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Abstract: Multi-objective assignment problems (MOAPs) emerge in a wide range of real-world
scenarios, from everyday activities to large-scale industrial operations. In this study, a MOAP with
fuzzy parameters is investigated, and the fuzziness is represented by a Type-2 fuzzy logic system.
Because the T2FLS is more efficient in dealing with the uncertainty of a decision-making process, the
current problem's many parameters are represented by Type-2 trapezoidal fuzzy numbers
(T2TpENSs). T2TpENs are first reduced to Type-1 fuzzy numbers, then to crisp numbers. Finally, the
neutrosophic compromise programming technique (NCPT) is applied to produce a problem
compromise solution. A numerical problem is used to demonstrate the validity and applicability of
the NCPT for the current MOAP. Furthermore, a comparison of NCPT to other techniques such as
FPT and IFPT shows its superiority.

Keywords: Multi-objective Optimization; Assignment Problem; Type-2 Fuzzy Logic; Neutrosophic
Programming; Fuzzy Goal Programming; Intuitionistic Fuzzy Programming.

1. Introduction

An (AP) is a combinatorial discrete optimization decision making problem arising in operations
research and project management. It is an indispensable part of human resource project management,
one of the main project management areas. It includes selection, development and
management/control of the project team. In literature, the assignment problem has also been called
the maximum weight matching problem. It has a wide range of applications in many real-life projects
related to, for instance, education [16], production planning in telecommunication [67], rail transport
[70] and medicine [74]. A classical assignment problem deals with allocating n tasks to n agents so
that each agent is assigned to a single task and only one agent performs each task to optimize a pre-
defined objective. This may involve maximizing efficiency or minimizing assignment cost or
execution time of the tasks.

Generally, a cost-minimizing assignment problem (CMAP) aims to find an assignment
schedule that minimizes the total assignment cost. A time minimizing assignment problem (TMAP),
also known as a bottleneck assignment problem, focuses on minimizing the overall execution time of
all the tasks. The first polynomial-time algorithm, viz., Hungarian algorithm for solving a CMAP, was
proposed by Kuhn [33] in 1955. Later, Ravindran and Ramaswamy [60] used the Hungarian approach
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to solve a single objective bottleneck assignment problem. Various researchers have discussed a
number of variants of the CMAP as well as the TMAP [11,47,53,66,69,76]. Bogomolnaia and Moulin
[11] discussed a random assignment problem with a unique solution in which probabilistic serial
assignment has been characterized by efficiency in an ordinal sense and envy-freeness. Maxon and
Bhadury [47] discussed a multi-period assignment problem with repetitive tasks and tried to integrate
a human aspect into their analysis. Nuass [53] suggested an optimizing and heuristics approach for
solving generalized assignment problems. Sasaki [66] discussed axiomatic characterizations like
consistency and monotonicity of the core of assignment problems in his research. Sourd [69]
addressed a persistent assignment problem to solve scheduling problems with periodic cost
functions. Vatow and Orden [76] discussed a personnel assignment problem. A number of books are
also available in the literature that discuss assignment problems and their variants thoroughly
[12,22,51,72].

While making strategic planning decisions in many real-life situations related to economics,
science and engineering, often there is a suggested need to optimize more than one objective
simultaneously. It gives rise to multiobjective optimization problems (MOOPs). In MOOPs, the
multiple objectives are mostly conflicting in nature, and therefore, a single optimal solution may or
may not exist. One has to search for trade-off/compromising solution(s) that involves a loss in one of
the objective values in return for the gains in the others. It is easy to determine the superiority of a
solution over the others in a single objective optimization problem, but in a MOOP, compromising
solutions’ consistency is determined by the concept of dominance. Therefore, these compromising
solutions form the so-called Pareto frontier of the problem and are called Pareto optimal solutions
that give rise to non-dominated points of the problem in its criteria space. Likewise, depending upon
various market segments in this competitive world, a business industry might choose a strategy to as-
sign various jobs to various agents in such a way that some objectives are optimized simultaneously.
These objectives may either involve minimizing total assignment cost or that of the overall execution
time or both at a time. For instance, many business firms either follow low-cost strategies or follow
better responsiveness and customer service rules. Assignment problems in which both these factors
are taken into account become time-cost trade-off problems as the solution providing the lowest cost
may not provide the least time as well. Such problems fall in the category of bi-
objective/multiobjective assignment problems. These problems have been investigated intensively in
literature by many researchers [1,6,7,19,23,30,48,55,57,75,77]. Adiche etal. [1] proposed a hybrid
algorithm for solving MOAPs. Bao et al. [6] studied the 0-1 programming method to transform and
solve a MOAP by transforming it to a single objective assignment problem (SOAP). Geetha et al. [19]
discussed the cost-time trade-off in a multicriteria assignment problem, whereas Hammadi [23]
solved a MOAP using a tabu search algorithm. Yadaiah et al. [77] discussed an assignment problem
with multiple objectives viz., time-cost-quality using the Hungarian algorithm. Furthermore, in
several real-world optimization issues, the decision-makers are not always able to assign precise
values to the problem's many parameters.

Only a vague information may be available based on abrupt changes in the environmental
conditions, sudden breakdown of machinery, changes in government policies like complete or partial
lockdown in the concerned region (specifically, in the epidemic/pandemic scenario like Covid-19) that
may result in sudden shortage of products with high demand or an increase in demand of the newly
launched products etc. This vagueness may also be based on past experiences and knowledge about
the related situations. Thus, there is uncertainty in the values of parameters which may be very large
as well. The theory behind fuzzy techniques is based on the notion of relative graded membership,
inspired by human perception and cognition processes. It can deal with information arising from
cognition and computational perception that is partially true, imprecise or without sharp boundaries.
In 1965, Lotfi A. Zadeh[80] published his first famous research paper on fuzzy sets. Since then,
various computational optimization techniques based on fuzzy logic have been developed for pattern
recognition and identifying, optimizing, controlling, and developing intelligent decision-making
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systems. It can also provide an effective means for conflict resolution of multiple criteria and assess
the available options in a better way. Later, Zadeh [81] also discussed the concept of a linguistic
variable and its application to approximate reasoning.

Assignment problems performed in turbulent times (e.g., economic crisis, pandemic, risks
etc.) may also have complex parameter estimation that leads to the discussion of these problems in a
fuzzy environment. Researchers have thoroughly discussed various SOAPs/MOAPs and their
variants under fuzziness [9,13,14,17,25,26,33,37,38,39,40,41,42,43,44,49,59,61,65,71]. Biswas and
Pramanik [9] discussed a MOAP in the context of military affairs with fuzzy costs as trapezoidal
fuzzy numbers. To transform their problem into a crisp single objective assignment problem, they
applied Yager’s ranking method. Chen [13] proposed a fuzzy assignment paradigm that treated all
individuals as having the same abilities. De and Yadav [14] proposed an algorithm to solve a MOAP
with exponential (nonlinear) membership using an interactive fuzzy goal programming approach
whereas Feng and Yang [17] discussed a bi-objective assignment problem and constructed a chance-
constrained goal programming model for the problem. Huang et al. [25] discussed a fuzzy
multicriteria decision-making approach for solving a bi-objective personnel assignment problem
whereas Huang and Zhang [26] developed a mathematical model for a fuzzy assignment problem
(FAP) with a set of qualification constraints. Then, they designed a tabu search algorithm based on
fuzzy simulation to solve the problem. Kagade and Bajaj [31] solved a MOAP with cost coefficients of
the objective functions as interval values. Li et al. [40] discussed FAPs and presented a metric
uncertainty model of concentrated quantification value. The convergence of the solution algorithm
developed by combining genetic algorithm and assignment problems has been analyzed using
Markov chain theory. Lin and Wen [41] also considered an FAP with assignment costs as fuzzy
numbers and proposed a methodology that reduces the problem, either to a linear fractional
programming problem or to a bottleneck assignment problem. They used a labelling algorithm to
solve the related linear fractional programming problem. Lin et al. [42] studied an FAP and
performed advanced sensitivity analysis viz., Type II and Type IIl sensitivity analysis. Type II
sensitivity analysis determined the range of perturbation so that the optimal solution remains optimal
whereas Type III sensitivity analysis determined the range for which the rate at which the optimal
value function changes remains unchanged. Liu and Gao [43] designed a genetic algorithm to solve
the fuzzy weighted balance equilibrium multi-job assignment problem whereas Liu and Li [44]
presented a fuzzy quadratic assignment problem with three penalty costs and developed a hybrid
genetic algorithm to solve the problem. Mukherjee and Basu [49] proposed a fuzzy ranking method
for solving assignment problems with fuzzy costs. Pramanik and Biswas [59] studied a MOAP in
which time, costs and inefficiency were represented by generalized trapezoidal fuzzy numbers and
developed a priority-based fuzzy goal programming method. A traffic assignment based on fuzzy
choices has been discussed by Ridwan [61]. Sakawa et al. [65] used interactive fuzzy programming
for the linear and linear fractional programming workforce and production assignment problems.
Tada and Ishii [71] also discussed a bi-objective FAP. For some other fuzzy models of the assignment
problem and its variants, one may refer to the works of Gupta and Mehlavat [21], Jose and Kuriakose
[28], Majumdar and Bhunia[46], Mukherjee and Basu [50], Nirmala and Anju [54], Pandian and
Kavitha [56]and Thorani and Shankar [73], Yang and Liu [78], Ye and Xu [79].

Generally, in fuzzy optimization theory, Type-1 fuzzy set (T1ES) is employed that represents
the uncertainty of the parameters by the membership functions which are crisp numbers lying in the
interval [0, 1]. From the beginning, one of the major issues with the T1FS is that it cannot handle the
uncertainty of the parameters efficiently, specifically, in situations where there is further uncertainty
associated with the membership functions of the parameters. There is a need to depict such
uncertainties by fuzzy sets that have blur boundaries. Then, a Type-2 fuzzy set (T2FS) came into
existence. Membership functions of T2FS are three dimensional that allow some additional degrees of
freedom to manage these uncertainties in a better way. In recent years, researchers have discussed
various decision-making problems using T2FS [15,20,27,29,34,35,36,45,52]. The problem studied in
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this paper is a MOAP with fuzzy parameters, represented by T2TpFNs. Firstly, a two-stage
defuzzification process is used to convert these T2TpFNs to equivalent crisp values and then, the
neutrosophic logic is applied to solve the problem. The definition of neutrosophic logic and the
related literature review is provided in the next subsection.

1.1 Literature Review on Neutrosophic Logic

As mentioned in the previous section, the theory behind fuzzy techniques is based on the notion of
relative graded membership, i.e., the degree of belongingness of a parameter in an interval or a fuzzy
set. Nevertheless, sometimes it is important to discuss the non-belongingness or non-membership of
that parameter to cater a more realistic scenario. Atanassov [5] proposed a generalization of fuzzy
sets viz, intuitionistic fuzzy logic that incorporates both the aforementioned factors. In this approach,
two different real numbers representing the degree of truth and degree of falsehood are associated
with each parameter. However, a half-true expression in this logic is not always half false; there may
be some hesitation degree as well. Many researchers have developed a number of intuitionistic fuzzy
programming approaches which gained significant popularity among the existing multiobjective
optimization techniques. Angelov [3,4] first discussed optimization in an intuitionistic fuzzy
environment. Later on, various researchers discussed this technique to study assignment problems as
well. Jose and Kuriakose [28] presented an algorithm for solving an assignment model in an
intuitionistic fuzzy context. Mukherjee and Basu [50] solved an intuitionistic fuzzy assignment
problem using similarity measures and score functions. Roy et al. [63] presented a new approach for
solving intuitionistic fuzzy multiobjective transportation problems in which supply, demand and
transportation costs are considered as intuitionistic fuzzy numbers. But certain real-world situations
involve another factor called indeterminacy. In such problems, the indeterministic feature of
ambiguous data plays an essential role in making a rational decision outside the reach of intuitionistic
fuzzy set theory. Each membership function of the neutrosophic set is precisely quantified and
independent. One obtains better and more refined results whenever the optimization is carried out in
a neutrosophic or generalized neutrosophic setting. Many researchers have applied neutrosophic
logic to solve various multiobjective optimization problems [2,18,32,58,62,64,82]. Aggarwal et al. [2]
thoroughly discussed neutrosophic modelling and control. Freen et al. [18] discussed multiobjective
nonlinear four-valued refined neutrosophic optimization. Kamal et al. [32] considered a
multiobjective nonlinear selective maintenance allocation of system reliability and used a
neutrosophic fuzzy goal programming approach to get the optimal solution.

Pintu and Tapan [58] presented a multiobjective nonlinear programming problem based on
the neutrosophic optimization technique and discussed its application in the Riser Design problem.
Rizk-Allah [62] also discussed a multiobjective transportation model under a neutrosophic
environment. Sahin and Muhammed [64] studied a multicriteria neutrosophic group decision-making
method based on TOPSIS for supplier selection. Zhang et al. [82] discussed neutrosophic interval sets
and their applications in multicriteria decision-making problems. Next subsection discusses the
motivation behind the present study.

1.2 Study Motivation

This paper aims to present an efficient algorithmic solution procedure based on neutrosophic logic for
a MOAP with conflicting objectives viz., assignment cost and execution time in which T2TpFNs are
used to represent these parameters. Using the output processor of T2FS these T2TpFNs are initially
reduced to Type-1 fuzzy numbers and then to crisp numbers. The proposed solution procedure is
named as Neutrosophic compromise programming technique (NCPT). The selection of T2FS for the
present study is due to the fact that its membership functions allow some additional degrees of
freedom to manage the uncertainties/vagueness in the parameters (here, time and cost) in a better
way. However, the advantage of neutrosophic logic, as mentioned in the previous subsection, is that
it offers a neutral perspective to decide the best possible compromise solution(s) of a MOOP. It is
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shown that NCPT is the best solution technique for dealing for dealing with inaccurate, missing, and
inconsistent information of the present MOAP when compared to the available solution techniques
viz., fuzzy and Intuitionistic fuzzy programming techniques. This comparison has been done with the
help of a numerical problem. LINGO software, created by LINDO Systems Inc., is used for all
calculation-based frameworks.

The rest of the paper is structured as follows: In Section 2, mathematical statement of the present
MOAP is given. It explains the basic as well as the fuzzy model of the problem viz., “Model 1” and
“Model 2", respectively. Section 3 discusses some basic mathematical preliminaries related to fuzzy,
intuitionistic fuzzy and neutrosophic sets. Section 4 discusses the defuzzification process of T2TpFNs.
In Section 5, three different solution techniques that are applied to the present MOAP have been
discussed in detail. In Section 6, some real-world applications of the present MOAP are given. The
efficacy of the proposed NCPT solution technique for a MOAP instance is addressed in Section 7.
Section 8 discusses the performance and outcome of the proposed solution technique. It also provides
its comparative study with the other two solution techniques. Advantage of using the NCPT solution
technique instead of other commonly used techniques has been addressed in Section 9. Section 10
provides conclusion and the future aspects of the present study.

2. Mathematical Statement of MOAP

Nomenclature

Indices:
i - Index for n workers, (i=1, 2,..., n)
j - Index for n tasks, (j=1,2,..., n)
Decision Variable:

Xij-Binary variable that takes the values 1 and 0 if j* taskis assigned and not assigned to i*' worker,
respectively. Equivalently,
_J1,if j™ task isassignedto i wor ker
! _{O ,  Otherwise
Parameters:

C; j - Assignment cost of jt"task to the i*" worker

ti j -execution time when i"» worker performs j task

Model 1:
The mathematical formulation of a MOAP with the above-mentioned parameters is as follows:

Min Z, = ananCu-Xu

i=1 j=1
Min Z, = >t
i=1 j=1
Subject to
> ox; =1 i=12,.n
j=1
>x; =1 j=12,..n
i=1
x; =0o0rl, 1=12,.,n, j=12,..n.
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In Model 1, time (t;;) and cost ( Eij ) parameters are assumed to be T2TpFNs.
Model 2:

Min Z, =3 3°E,x,

i=1 j=1

Min Z, =3 > &)X
i=1 j=1

Subject to

Model (1)

3. Mathematical Preliminaries
Some basic definitions of fuzzy, intuitionistic fuzzy and neutrosophic set are discussed.

Definition 3.1 Fuzzy Set or Type I Fuzzy Set (T1FS) [10]

A fuzzy set C is defined on the set Y of real numbers. Its membership function [z (Y) can be

characterized as:
Mz Y e [O, l]; 0<pu=(y) <1,
Thus, a T1FS can be defined as: C = {(y, Mz (y):yeY }

Definition 3.2 Defuzzification of T1FS [10]

Defuzzification is a process of transforming a fuzzy inference into a crisp output. For a Type-1 fuzzy
number (T1FN) also, there exists an associated crisp quantity which is called defuzzified form of that

TIEN. Let C = (c,,c,,C,,C,) be a Type-1 Trapezoidal Fuzzy Number (T1TrEN). Using probability

density function, defuzzified value of C can be computed as:

V(Cﬂf):1 C,+C,+Cy+C, + (6C, =CC.)
3 C;+C,—C —¢C,

Definition 3.3 Type-2 Fuzzy Set (T2FS) [10]

Generalization of interval-valued fuzzy sets is known as T2FS, if the intervals are fuzzy. A T2FScan be
expressed in four TIFS. . That means four membership functions of a T2FS are T1FSs, which depict the
uncertainty of T2FS in a justified manner. Therefore, a membership function of T2FS is of the form
4z Y = x([0, 1]) where y ([0, 1]) denotes the set of all T1FSs defined on the interval [0, 1].

Definition 3.4 Type-1 Trapezoidal Fuzzy Number (T1TrFN) [10]

ATITHN C = (c,,c,,C;,C,) on Y with the membership function can be defined as:

y-a if ¢ .<y<c,
C,—G
1 if ¢c,<y<c
He(y) = o _ ? ’
=Y if c,<y<c,
C,—C,
if y<c,ory>c,
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Definition 3.5 Type-2 Trapezoidal Fuzzy Number (T2TpFN) [10]

A T2TpFN 6 can be expressed in four TITpFNs: 6 = (61, 62 , 63 , 64)

where, C, = (e!,65,67,¢1) , C, = (¢5,65,65,5), C; =(€3,5,65.¢5)

and 64 = (C4L , C(I)',Cg{ \ CE) represent TITpFNs.

Now, primary membership functions ,UC: (Y) of € can be defined as:
(&), 1) 15, ) ) ifc;, <y<c;

10 =10 m0), a0, A0, ) ) ifcf <y<ch,

0 otherwise
where
y-¢ .
AL L L I>J H 1
fily) =1 ¢y —c| ; (1=0,1,2,3,1=1,2,3,4)
0 1<
S A
ARAN _ | AR R 1> s -
& ()=4¢ —¢ ; (J=0,1,2,3,1=12,3,4)
0 i<
Secondary membership function ,Llé(Y) of ¢ can be defined as:
L
ﬂ_ﬂlj(Y) . L L
it 20;(0) < 1< py5(y)
1350) — 1145(y) ! )
i LWV u < uk
l If ILtZJGI)_ILt_ILt:‘IJ(y) : CJl_SySC(IJ_
L
ﬂ4j(Y)_,U - L L
if ug;(Y) < < pgi(y)
ﬂthj(Y)_ﬂaLj(Y) > Y
0 otherwise
and
AR
p= () o AR AR
. " if i (y) < < g (y)
155 (y) - 155 (y) i i
1 if a5 (y) < p < g5 (y)
) N L yE <y <y
Hyi ()= £ AR ~R
. n it 55 (y) < < 1y (Y)
15, (Y) - 1155 (y) 3 Y
0 otherwise

4. Defuzzification Technique of a T2TpFN

Since Eij and f;j in model 1 are assumed T2TpEN, therefore under this section, the defuzzification

process of T2TpFNs is discussed. From definition 3.5, T2TpFN can be defined by four TITpFNs and
for each point of the universe of discourse of the T2TpFN, a TITpFN corresponds as a secondary
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membership function. Therefore, a technique that defuzzifies a TITpFN would be sufficient to
provide a defuzzified value of the T2TpFN. The present defuzzification technique is divided into two
stages. Stage-1 reduces T2TpFN into its equivalent TITpFNs; however, Stage-2 defuzzifies these
T1TpENs to get the crisp values of the associated T2TpFN.

Stage 1.
LetC =(C,,C,,C,,C,)be a T2TpFN where C = (CiL,C(IJ",Cg{,CiR); 1=12,3,4 denotes a
T1TpEN. The membership function of a TITpFN Ei can be defined as:

L
Yy—G e L L
cL—(;L ifc, <y<c,
0 TN
1 ifcg <y<c}
He (y)= q 0 0
G -y £ (R R
ifc, <y<c
R R 0 i
¢ —¢,
0 otherwise
. ) . fa (y) , ~
Then, the probability density function corresponding to the TITpFN C,; can be stated as:
L
2y=¢) ifct <y<c’
L Ly( R R L L i =Y ="0
(Co —C )(Co +C —Cy =G )
2 e AL R
ifc, <y<c, .
fe (¥)=1(cs +¢ —¢p —¢;) (i=1,2,34)
2(CiR -Y) e (R R
R R R L I ifc, <y<c;
(Ci —Co )(Co +C —Cy =G )
0 otherwise

Now, calculate the expected value E(Yg )of Yz asE(Y; )= .[ y f< (y) dy . This value is noted as the

defuzzified value V (C:) of the TITpFN Ei for allI (12,34} ie.,

5 1 20y-c)y i 2 P 2} - y)y
V(C)=E(Y:)= i dy + dy + | d
() =El) C-[(cé—c})(cﬁcf—c&—c}) C-[L(c§+ciR—coL—ciL)y Y c-[R(ciR—cg‘)(c§+ciR—cg—ciL) Y
1 Ry2 Ry2 Ly2 Ly2 RAR LAL
= )2 +(cf)? = (cp)? —(ch)? + et —cyc
el CORICP RGO OB Lty
CoG —Go G

-) foralli=12,34.

1 L L R R
=—(C, +C +C, +C +
3 0 i 0 i C§+CiR—CiL_C0

Thus, the T2TpFN based on the defuzzified values V(C:) of the TITpFNs  C, for all i’s, can be

defined as: C: = (\/(61),V(62),V(63),V(54))
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10 . . R R ClLCcI)_ _Cg ClR 10 0 . R R C;Ccl)_ _CoR CzR
Slo e e e = Lo R v VA 2 |
0

cr+Ct—cl—c o +CF—c5 —Cp

L L L L

1 CiCy —Chck 1 C;Ce —CoCh
ZlCy+Cy +Cp +C5 22— | 2/ ¢y +Cy +Cy +C) 0
3 C, +C; —Cy —C, C, +C, —C, —C,

Stage 2.

T1TpFNs are further defuzzified at this stage to generate the final defuzzified version of the T2TpFN

~

as follows: Dv(éj=E[V(El)+V(62)+V(63)+V(64)+ VICIVI(C,)~V(C,)V(C,)) J
3 (V(C,)+V(C,)-V(C,)-V(C,)

R
i

1( & c-ck —cle
=— 2,(CiL+CiR+CoL+C§+ = OR OL L
— O A i o

2 LAL RAR 4 LAL RAR

clel —cic! chel —cicf

[Tl +co+cg+cf+ %07 -] ]| ¢+ +c5 +Cf + 1

4 Co+C —C —Cy ) i3 Co +Cj —Cj =G
+

4

LAL RAR
C.C,—C.C: 2 c-ct —cteh
Z[CjL+ ch+ 10 7 ]—Z(c}+cf+ 120 0 %

R R L L R R L L
=3 CO +Cj _Cj _CO i=1 CO +Ci _Ci _CO

The same procedure can be followed for T2TpFNs fj to obtain their crisp values.

After the above defuzzification procedure, the resultant MOAP model finally takes the form
Model 3:

o L VE)VE)+VE)HVE)
MinZ, =33 Ex, =Y 0 VEVE)-VEIVED |x,
(V(53)+V(54)_V(61)_V(62)
VE)+VE)+ VE)+V(E)
MinZ, =33 0%, =X Y2 VEVE)VEIVE) |
ST T v®VE) VD V)

Subject to;

Zm: X; =1, j=12,..,n

j =0orl, i=12,.n, j=12,..n.

5. Methodology

In this section, we discuss three different solution techniques viz.,

(i) Neutrosophic compromise programming technique

(ii) Fuzzy programming technique

(iif) Intuitionistic fuzzy programming.
The method of transforming a multiobjective optimization problem into a related single-objective
optimization problem is also discussed for all the suggested approaches.
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5.1 Neutrosophic Compromise Programming Technique (NCPT)

The extended version of the fuzzy and intuitionistic fuzzy sets has been classified as a neutrosophic
set (NS) (defined below) with an additional membership function called indeterminacy. In some
specific real-life decision-making problems, there are many cases in which decision-makers have
indeterminacy or unbiased reasoning in decision-making. The principles of indeterminacy often lie
between those of Truth and Lies. Literally, neutrosophic means neutral thought or awareness of
indeterminacy, therefore, a NS has three distinct membership features viz., truth, indeterminacy and
falsehood. On the other hand, in a fuzzy set, we maximize the degree of membership function which
indicates that the element belongs to that set. In contrast, in an intuitionistic fuzzy set, two types of
membership functions viz., the degree of membership (also known as the degree of truth) and the
degree of non-membership (also known as the degree of falsehood) of an element, are considered. To
be more specific, an NS maximizes the degree of truth and indeterminacy while decreasing the degree
of falsehood. A NS represents a major touchstone in a decision-making process where the decision-
maker can be entirely satisfied (with truth), partly satisfied (with indeterminacy) and dissatisfied
(with falsehood). In any decision-making problem, these factors increase the strength of making the
right decision or achieving an optimal solution. Since for MOOPs with conflicting objectives, the
challenge of finding the best solution using classical approaches is a significantly complicated issue,
the NCPT would be a useful technique for achieving the best compromise solution due to its
aforementioned features.

Definition 5.1 Neutrosophic Set [63]

Let y be the universe of discourse and Y €Y . A neutrosophic set (NS) P gyer Y is the set of triplets
consisting of a truth membership functionT, (), indeterminacy membership function |, (y)and a

false membership function F, (y), fory € Y . Mathematically;

P={<y.Te(¥). Io (V). Fo (y) >[y €Y}
Here, T, (Y), 1, (y) and F,(y)are real non-standard or standard functions with range ]0~,1[,
ie, To(¥):Y =107 L[ 1,(y):Y =107 I [and F, (Y)Y =]071"[. Assume that

0" <supT,(y)+supl (y)+supF,(y)<3"
Now, the general formulation of a MOOP can be defined as:
Minimize {Z;(X),Z5(X),.... Z| (X)}
Subject to
dm(X) <b,(X), m=12..,M
x>0,1=12,..,L
where, Z,(X);1=123,..., L denotes the Ith objective function, g, (X);m=2123,..., M denotes the

constraints and X denotes the decision variables. In 1970, Bellman and Zadeh [8] introduced the
definitions of fuzzy decision (D), fuzzy goal (G) and fuzzy constraint (C) that are useful for solving
any real-life optimization problems under uncertainty. Consequently, a fuzzy decision set is
described as: D=GnC

On the same lines, a neutrosophic decision set D, with neutrosophic goal set GL and neutrosophic

constraints C  can be defined as follows:

Dy, ={("2GL) N (s C) = (X T (), 15, (X), Fo (X))}

where
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T, (X).Tg, (%), Tg, (%)
Te, (), Tc, (X0, Te,, (X)
le, (X), 1g, (%) g (X)
le, (), g, (%), g, (X)}
Fe, (%), Fg, ()., Fo, (X)} wxe X,

Fe, (%), Fe, (X),..., F¢,, (X)
Here T,(X), 15(X) and Fj(X)are the truth, indeterminacy and false membership functions,

T,(X)= min{

ID(x)=max[

Fo(X) = max{

respectively, defined under the neutrosophic decision D .

To find the compromise solutions for a multiobjective decision making optimization issue,
membership functions are created for each objective function and the lower and upper bounds are

calculated as L; and U; respectively, by solving them individually under the stated constraints:

U = mlax{zI (X)}and L, = mlin{ZI (X)}foran 1=12,.., L (1)
Further, upper and lower bounds for | i objectives under the NS can be determined as follows:
T T
U| =U P |—| = |—| for truth membership function (2)
| T
U II = LlT +4q, L = L| for indeterminacy membership function (3)
F T F_ T
U| =U , L| = L| + b| for false membership function (4)

where @; and b| are predetermined real values assigned by the decision-makers that lie in the
interval (0, 1). Further, the linear membership function T, (Z,(X))of truth, ||(Z|(X)) of

indeterminacy and F, (Z, (X)) of falsity under the neutrosophic environment can be constructed as

follows:
1 if Z,(x) < LT
T
T2, =122 617 <7 () <U; ®)
U, —L;
0 if Z, () >UT
1 if Z,(x) < L
|
(@ o) =22 <709 <U ©
i
0 if Z,(x) > U,
0 if 2, (x) < LF
Z —LF .
F@ 0= 200 i <200 <0 )
i i
1 it Z, () >UF

It should be noted here thatU\” = L\ |V 1=12,..., L.
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If U |(') = LE') V1=12,.. L, the membership value will be assumed to be 1.

Since the development of achievement functions helps to achieve the highest level or degree
of satisfaction based on the priorities of the decision-makers, we also define a specific achievement
variable for each membership function. The decision-maker may establish a target in a decision-
making process to attain the maximum possible degree of satisfaction for the truth and indeterminacy
membership functions while minimizing the degree of untruth as much as possible. After considering
the linear membership of truth, indeterminacy and falsehood under neutrosophic nature, the
mathematical expression of the neutrosophic compromise programming problem is given as

P1:

beer

yeer

Subjectto

T.(Z,00) > 1,Z,(9)

T,(Z,00) > F (Z, (X)
0<T,(Z,(x)+1,(Z,(x))+F(Z,(x)<3

By using auxiliary parameters, the above problem P1can be transformed into a new problem, say, P2

as follows
Pa:

Max o

Max f

Min

Subject to

T,(Z,(0)2 @

1,(Z,00)2

R (Z,(0) <7

a>2pf, a>y, 0<y+p+y<3
v, B,y €[0]]

Here «, ﬂ and J are the auxiliary variables for the truth, indeterminacy and false membership

functions, respectively. Further, the above problem P: can be expressed in the purest form as the
problem Psas follows
Ps:
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Maxg(X)=a+ -y
Subject to;

Z,()+ U] ~L)a<U]
Z,(x)+ U, -L)B <V,
Z,(0-(Uf -Lf)ysLf
a>2p, azy, 0<y+pB+y<3
7. By €l0]]

Based on the above formulations of a neutrosophic compromise programming technique,
Model 2 of the present MOAP can be presented as a neutrosophic programming model in the
following manner:

Model 4:
Max ¢(x) = + f— 7
Subject to;
n g V(Cy) +V(Cy) + V(C3) +V(Cy)
2250, VEIVE)-VE)IV(C)) |x +(U] - L)a<U]
i=1 j=1

(V(C3) +V(Cs) -V (C1) -V (Cy)
V(C1) +V(Cy)+ V(C3) +V(Cy)
VEIVE,)-VEIVE,)) |xi ¢+ U] —L1)B<U;
(V(C3) +V(Cs) -V (C1) -V (Cy)
V(C1) +V(Cy)+ V(C3) +V (Cy)
VEIVE,)-VECIVE)) |xj-Uf —Lf)y<Ly
(V(C3) +V(Cs) -V (C1) -V (Cy)
V() +V () + V() +V ()
L VEVER)-VEBVE) | +(U; -L)a<uU]
(V (&) +V (&) -V () -V (E)
V() +V () + V() +V (L)
L VEVE) -VERIVE) | +(U; - Ly)A<U;
(V(t) +V () -V(k) -V (L)
V(%) +V (%) + V() +V(G)
L VERVER)-VEBVE) | ~U; -Ly)r<L;
(V (&) +V (&) -V () -V (E)

n m
ZXIJ :1, i:1,2,...,n, ZX” :1, j:l’z,_“’n’
j=1 i=1

a>2p, a2y, 0<y+p+y<3

7. By €[01], Xijo =0orl,
The following steps will be followed to discuss the present MOAP using NCPT.

-M:
NN

I,
N
-

I
N

I
N
-

I
N

-M:
M=

1
N
-

]
N

_Mj
0

1
iR
-

I
IR

'M:
NN

.Mj
M

Il
LN
—
Il
—
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Step 1. Formulatea MOAP under an uncertain environment as given by Model 2.

Step 2. Convert each fuzzy parameter of this problem into a crisp number using the defuzzification
method discussed in Section 4.

Step 3. Calculate the best and worst solutions corresponding to each objective function under the
given set of constraints using optimization software LINGO and create a payoff matrix (refer to Table
5).

Step 4. Determine the upper U, and lower L; bound, respectively, of each objectives using equation

(1).
Step 5. With the help of these U, and L, values, find the upper and lower bound for all the

membership functions (truth, indeterminacy and falsehood) using equations (2)-(4).

Step 6. Construct the linear membership function for the truth, indeterminacy and falsehood using
equations (5)-(7).

Step 7. Construct the neutrosophic problem as problem P2 and transform it into problem Ps.

Step 8. Solve the MOAP model as Model 4 and obtain the compromise solution using the
Optimization Software Packages LINGO 16.0.

5.2 Fuzzy Programming Technique (FPT)

The problems involving undefined and imprecise parameters with multiple objectives are known to
be typical mathematical problems. The fuzzy programming technique (FPT) is an effective and
versatile solution technique for such a problem. Zimmermann [83] developed it in 1978, specifically to
tackle MOOPs. A fuzzy programming model aims to optimize multiple objectives simultaneously, by
reducing deviations from the goal features. Fuzzy programming needs the decision-makers to set a
level of expectation for each target which is challenging as several uncertainties must also be
considered in nature.

The general mathematical formulation of a fuzzy programming problem with I objectives and j
constraints, with i decision variables, can be described as:

Maximize A
Subjectto:
A< (x), VI

9,(x)<0, j=12,.,n
Xi 201 I =1,2,...,m

The following steps of the fuzzy programming technique can solve the MOAP given by Model 2.
Step 1. Find the optimal value of each objective function of the MOAP subject to the given set of
constraints by ignoring all other objectives (use the optimization software LINGO).

Step 2. Calculate the best U and worst L, values for each objective function separately and create a

payoff matrix (Table 5).
Step 3. Define the membership function for each objective using equations (8) and (9) given below
(refer [78]).

Membership function [, (Z| (X)) for Ith objective function of minimization type

1 if Z,(x)<L,
@ (Z,(x)) = ULIJ_—EIL(X) if L <Z(x)<U, (8)
0 if Z,(x)>U,

Membership function for Ith objective function of the maximization type
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1 if Z,(x)>U,
1 (Z,(x)) = % if L, <Z(x)<U, )
0 if Z,(x)<L,

where L, and U, are the lower and upper bounds of the objective functions.

Finally, the MOAP can be defined as a fuzzy programming model as
Model 5:
Maximize A

subjectto:
- V(61)+V(62)+V(63)+V(64)
2m 2ol VEIVE)-VEIVED) |X
ST (VE)+VE)-VE)-V(S)
o (VR AV(ER)+ V() V()
Py s VOVE-VERVE)
ST vE VR -V®) V()

Wl

Model (1)

Step 4. Solve this crisp MOAP above and obtain the compromise solution using the Optimization
Software Package LINGO 16.0.

5.3 Intuitionistic Fuzzy Programming Technique (IFPT)

The intuitionistic fuzzy set theory is an alternative for defining a fuzzy set if the available knowledge
is insufficient to describe an imprecise theory using a traditional fuzzy set. The degree of membership
and non-membership for the objective functions and their limitations are concurrent and taken into
account in such a way that the sum of both is either less than or equal to one.

The general mathematical formulation of a MOOP in the context of intuitionistic fuzzy programming
is as follows:

Maximize a—f

Subject to

m(Z,(X)za, x(Z,(x)<B,VI 10)
a+ <], az=pf, =0,

g,(x) <0, k=12,..,K

X; >0, 1=12,..,m

where [, (Z| (X)) and X (Z| (X)) are the membership and non-membership functions of the Ith
objective and @ f3 are their aspiration levels.

The following steps explain finding a compromise solution to the problem given by (10) using IFPT.
Step 1.Find the optimal value of each objective function of the MOOP subject to the given set of
constraints by ignoring all other objectives, using the optimization software LINGO.

Step 2. Calculate the best U and worst L, values for each objective function separately and create a

payoff matrix (Table 5).
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Step 3. Construct the membership and non-membership functions (Z|(X)) and X (Zl(X))

respectively, of 1th objective function, for all values of 1, using equations (11) and (12) given as

1 if Z,(x)<L,
i (Z,(x)) = ULIJI_—EIL(IX) if L <Z(x)<U, (11)
0 if Z,(x)>U,
and
0 if Z,(x)<L
1 (Z,(x)) = ZLIJ(IX) _LILI if L <Z,(x)<U, (12)
1 if Z,(x)>U,

Now, Model 2 of the present MOAP can be defined using IFPT as follows:
Model 6:

Maximize (a - f)

Subject to;
L (VE)HV(E) + V(E)+V(E,)

w Y Y3 VEVE)-VEIVED) [k za
ST (VE) +V(E) -V (E) -V(E)

V(L) +V(t)+ V(L) +V (L)
VEWVE) -VEIVE) |x (2a
(V (&) +V () -V (L) V(L)
V(c,)+V(c,)+ V(c;)+V(c,)

VE)IV(C,)-VE)IVE,)) X (=8
(V(C,)+V(C,)-V(E)-V(c,)
V(&) +V () + V(E)+V (L)
VEWVE) -VEIVE)) |x;t<p
(V(&)+V(t)-V(E) V(L)

>

n
i=1 j=1

Wl

Hy
+

>

N
M-
Wl

+

Il
_
Il
_

n

X Z

i=1 j=1

Wk

+

Model (1),
a+p<l, azp, >0, x;=00rl

Step 4. Solve this crisp model of the present MOAP by using the Optimization Software Packages

LINGO 16.0 and obtain a compromise solution.
A flow chart of the proposed optimization procedure using all the techniques mentioned above is

given in Figure 1.
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Formulate the MOAP with cost
and time parameters as T2TpFNs

A 4

Transform these parameters into their equivalent

crisp values using the defuzzification procedure

Use Lingo optimization software

NCPT IFPT
$

solve the associated crisp model

l

Obtain a compromise solution

Figure 1. Flow chart for the optimization procedure

6. Real-World Applications

The present MOAP aims to minimize execution time and assignment cost, simultaneously. It finds its
applications in many business scenarios where the quickest possible delivery of its product is as
important as its financial budget. Generally, a quick mode of transportation may result in high
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transportation charges which mean that the objectives are conflicting in nature. So, the objective is to
find such an assignment schedule that provides the best compromising solution to the problem. There
may be many managerial implications of the present problem, but to quote some of them, consider
the following real-life scenarios

(1) In an FMCG (fast-moving consumable goods) industry, due to the limited shelf life of the
goods, it is important to deliver the products to the destinations as soon as possible.
However, at the same time, the supply chain management team of the industry works to
minimize the logistics cost. Therefore, it is important to find a way of transporting goods to
minimize both objectives, simultaneously.

(2) In the commercial industry, road transportation is an extremely methodical way of hauling
goods among various locations to improve the efficiency and growth of a business. Therefore,
the use of heavy goods vehicles (HGVs) is an indispensable part of any business. Consider an
industrial project of manufacturing some HGVs in minimum time and budget.  For
manufacturing various parts of an HGV in terms of both execution time and cost, quotations
from various manufacturing units are taken. Then, an assignment schedule is looked for so
that all the parts are produced in the minimum time and in the minimum budget so that a
cost-efficient HGV is manufactured well in time. There are numerous other real-world
situations of this kind that may give rise to the present MOAP.

7. Numerical Illustration

Consider an industrial manufacturing problem that uses third party operations. The product that the
industry manufactures requires four major semi-finished parts. These semi-finished parts are finished
and assembled to form the final product by the industry itself. All of these parts can be manufactured
by any of the four different third party manufacturing units, which have imprecise values of the
manufacturing time and cost corresponding to each part. The industry's objective is to assign the task
of manufacturing four semi-finished parts to four third party manufacturing units so that all the parts
are manufactured in the minimum time and with the least financial burden.

Here, the first objective Z, denotes the total manufacturing cost (in $), and the second

objective Z, denotes the total manufacturing time (in minutes) of all the four semi-finished parts.

Table 1 shows the key attributes of the problem. The imprecise manufacturing costs and times quoted
by all the third party manufacturing units for manufacturing each semi-finished part are given as
T2TpFNs in Table 2 and Table 3, respectively. The two-phase defuzzification process (discussed in
Section 4) is used to achieve a crisp value of each of these imprecise T2TpFNs. The crisp values
corresponding to Stage 1 and Stage 2 of the defuzzification process are summarized in Table 4. Table
5 provides the best and worst values of both the objective functions, achieved by solving each of them
individually under a given set of constraints.

Table 1. Main attributes of the problem

Number of third party manufacturing units ( 1) 4
Number of tasks ( ] ) 4
Table 2. Imprecise manufacturing costs as T2TpFNs
Zl Task 1 Task 2 Task 3 Task 4
[(38,40,42,46); [(43,45,46,49); [(51,53,55,58); [(65,67,69,72);
Manufacturing (35,40,42,48); (41,45,46,54); (49,53,55,60); (62,67,69,74);
unit 1 (32,40,42,48); (38,45,46,56); (46,53,55,64); (60,67,69,78);
(31,40,42,55)] (36,45,46,59)] (44,53,55,67)] (59,67,69,80)]
Manufacturing [(35,37,39,43); [(69,71,73,76); [(66,68,70,74); [(77,79,82,86);
unit 2 (32,37,39,45); (67,71,73,80); (62,68,70,77); (74,79,82,89);
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(29,37,39,49); (65,71,73,83); (60,68,70,81); (72,79,82,94);
(28,37,39,54)] (62,71,73,85)] (57,68,70,85)] (68,79,82,97)]
[(89,91,94,98); [(83,85,86,88); [(96,98,100,104); [(61,63,64,67);
Manufacturing (87,91,94,102); (82,85,86,91); (94,98,100,107); (58,63,64,71);
unit 3 (85,91,94,106); (80,85,86,94); (91,98,100,110); (56,63,64,75);
(83,91,94,109)] (77,85,86,98)] (88,98,100,114)] (53,63,64,79)]
[(58,60,63,67); [(35,38,40,43); [(56,58,60,64); [(73,75,77,81);
Manufacturing (56,60,63,71); (33,38,40,44); (54,58,60,68); (70,75,77,84);
unit 4 (53,60,63,74); (32,38,40,45); (51,58,60,70); (68,75,77,87);
(51,60,63,78)] (30,38,40,49)] (49,58,60,74)] (65,75,77,89)]
Table 3. Imprecise manufacturing times asT2TpFNs

Z 2 Task 1 Task 2 Task 3 Task 4
[(218,220,222,225); [(242,245,246,249); [(211,209,215,218); [(225,227,229,233);
Manufacturing  (216,220,222,227);  (240,245,246,252);  (209,213,215,220);  (224,227,229,235);
unit 1 (213,220,222,231);  (237,245,246,255);  (206,213,215,224); (221,227,229,239);
(210,220,222,234)]  (234,245,246,259)]  (203,213,215,227)] (217,227,229,244)]
[(262,264,266,270);  [(250,252,254,257); [(231,233,234,237); [(255,257,259,262);
. (260,264,266,273);  (248,252,254,260);  (228,233,234,240); (252,257,259,264);

Manufacturing

. (257,264,266,275);  (245,252,254,264);  226,233,234,244); (249,257,259,267);
unit2 (254,264,266,276)]  (241,252,254,267)]  223,233,234,247)] (247,257,259,270)]
[(278,280,281,284);  [(283,285,287,290);  [(295,297,299,303); [(288,290,292,295);
Manufacturing  (275,280,281,286);  (280,285,287,292);  (292,297,299,306); (285,290,292,298);
unit 3 (273,280,281,289);  (277,285,287,294);  (290,297,299,309); (283,290,292,301);
(270,280,281,293)]  (274,285,287,298)]  (287,297,299,314)] (280,290,292,303)]
[(242,244,246,249); [(285,287,289,292); [(257,259,261,265); [(273,275,277,282);
Manufacturing  (240,244,246,253);  (283,287,289,295);  (255,259,261,268); (271,275,277,285);
unit 4 (238,244,246,257);  (281,287,289,297);  (253,259,261,270); (269,275,277,288);
(236,244,246,261)]  (279,287,289,303)]  (251,259,261,274)] (267,275,277,303)]

Table 4. Crisp values of the manufacturing costs and times obtained by the two-stage defuzzification

process
Z, (Cost) Z, (Time)

C, V() DV () | t; V() DV (f))
Cy (41.60,41.31,41.63,42.28) 41.73 t, (221.29,221.30,221.63,221.64) 221.46
C, (45.80,46.78,46.47,46.47) 46.35 t, (245.50,245.80,245.82,246.15) 245.82
Cs (54.29,54.30,54.63,54.96) 54.55 t, (214.29,214.30,214.63,214.64) 214.46
Cu (68.29,68.00,68.63,68.95) 68.46 t, (228.60,228.92,229.26,229.60) 229.09
C,, (38.60,38.11,38.63,39.92) 38.87 t, (265.60,265.93,265.63,265.00) 265.51
C,, (72.29,72.93,73.26,72.96) 72.83 t, (253.29,253.61,253.95,253.64) 253.64
C,, (69.60,69.31,69.95,70.28) 69.78 t,, (233.80,233.82,233.47,234.48) 235.95
C,, (81.08,81.11,82.06,81.77) 81.50 t, (258.29,258.00,258.01,258.32) 258.20

Murshid Kamal, Prabhjot Kaur, Irfan Al, A Neutrosophic Compromise Programming Technique to Solve Multi-Objective
Assignment Problem with T2TpFNs



Neutrosophic Sets and Systems, Vol. 51, 2022 191

Cyy (93.08,93.60,94.37,94.71) 93.93 t31 (280.80,280.50,280.82,281.15) 280.81
C,, (86.31,86.56,85.79,85.81) 86.12 t32 (286.29,286.00,285.68,286.09) 286.31
C33 (99.60,99.43,99.95,100.28) 99.80 t32 (298.60,298.00,298.62,299.60) 298.94
C,, (63.80,64.14,64.80,65.32) 64.52 t34 (291.29,291.31,291.63,291.32) 291.41
C, (62.08,62.72,62.75,63.40) 62.73 t m (244.07,244.91,243.31,243.45) 243.96
C,, (39.00,38.88,38.68,39.20) 38.79 t 2 (287.62,287.59,287.09,289.01) 288.11
Cus (59.60,60.25,59.63,59.92) 59.94 t 43 (259.97,260.32,260.74,261.01) 260.50
C, (76.60,76.62,76.95,76.64) 76.72 t 4 (275.98,276.08,276.58,276.96) 276.40

The T2TpEN defuzzification process is divided into two stages. In stage I, the defuzzification
technique transforms T2TpFN to T1TpFN, and in stage II, the TITpFNs were again used to obtain the
defuzzified value of T2TpFN.

Now, using the above available data in Table 2 and 3, the MOAP (Model 2) with Type 2 fuzzy
parameters can be described as follows:

Stage 1.
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Min Z, =
138140+ 42+ 464 20220742348 ) Lag 4y s 47184 35X4O_42X48
3 38+40-42-46) 3 35+40-42-48 48
X11
130140+ 42+ 464 22240742248 1 31+40+42+55+31X40_42X55
3 32+40-42-46) 3 31+4o-42—55
(431 a5 464 a9, 33>45-46x49 ) 1 41+45+46+54+w
RE 43+45-46-49) 3 41+45—46—54 )
12
238445+ 46456+ S0 d0-46x50 | 1 36+45+46+59+—36X45_46X59
3 38+45-46-56) 3 36+45—46—59
261453+ 55458+ 2203998 ) Lf g g5, 55, g4 A2X33739x00 55X60
E 51+53-55-58) 3 49+53-55-60 60
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21
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X23
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24
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34
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41

153460+63+744 20 00-03x 741 gy, 6o, 634784 2x00—03x78
3 51+60-63-74) 3 51+60-63-78
1135438440+ 434 22X 38740431 (05 35140+ 444 203840140

NE 35+38-40-43) 3 33+38-40-44
1132+38+40+ 45+ 2223890451 15y 551 401 49 30238 -40x49
3 32+38-40-45)" 3 30+38-40-49
166458460+ 64+ 20x20=00x08] dfn), cg\ 60+ 68+ 20 20— 00x08

NE 56+58 6064, 3 54+ 58— 60— 68
151458+60+70+ 2 20=00x70 1 1 g o5, 60474 22200 -00xT4
3 51+58-60-70) 3 49+58-60-74
1734754774814 X2 TTXBLY dfgg 75,77 4844 [OXTO2 7780

AE 73+75-77-81) 3 70+75-77-84
6847547787+ 20X P TTx8T) Llgg g5, 77,894 DX 17x89
3 68+75-77-87) 3 65+ 757789
2218+ 220+ 200+ 205+ 22272202 222x225 ) 1(516, 5501 22 + 227 4 20X 220~ 222221
3 218+220-222-225)" 3 216+ 220 - 222227
2213+ 220+ 200+ 2314+ 22X 2207222230 (510, 550+ 220+ 234+ 210X220_222X234
3 213+220-222-231) 3 210+220—222—234
L[ 242+ 245 + 26 + 249 4+ 22X 27 240X2M ) L1510 o451 2ag 4 250 4 200X 2457 200% 252

NE 242+ 245-246-249 )’ 3 240 + 245 246 — 252
L2371 245+ 246 + 255 4 237X 245 246%255 | 153, | 2451 246+ 259+ 200 245~ 246259
3 237+245-246-255)' 3 234+ 245 - 246 - 259
L[ 201+ 209+ 215+ 218+ X 20— 215x 218 ) 1509, 513, 2154 990 4 200X 2137 215> 220

RE 211+209-215-218) 3 209+ 213215220
2(206.+ 213+ 215+ 224 4 20X 213 - 215% 224 ) (543, 313, 9154 27 4 205X 213~ 215x 227
3 206+213-215-224 ) 3 203+ 213~ 215 227
L[ 205+ 227+ 209+ 2334 222X 227=229x238 ) 15 | 5074209+ 235+ 224X227_229X235

RE 225+227-229-233) 3 224+227—229—235
L[ 2214207+ 220+ 239+ 22X 22N 22295299 | 517, 2074 209 4 pag 4 S X221 229X 24
3 221+227-229-239) 3 217+ 227229244
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260x 264 —266x 273
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248x 252 —-254x 260
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)
3
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228x233—-234x 240
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271x 275 277x 285
271+ 275-277— 285) )
267x275-277x303 | *
267+ 275277 -303]

273X 2l 277x 282 ) 115714 075+ 277+ 288+
273+275-277-282) 3

+
1 0601 275+ 277+ 2884 209X 275-277x288 ) 1[0 ooet 97743034
3 269+ 275-277-288) 3

l [273+ 275+ 277+ 282+

Subjec to;
X114 + Xpp + X153 + X34 =1
Xoq + X9p + Xog +X9g =1
Xg1 +Xgp + X33 + X4 =1
Xa1 +Xgp +Xg3 +Xgq =1
X1+ Xop + X1 + X4 =1
X12 +Xg0 + X3 +Xgp =1
Xq3 + X3 + X33 + X3 =1
Xiq +Xog + X34 +Xgq =1

Stage II.

Min Z, =

41.60x 41.31— 41.63x 42.28 jx
41.60 +41.31-41.63-42.28 )1
45.80 x 46.78 — 46.47 x 46.49
45.80 + 46.78 — 46.47 — 46.49)
54.29 x 54.30 — 54.63 x 54.96
54.29 + 54.30 —54.63 — 54.96}
68.29 x 68.00 — 68.63 x 68.95 jx
68.29 + 68.00 — 68.63 — 68.95 )
38.60 x 38.11 — 38.63 x 39.92 jx
38.60+38.11-38.63-39.92 ) %
72.29%72.93-73.26 x 72.96 jx
72.29+72.93-73.26 - 72.96 ) %
69.60 x 69.31 — 69.95 x 70.28 JX
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E
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E
(
(
E
(
(

%[41.60 +41.31+41.63+42.28 +

1 [45.80 +46.78 + 46.47 + 46.49 +

54.29 + 54.30 + 54.63 + 54.96 +

+

68.29 + 68.00 + 68.63 + 68.95 +

+

38.60 + 38.11+38.63+39.92 +

+

72.29+72.93+73.26+72.96 +

+

69.60 +69.31+69.95+ 70.28 +

+

81.08+81.11+82.06 +81.77 +

+

+

93.08 +93.60 - 94.37 - 94.71
86.31x86.56 —85.79 x 85.81)

86.31+86.56 +85.79 + 85.81 +

+

X32
86.31+86.56 —85.79 — 85.81

99.60 % 99.43 — 99.95x100.28
99.60 +99.43 -99.95-100.28

99.60 + 99.43 + 99.95 +100.28 +

+

63.80 + 64.14 + 64.80 + 65,32 1 0>:80%64.14+64.80x65.32 Xa4
63.80 + 64.14 — 64.80 — 65.32

62.08 x 62.72 — 62.75 x 63.40

62.08 + 62.72 — 62.75 — 63.40

39.00 x 38.88 — 38.68 x 39.20

+

62.08 + 62.72 + 62.75+ 63.40 +

+

39.00 + 38.88 + 38.68 + 39.20 + X42

+

39.00 + 38.88 - 38.68 — 39.20

59.60 x 60.28 — 59.63 x 59.92
59.60 + 60.28 — 59.63 — 59.92
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+
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(
[
(28030 28050+ 28082+ 26115+
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259.97 +260.32 - 260.74 — 260.01

275.98x276.08 —276.58 x 276.96
275.98+276.08-276.58 - 276.96

+§(275.98+276.08+276.58+276.96+ Xaa

Subject to;
Xq1 + X10 + X3 + X4 =1
X1 + Xop + Xo3 + X9y =1
X31 + Xgp + Xg3 + Xgq =1
Xg1 + Xgp +Xq3 +Xgq =1
X11 + Xp1 + Xg1 + X471 =1
X1 +Xgpp + Xgp +Xyp =1
X13 + X3 +Xa3 + X3 =1
X14 + Xaq + X34 +Xgq =1
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All parameters are in T2TpFNs and are translated to a crisp value using the procedure described
above. The crisp value is presented in Table 4 for each objective function, repetitively. After using the
crisp value the equivalent crisp MOAP can be defined as follows:

Using these crisp values of the manufacturing costs and manufacturing times which are obtained by
using the two-stage defuzzification process, the present MOAP can be expressed as Model 7:
Model 7
MinZ, =41.73x,, + 46.35x,, +54.55x,, + 68.46x,, + 38.87x,, + 72.83X,, + 69.78x,, + 81.50x,,
+93.93%,, +86.12X,, + 99.82X,, + 64.52X,, +62.73X,, + 38.79X,, + 59.94x,, + 76.72X,,
MinZ, =221.46x,, + 245.82x,, + 214.46x; + 229.09x,, + 265.51x,, + 253.64X,, + 235.95x,,
+258.20x%,, + 280.81x,, + 286.31x,, + 298.94x,, + 291.41x,, + 243.96x,, + 288.11x,,
+260.51x,, + 276.40x,,
Subject to;
Xpg + Xpp + Xz + X =L Xp + X, + Xpg + Xpy =1 X5y + Xgp + Xgg + X5, =1
Xgp  Xap + Xgg + Xy =L Xy + X5 + X5y + Xy =L Xpp + Xy + Xgp + X =1
Xyg + Xog + Xgg + Xyg =L Xy + Xpq + Xgy + Xy =1

Now, each objective function is minimized subject to the given set of constraints by ignoring the other
objective function. This provides the minimum value of each objective function and the
corresponding value (written as Max) of the other one. These values are depicted in Table 5, which is
called the Payoff matrix.

Table 5. Payoff matrix

Z 1 (Total manufacturing cost) 22 (Total manufacturing time)
Max 287.07 1059.49
Min 196 995.31

Thus, the following inequalities hold for each objective function

196<7, <287.07, 99531<Z, <105949

8. Results and Discussion

The above MOAP is solved using three solution techniques viz., NCPT, FPT and IFPT. The best
compromise solution obtained by each of these methods is given in Table 6.

1. While solving Model 7 using NCPT, we find each objective function's upper and lower bounds by
solving them separately, subject to the given constraints. Then, we designed the linear membership
functions for truth, indeterminacy and falsehood, respectively and maximized the truth and
indeterminacy value and minimized the false value. Using Model 4 and LINGO 16.0 optimization
software, we obtained the optimal solution of Model 7 as

X11 =0, P =0, X3 =1, X14 =0 X1 =0, X2, =1 Xo3 =0, Xo4 =0 X31 =0, X3 =0, X33 =0, X34 =1
X, =0,%, =0,%X,;=0,%X,, =1, »=0.98546 Z, =227.04, Z,=1003.05.
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2. While solving Model 7 using FPT, we designed the linear membership functions of both the
objectives and maximized them. Using Model 5 and LINGO 16.0 optimization software, we obtained
the optimal solutions of Model 7 as

X1 =1 X, =0, X33 =0,X3 =0 X5 =0, X5 =1, X35 =0,X5 =0 Xy =0, X5 =0, Xg5 =0, %3, =1,
Xy =0,X,, =0,%,3 =1,%X,, =0. y=0.5, Z,=239.02, Z,=1027.02

3. While solving Model 7 using IFPT, we first designed the linear membership and non-membership
functions and then maximized the membership function and minimized the non-membership
function. Using Model 6 and LINGO 16.0 optimization software, we obtained the optimal solution of
Model 7 as

X11 =1 X1 =0, X3 =0, X14 =0 X1 =0, X2, =1 Xo3 =0, Xo4 =0 X31 =0, X3 =0, X33 =0, X34 =1
Xy =0,X,, =0,%,, =1,%X,, =0. y=0.5, Z,=239.02, Z,=1027.02

From Table 6, we can easily conclude that the optimal solution of the present MOAP derived from the
technique NCPT is more desirable and therefore, NCPT is a more suitable technique than the FPT and
IFPT. This is due to the same reason that the fuzzy and the intuitionistic fuzzy logics are based on the
truth function only, however, in real-world decision-making problems, the decision may result in the
form of agreement, disagreement or the state of being unsure. Since the concept of neutrosophy
allows the decision-makers to consider all these aspects together, NCPT performed better than the
other techniques for the present MOAPs. Thus, the main advantage of the present study on MOAPs
over existing literature is to solve the problem by considering degrees of truthness, falsehood, and
indeterminacy altogether which may help the decision-maker make a better and more realistic
decision. From Table 6, it is concluded that the best compromise solution of the present MOAP given
by NCPT, provides the total manufacturing cost as 224.04 $ and the total manufacturing time of all
the semi-finished parts as 1003.05 mins. To be more precise, a graphical representation of the
compromise optimal solutions of the present MOAP, extracted from different solution approaches is
given in Figure 2.

Table 6. Optimal solutions obtained by NCPT, FPT and IFPT

Objective functions

NCPT FPT IFPT
Decision variables

Min Z, 227.04 239.02 239.02
Min Z, 1003.05 1027.02 1027.02
Xy 0 1 1
X1 0 0 0
X3 1 0 0
Xi4 0 0 0
Xoy 0 0 0
Xy, 1 1 1
X3 0 0 0
X4 0 0 0
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X31 0 0 0
X3 0 0 0
X33 0 0 0
X34 1 1 1
X4 0 0 0
Xa2 0 0 0
X3 0 1 1
Xa4 1 0 0
1200 1003.05 1027.02 1027.02
1000
800
600 | |
400 | 227.04 239.02 239.02
200 . .
0
NCPT FPT IFPT
@71 uz?

Figure 2. Comparison of objective values obtained from NCPT, FPT & IFPT
9. Advantage and Comparison of the Proposed Work with Some Existing Ones in Literature

The present problem is a MOAP with conflicting objectives which is discussed under fuzziness. This
formulation of an assignment problem caters to a more realistic scenario arising in various
commercial situations with vague information.

Further, in the study of MOAP under uncertainty, most of the authors like Biswas and
Pramanik [9], Huang and Zhang [25], Jose and Kuriakose [27], Lin and Wen [36], Liu and Goa [38],
Majumdar and Bhunia[41] and Thorani and Shankar [68] have used the concept of Type 1 fuzzy set
(TIFS) whose membership functions are expressed as absolute numbers. The T1FES, in general, cannot
handle the vagueness of the parameters efficiently as its membership functions are crisp. In contrast
to this, Type 2 fuzzy sets (T2FS) can model the uncertainties/vagueness of optimization problems
more appropriately as its membership functions are also presented as fuzzy numbers. To be more
precise, the membership functions of T1FS are two-dimensional whereas the membership functions of
T2FS are three-dimensional. This additional degree of freedom makes it possible to model the
vagueness/uncertainties of an optimization problem more efficiently. So, the formulation of the
present problem with T2TpF parameters is another advantage of the present study.

Furthermore, De and Yadav [14], Mukherjee and Basu [44], Pramanik and Biswas [54] and
Sakawa et al. [60] are some of the authors who discussed assignment problems in an uncertain
environment and either used fuzzy programming techniques or used the intuitionistic fuzzy
programming techniques. The disadvantage of these techniques is that they can only handle
information in the context of membership and/or non-membership function of a parameter but not
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the information related to indeterminacy or inconsistency in the parameter values. The neutrosophic
approach discussed in this paper overcomes this limitation. In its theory, indeterminacy is quantified
directly while the truth, indeterminacy and falsehood membership functions are independent. Since
the present MOAP under uncertainty with T2TpF parameters is discussed using neutrosophic logic,
this may be considered as another advantage of the present problem over existing literature. The
efficiency of this technique over the existing ones reflects in Table 6.

10. Conclusion and Future Aspects

The current paper uses neutrosophic logic to solve MOAP in an uncertain environment. T2TpFNs are
used to represent all of the uncertain parameters of the MOAP. The model is then crisped using a
two-stage defuzzification procedure that finds the crisp values of these T2TpFNs. This crisp model is
solved by using three solution techniques viz., FPT, IFPT and NCPT. The primary goal of this work is
to solve the MOAP utilising NCPT and demonstrate its superiority over the others techniques
described above. A numerical demonstration is shown that clearly shows that the NCPT outperforms
the other two solution strategies that are also capable of dealing with uncertainty.

The concept of neutrosophic may be included into a multiobjective transportation model in
future study. A MOAP's stochastic model may also be explored and solved using NCPT. Fuzzy-
random or fuzzy-stochastic variations of a multiobjective assignment or transportation issue are also
possibilities. Furthermore, the NCPT may be used in a variety of domains such as management
science, financial management, and decision-making science, among others.
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