophic Sets and Systems, Vol. 51, 2022     186  

 
Murshid Kamal, Prabhjot Kaur, Irfan Al, A Neutrosophic Compromise Programming Technique to Solve Multi-Objective 

Assignment Problem with T2TpFNs     

 

  
























ll

lll

ll

ll

ll

ll

LxZif

UxZLif
LU

LxZ

UxZif

xZ

)(0

)(
)(

)(1

))((

    

(9) 

where lL  and lU  are the lower and upper bounds of the objective functions. 

Finally, the MOAP can be defined as a fuzzy programming model as  

Model 5: 
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Step 4. Solve this crisp MOAP above and obtain the compromise solution using the Optimization 

Software Package LINGO 16.0. 

5.3 Intuitionistic Fuzzy Programming Technique (IFPT) 

The intuitionistic fuzzy set theory is an alternative for defining a fuzzy set if the available knowledge 

is insufficient to describe an imprecise theory using a traditional fuzzy set. The degree of membership 

and non-membership for the objective functions and their limitations are concurrent and taken into 

account in such a way that the sum of both is either less than or equal to one.  

The general mathematical formulation of a MOOP in the context of intuitionistic fuzzy programming 

is as follows: 
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(10)

 

where ))(())(( xZandxZ llll   are the membership and non-membership functions of the lth 

objective and ,   are their aspiration levels. 

The following steps explain finding a compromise solution to the problem given by (10) using IFPT. 

Step 1.Find the optimal value of each objective function of the MOOP subject to the given set of 

constraints by ignoring all other objectives, using the optimization software LINGO.  

Step 2. Calculate the best lU  and worst lL  values for each objective function separately and create a 

payoff matrix (Table 5). 
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Step 3. Construct the membership and non-membership functions ))(())(( xZandxZ llll 
, 

respectively, of lth objective function, for all values of l, using equations (11) and (12) given as
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Now, Model 2 of the present MOAP can be defined using IFPT as follows:  

Model 6: 
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Step 4. Solve this crisp model of the present MOAP by using the Optimization Software Packages 

LINGO 16.0 and obtain a compromise solution.  

A flow chart of the proposed optimization procedure using all the techniques mentioned above is 

given in Figure 1. 
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Figure 1. Flow chart for the optimization procedure 

6.   Real-World Applications 
 

The present MOAP aims to minimize execution time and assignment cost, simultaneously. It finds its 

applications in many business scenarios where the quickest possible delivery of its product is as 

important as its financial budget. Generally, a quick mode of transportation may result in high 

Formulate the MOAP with cost 

and time parameters as T2TpFNs 

Transform these parameters into their equivalent 

crisp values using the defuzzification procedure 

Break 

FPT NCPT IFPT 

Use Lingo optimization software to 

solve the associated crisp model 

Obtain a compromise solution 
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transportation charges which mean that the objectives are conflicting in nature. So, the objective is to 

find such an assignment schedule that provides the best compromising solution to the problem. There 

may be many managerial implications of the present problem, but to quote some of them, consider 

the following real-life scenarios 

(1) In an FMCG (fast-moving consumable goods) industry, due to the limited shelf life of the 

goods, it is important to deliver the products to the destinations as soon as possible. 

However, at the same time, the supply chain management team of the industry works to 

minimize the logistics cost. Therefore,  it is important to find a  way of transporting goods to 

minimize both objectives, simultaneously.  

(2) In the commercial industry, road transportation is an extremely methodical way of hauling 

goods among various locations to improve the efficiency and growth of a business. Therefore, 

the use of heavy goods vehicles (HGVs) is an indispensable part of any business. Consider an 

industrial project of manufacturing some HGVs in minimum time and budget.   For 

manufacturing various parts of an HGV  in terms of both execution time and cost, quotations 

from various manufacturing units are taken. Then, an assignment schedule is looked for so 

that all the parts are produced in the minimum time and in the minimum budget so that a 

cost-efficient HGV is manufactured well in time. There are numerous other real-world 

situations of this kind that may give rise to the present MOAP.   
 

7.   Numerical Illustration 

Consider an industrial manufacturing problem that uses third party operations. The product that the 

industry manufactures requires four major semi-finished parts. These semi-finished parts are finished 

and assembled to form the final product by the industry itself. All of these parts can be manufactured 

by any of the four different third party manufacturing units, which have imprecise values of the 

manufacturing time and cost corresponding to each part. The industry's objective is to assign the task 

of manufacturing four semi-finished parts to four third party manufacturing units so that all the parts 

are manufactured in the minimum time and with the least financial burden.  

Here, the first objective 
1Z  denotes the total manufacturing cost (in $), and the second 

objective 
2Z denotes the total manufacturing time (in minutes) of all the four semi-finished parts. 

Table 1 shows the key attributes of the problem. The imprecise manufacturing costs and times quoted 

by all the third party manufacturing units for manufacturing each semi-finished part are given as 

T2TpFNs in Table 2 and Table 3, respectively. The two-phase defuzzification process (discussed in 

Section 4) is used to achieve a crisp value of each of these imprecise T2TpFNs. The crisp values 

corresponding to Stage 1 and Stage 2 of the defuzzification process are summarized in Table 4. Table 

5 provides the best and worst values of both the objective functions, achieved by solving each of them 

individually under a given set of constraints. 

Table 1. Main attributes of the problem 

Number of third party manufacturing units ( i ) 4 

Number of tasks ( j ) 4 

Table 2. Imprecise manufacturing costs as T2TpFNs 

1
Z  Task 1 Task 2 Task 3 Task 4 

Manufacturing 

unit  1 

[(38,40,42,46); 

(35,40,42,48); 

(32,40,42,48); 

(31,40,42,55)] 

[(43,45,46,49); 

(41,45,46,54); 

(38,45,46,56); 

(36,45,46,59)] 

[(51,53,55,58); 

(49,53,55,60); 

(46,53,55,64); 

(44,53,55,67)] 

[(65,67,69,72); 

(62,67,69,74); 

(60,67,69,78); 

(59,67,69,80)] 

Manufacturing 

unit 2 

[(35,37,39,43); 

(32,37,39,45); 

[(69,71,73,76); 

(67,71,73,80); 

[(66,68,70,74); 

(62,68,70,77); 

[(77,79,82,86); 

(74,79,82,89); 
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(29,37,39,49); 

(28,37,39,54)] 

(65,71,73,83); 

(62,71,73,85)] 

(60,68,70,81); 

(57,68,70,85)] 

(72,79,82,94); 

(68,79,82,97)] 

Manufacturing 

unit 3 

[(89,91,94,98); 

(87,91,94,102); 

(85,91,94,106); 

(83,91,94,109)] 

[(83,85,86,88); 

(82,85,86,91); 

(80,85,86,94); 

(77,85,86,98)] 

[(96,98,100,104); 

(94,98,100,107); 

(91,98,100,110); 

(88,98,100,114)] 

[(61,63,64,67); 

(58,63,64,71); 

(56,63,64,75); 

(53,63,64,79)] 

Manufacturing 

unit 4 

[(58,60,63,67); 

(56,60,63,71); 

(53,60,63,74); 

(51,60,63,78)] 

[(35,38,40,43); 

(33,38,40,44); 

(32,38,40,45); 

(30,38,40,49)] 

[(56,58,60,64); 

(54,58,60,68); 

(51,58,60,70); 

(49,58,60,74)] 

[(73,75,77,81); 

(70,75,77,84); 

(68,75,77,87); 

(65,75,77,89)] 

Table 3. Imprecise manufacturing times asT2TpFNs 

2
Z  Task 1 Task 2 Task 3 Task 4 

Manufacturing 

unit 1 

[(218,220,222,225); 

(216,220,222,227); 

(213,220,222,231); 

(210,220,222,234)] 

[(242,245,246,249); 

(240,245,246,252); 

(237,245,246,255); 

(234,245,246,259)] 

[(211,209,215,218); 

(209,213,215,220); 

(206,213,215,224); 

(203,213,215,227)] 

[(225,227,229,233); 

(224,227,229,235); 

(221,227,229,239); 

(217,227,229,244)] 

 

Manufacturing 

unit 2 

[(262,264,266,270); 

(260,264,266,273); 

(257,264,266,275); 

(254,264,266,276)] 

[(250,252,254,257); 

(248,252,254,260); 

(245,252,254,264); 

(241,252,254,267)] 

[(231,233,234,237); 

(228,233,234,240); 

226,233,234,244); 

223,233,234,247)] 

[(255,257,259,262); 

(252,257,259,264); 

(249,257,259,267); 

(247,257,259,270)] 

Manufacturing 

unit 3 

[(278,280,281,284); 

(275,280,281,286); 

(273,280,281,289); 

(270,280,281,293)] 

[(283,285,287,290); 

(280,285,287,292); 

(277,285,287,294); 

(274,285,287,298)] 

[(295,297,299,303); 

(292,297,299,306); 

(290,297,299,309); 

(287,297,299,314)] 

[(288,290,292,295); 

(285,290,292,298); 

(283,290,292,301); 

(280,290,292,303)] 

 

Manufacturing 

unit 4 

 

[(242,244,246,249); 

(240,244,246,253); 

(238,244,246,257); 

(236,244,246,261)] 

[(285,287,289,292); 

(283,287,289,295); 

(281,287,289,297); 

(279,287,289,303)] 

[(257,259,261,265); 

(255,259,261,268); 

(253,259,261,270); 

(251,259,261,274)] 

[(273,275,277,282); 

(271,275,277,285); 

(269,275,277,288); 

(267,275,277,303)] 

 

Table 4. Crisp values of the manufacturing costs and times obtained by the two-stage defuzzification 

process 

1Z  (Cost) 2Z (Time) 

ij
c  )

~~( ijcV  )
~~( ijcDV  ij

t  )
~~

( ijtV  )
~~

( ijtDV  

11
c  (41.60,41.31,41.63,42.28) 41.73 11

t  (221.29,221.30,221.63,221.64) 221.46 

12
c  (45.80,46.78,46.47,46.47) 46.35 12

t  (245.50,245.80,245.82,246.15) 245.82 

13
c  (54.29,54.30,54.63,54.96) 54.55 13

t  (214.29,214.30,214.63,214.64) 214.46 

14
c  (68.29,68.00,68.63,68.95) 68.46 14

t  (228.60,228.92,229.26,229.60) 229.09 

21
c  (38.60,38.11,38.63,39.92) 38.87 21

t  (265.60,265.93,265.63,265.00) 265.51 

22
c  (72.29,72.93,73.26,72.96) 72.83 22

t  (253.29,253.61,253.95,253.64) 253.64 

23
c  (69.60,69.31,69.95,70.28) 69.78 23

t  (233.80,233.82,233.47,234.48) 235.95 

24
c  (81.08,81.11,82.06,81.77) 81.50 24

t  (258.29,258.00,258.01,258.32) 258.20 
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31
c  (93.08,93.60,94.37,94.71) 93.93 31

t  (280.80,280.50,280.82,281.15) 280.81 

32
c  (86.31,86.56,85.79,85.81) 86.12 32

t  (286.29,286.00,285.68,286.09) 286.31 

33c  (99.60,99.43,99.95,100.28) 99.80 
32

t  (298.60,298.00,298.62,299.60) 298.94 

34
c  (63.80,64.14,64.80,65.32) 64.52 34

t  (291.29,291.31,291.63,291.32) 291.41 

41
c  (62.08,62.72,62.75,63.40) 62.73 41

t  (244.07,244.91,243.31,243.45) 243.96 

42
c  (39.00,38.88,38.68,39.20) 38.79 

42t  (287.62,287.59,287.09,289.01) 288.11 

43
c  (59.60,60.25,59.63,59.92) 59.94 43

t  (259.97,260.32,260.74,261.01) 260.50 

44
c  (76.60,76.62,76.95,76.64) 76.72 

44
t  (275.98,276.08,276.58,276.96) 276.40 

 

The T2TpFN defuzzification process is divided into two stages. In stage I, the defuzzification 

technique transforms T2TpFN to T1TpFN, and in stage II, the T1TpFNs were again used to obtain the 

defuzzified value of T2TpFN. 

Now, using the above available data in Table 2 and 3, the MOAP (Model 2) with Type 2 fuzzy 

parameters can be described as follows: 

Stage I. 
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All parameters are in T2TpFNs and are translated to a crisp value using the procedure described 

above. The crisp value is presented in Table 4 for each objective function, repetitively. After using the 

crisp value the equivalent crisp MOAP can be defined as follows: 

Using these crisp values of the manufacturing costs and manufacturing times which are obtained by 

using the two-stage defuzzification process, the present MOAP can be expressed as Model 7: 

Model 7 

1;1
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Now, each objective function is minimized subject to the given set of constraints by ignoring the other 

objective function. This provides the minimum value of each objective function and the 

corresponding value (written as Max) of the other one. These values are depicted in Table 5, which is 

called the Payoff matrix.  

Table 5. Payoff matrix 

 1
Z  (Total manufacturing cost) 2

Z  (Total manufacturing  time) 

Max 287.07 1059.49 

Min 196 995.31 

 

Thus, the  following inequalities hold for each objective function 

  49.105931.995,07.287196 21  ZZ  

8.   Results and Discussion 
 

The above MOAP is solved using three solution techniques viz., NCPT, FPT and IFPT. The best 

compromise solution obtained by each of these methods is given in Table 6. 

1. While solving Model 7 using NCPT, we find each objective function's upper and lower bounds by 

solving them separately, subject to the given constraints. Then, we designed the linear membership 

functions for truth, indeterminacy and falsehood, respectively and maximized the truth and 

indeterminacy value and minimized the false value. Using Model 4 and LINGO 16.0 optimization 

software, we obtained the optimal solution of Model 7 as 

1003.05.227.04,,98546.0,1,0,0,0

,1,0,0,00,0,1,00,1,0,0

2144434241

343332312423222114131211
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2. While solving Model 7 using FPT, we designed the linear membership functions of        both the 

objectives and maximized them. Using Model 5 and LINGO 16.0 optimization software, we obtained 

the optimal solutions of Model 7 as 

1027.02239.02,,5.0.0,1,0,0

,1,0,0,00,0,1,00,0,0,1

2144434241

343332312423222114131211





ZZxxxx

xxxxxxxxxxxx
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3. While solving Model 7 using IFPT, we first designed the linear membership and non-membership 

functions and then maximized the membership function and minimized the non-membership 

function. Using Model 6 and LINGO 16.0 optimization software, we obtained the optimal solution of 

Model 7 as 

1027.02239.02,,5.0.0,1,0,0

,1,0,0,00,0,1,00,0,0,1

2144434241

343332312423222114131211


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ZZxxxx
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From Table 6, we can easily conclude that the optimal solution of the present MOAP derived from the 

technique NCPT is more desirable and therefore, NCPT is a more suitable technique than the FPT and 

IFPT. This is due to the same reason that the fuzzy and the intuitionistic fuzzy logics are based on the 

truth function only, however, in real-world decision-making problems, the decision may result in the 

form of agreement, disagreement or the state of being unsure. Since the concept of neutrosophy 

allows the decision-makers to consider all these aspects together, NCPT performed better than the 

other techniques for the present MOAPs. Thus, the main advantage of the present study on MOAPs 

over existing literature is to solve the problem by considering degrees of truthness, falsehood, and 

indeterminacy altogether which may help the decision-maker make a better and more realistic 

decision. From Table 6, it is concluded that the best compromise solution of the present MOAP given 

by NCPT, provides the total manufacturing cost as 224.04 $ and the total manufacturing time of all 

the semi-finished parts as 1003.05 mins. To be more precise, a graphical representation of the 

compromise optimal solutions of the present MOAP, extracted from different solution approaches is 

given in Figure 2.   

Table 6. Optimal solutions obtained by NCPT, FPT and IFPT 

Objective functions 
NCPT FPT IFPT 

Decision variables 

1Min  Z  227.04 239.02 239.02 

2Min Z  1003.05 1027.02 1027.02 

11x  0 1 1 

12x  0 0 0 

13x  1 0 0 

14x  0 0 0 

21x  0 0 0 

22x  1 1 1 

23x  0 0 0 

24x  0 0 0 
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31x  0 0 0 

32x  0 0 0 

33x  0 0 0 

34x  1 1 1 

41x  0 0 0 

42x  0 0 0 

43x  0 1 1 

44x  1 0 0 

 

 
 

 

Figure 2. Comparison of objective values obtained from NCPT, FPT & IFPT 

9. Advantage and Comparison of the Proposed Work with Some Existing Ones in Literature 

 The present problem is a MOAP with conflicting objectives which is discussed under fuzziness. This 

formulation of an assignment problem caters to a more realistic scenario arising in various 

commercial situations with vague information.  

Further, in the study of MOAP under uncertainty, most of the authors like Biswas and 

Pramanik [9], Huang and Zhang [25], Jose and Kuriakose [27], Lin and Wen [36], Liu and Goa [38],  

Majumdar and Bhunia[41] and Thorani and Shankar [68]  have used the concept of Type 1 fuzzy set 

(TIFS) whose membership functions are expressed as absolute numbers.  The T1FS, in general, cannot 

handle the vagueness of the parameters efficiently as its membership functions are crisp.  In contrast 

to this, Type 2 fuzzy sets (T2FS) can model the uncertainties/vagueness of optimization problems 

more appropriately as its membership functions are also presented as fuzzy numbers. To be more 

precise, the membership functions of T1FS are two-dimensional whereas the membership functions of 

T2FS are three-dimensional. This additional degree of freedom makes it possible to model the 

vagueness/uncertainties of an optimization problem more efficiently.  So, the formulation of the 

present problem with T2TpF parameters is another advantage of the present study. 

Furthermore, De and Yadav [14], Mukherjee and Basu [44], Pramanik and Biswas [54] and 

Sakawa et al. [60] are some of the authors who discussed assignment problems in an uncertain 

environment and either used fuzzy programming techniques or used the intuitionistic fuzzy 

programming techniques. The disadvantage of these techniques is that they can only handle 

information in the context of membership and/or non-membership function of a parameter but not 

227.04 239.02 239.02

1003.05 1027.02 1027.02

0

200

400

600

800

1000

1200

NCPT FPT IFPT

Z1 Z2



Neutrosophic Sets and Systems, Vol. 51, 2022     200  

 
Murshid Kamal, Prabhjot Kaur, Irfan Al, A Neutrosophic Compromise Programming Technique to Solve Multi-Objective 

Assignment Problem with T2TpFNs     

 

the information related to indeterminacy or inconsistency in the parameter values. The neutrosophic 

approach discussed in this paper overcomes this limitation. In its theory, indeterminacy is quantified 

directly while the truth, indeterminacy and falsehood membership functions are independent. Since 

the present MOAP under uncertainty with T2TpF parameters is discussed using neutrosophic logic, 

this may be considered as another advantage of the present problem over existing literature. The 

efficiency of this technique over the existing ones reflects in Table 6.  

 

10.    Conclusion and Future Aspects 

The current paper uses neutrosophic logic to solve MOAP in an uncertain environment. T2TpFNs are 

used to represent all of the uncertain parameters of the MOAP. The model is then crisped using a 

two-stage defuzzification procedure that finds the crisp values of these T2TpFNs. This crisp model is 

solved by using three solution techniques viz., FPT, IFPT and NCPT.  The primary goal of this work is 

to solve the MOAP utilising NCPT and demonstrate its superiority over the others techniques 

described above. A numerical demonstration is shown that clearly shows that the NCPT outperforms 

the other two solution strategies that are also capable of dealing with uncertainty. 

The concept of neutrosophic may be included into a multiobjective transportation model in 

future study. A MOAP's stochastic model may also be explored and solved using NCPT. Fuzzy-

random or fuzzy-stochastic variations of a multiobjective assignment or transportation issue are also 

possibilities. Furthermore, the NCPT may be used in a variety of domains such as management 

science, financial management, and decision-making science, among others. 
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