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Abstract: In today's scenario transportation problem [TP] is the prominent area of optimization. In the 

present paper, a TP in a neutrosophic environment, known as a neutrosophic transportation problem 

[NTP] is introduced with interval-valued trapezoidal neutrosophic numbers [IVTrNeNs]. To maintain 

physical distance among the industrialists and researchers during the covid-19 pandemic, the interval-

valued fuzzy numbers [IVFNs] in place of crisp numbers are very much essential to address the 

hesitation and uncertainty in real-life situations. IVTrNeN is the generalization of single-valued 

neutrosophic numbers [SVNeN], which are used as the cost, the demand, and the supply to transport 

the necessary equipment, medicines, food products, and other relevant items from one place to another 

to save the human lives in a covid-19 pandemic. A Neutrosophic set, which has uncertainty, 

inconsistency, and incompleteness information is the abstract principle of crisp, fuzzy, and intuitionistic 

fuzzy sets. Here we suggest some numerical problems for better execution of the neutrosophic 

transportation problem [NTP], to understand the practical applications of interval-valued neutrosophic 

numbers [IVNeNs]. In the last, we compare our results and a conclusion is given in support of our 

proposed result methodology with IVTrNeNs. 
 

Keywords: Interval–valued trapezoidal neutrosophic number, De-neutrosophication, neutrosophic 

transportation problem. 

 

1. Introduction  

In the current scenario of covid-19, the role of a neutrosophic optimization technique in TP has 

fascinated awareness of their high efficiency, accuracy, and adaptability that gives high standard real-

life outcomes. Neutrosophic optimization has been extremely searched in industrial, management, 

engineering, and health sectors. Zadeh in 1965 introduced the mathematical formula of fuzzy set FS [1] 

by which the researchers try to check the ambiguity or uncertainty in engineering, industrial, and 

management problems [2, 3]. In realistic problems, the FS was not perfect to observe the uncertainty 

and hesitation. To encompass this problem, Atanassov extended the FS and introduced a set with 

membership and non-membership degrees, called an intuitionistic fuzzy set IFS [4]. For more detailed 

applications of IFS, please (see [5-10] and references therein). Atanassov and Gargov generalized the 

IFS by introducing the interval-valued IFS to strengthen the attitude of grasp uncertainty and hesitation 

in IFS [11]. To solve the real-world problems with inconsistent information or contain indeterminacy in 

data the FS and IFS are not sufficient. To rectify such problems, Smarandache in 1988 introduced the 

neutrosophic set [NS] [12], by which the inconsistent information is in the form of truth-membership, 

indeterminacy-membership, and falsity-membership degrees respectively.  For practical applications 
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and some technical references in real-world problems, NSs are difficult to apply, so the notion of a 

single-valued neutrosophic set [SVNeS] was imported by Wang et. al. in 2010 [13]. The idea of SVNeS is 

more suitable and effective in solving many real-life problems of decision-makers that contain 

uncertainty in data by using fuzzy numbers and intuitionistic fuzzy numbers.  Since in the real world, 

there exists stipulated and non-stipulated knowledge, so to overcome such problems Samaranache 

introduced the neutrosophic number [NN] [14, 15]. In 2016, Ye. proposed de-neutrosophic and 

possibility degree ranking methods for the application of NNs [16]. Samrandache in 2015, proposed the 

interval function to describe the stipulated and non-stipulated issues in real-world problems [17]. For 

more uncertain linear programming problems (see [18-29] and references therein).  
In real-life optimization problems, the TP shows high execution and due to its clarity and minimum 

cost, it is a noted optimization technique in the current scenario.  The basic theme of a TP is to find a 

direct connection between source and destination in minimum time with minimum cost. Hitchcock 

introduced the initial basic structure of TP and developed a special mathematical module for the basic 

results of TP by the simplex method [30]. For more recent development in fuzzy transportation problem 

[FTP] (see [31-47] and references therein).  
The IFS theory can handle the problems of incomplete information but not the indeterminate and 

inconsistent information that exists in the transportation modal. The TP with inconsistent information 

or indeterminate data i.e. in fuzzy numbers or intuitionistic fuzzy numbers cannot be handled in the 

current structure. To resolve such issues, the NTP is the best option with indeterminacy and 

inconsistent information by truth, indeterminacy, and falsity membership degree function. Many 

researchers formulated efficient mathematical models in various uncertain environments. We proposed 

the NTP of type-4, with all entries such as cost, demand, and supply termed as IVTrNeNs, which 

include membership, indeterminacy, and non-memberships degree function. The more real-world 

developments in the field of neutrosophic optimization problems (see [48-63] and references therein).  
For the solution of NTP, the first one will change it into a crisp transportation problem [CTP] by 

converting the cost, demand, and supply, which are in IVTrNeNs into crisp values with the help of the 

introduced ranking method. For unbalanced CTP or NTP, here we use Vogel’s approximation method 

[VAM] and minimum row-column method [MRCM] to solve these by excel solver and then compare 

our results [46]. The paper is well organized in several sections such as the introduction of the present 

paper with some earlier research are given, the basics concepts of FS, IFS, and NS are discussed and 

reviewed, introduce the ranking function, score function, and de-neutrosophication to convert 

neutrosophic values into crisp values and vice-versa. Here we proposed CTP & NTP of type-4, their 

solution by existing and MRCM, comparison, and the conclusion for future aspects of research work.   
 

2. Preliminaries 

 

Definition 2.1 ([39]):  A FS A of a non empty set X is defined as  
A

A = x,μ x / x X( )  where 

→
A

μ x : X( ) [0,1]  is the membership function. 

 

Definition 2.2: A fuzzy number on the universal set R is a convex, normalized fuzzy set A , where the 

membership function →
A

μ x : X( ) [0,1]  is continuous, strictly increasing on [a, b] and strictly decreasing 

on [c, d] , = 1,
A

μ x( )  for all   x b, c , where   a b c d  and = 0,
A

μ x( )  for all (   )    x - ,a d, . 

 

Definition 2.3 ([52]): A trapezoidal fuzzy number (TrFN) denoted as A = (a,b,c,d) , with its 

membership function A
μ x( )  on R, is given by  
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If  b = c in TrFN = ( )A a,b,c,d , then it becomes TFN ( )A = a,b,c . 

 

Definition 2.4: An IFS in a non-empty set X is denoted by IA and defined as   = , , : ,I I

I

A A
A x x X  

where → [0,1]I IA A
μ ,ν : X , are denoted as degree of membership and degree of non-membership 

functions respectively. The function   1 1I IA A
h(x) = - μ - ν ,  x X  called the degree of hesitancy in IA . 

 

The single valued neutrosophic numbers [SVNN] introduced by Deli and Suba [64] in 2014.  

 

Definition 2.5:  A SVNS is denoted and defined as { ( ) ( ) ( ) }
N N N

N A A A
A = x,T x ,I x ,F x / x X ,  where for each 

generic point x in X, ( )
NA

T x  called truth membership function, ( )
NA

I x  called indeterminacy 

membership function and ( )
NA

F x  called falsity membership function in [0,1]  and  

 ( ) ( ) ( )
N N NA A A

T x +0 I x + F x 3 . For continuous SVNS =  ( ), ( )  (,  /  ,  ) 
N N N

N

N A A A

A

T x I x F x xA x X . For 

discrete values, SVNS can be written as 
=

=
1

 ,       .( ), ( ) ( ) / ,
N N N

N iA A A

n

i i i i
i

T x I x F xA x Xx     

               
                            Fig. 1: Neutrosophic set 

 

Definition 2.6 ([15]):  Let x be a generic element of a non empty set X.  A neutrosophic number N
A  in 

X is defined as =   { , ( ), ( ), ( ) / },
N N N

N A A A
A x T x I x F x x X     ( ),

NA
T x  ( )

NA
I x  and ( )

NA
F x  belongs − +] 0,1 [

where − +→: ]0 ,1 [
NA

T X , − +→: ]0 ,1 [
NA

I X  and − +→: ]0 ,1 [
NA

F X   are functions of truth-membership, 

indeterminacy membership and falsity-membership in N
A  respectively with 

( ) ( ) + (0 ) 3
N N NA A A

T x I x F x .− + +   

 

Definition 2.7 ([17]):  Let X be a nonempty set.  Then an interval-valued neutrosophic set [IVNS] IV
NA  

of X is defined as: 

   U U U     
     


N N N N N N

L LIV
N A A A A A A

L= x; T ,T , I , I , F ,F :A       x X  
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 where U 
 N NA A

LT ,T , U 
 N N

L

A A
I , I  and [0,1]U  

 N NA A

LF ,F   x X.  ( )inf ,
N NA A

LT = T ( )sup
N NA A

T = TU ; 

( )inf ,
N NA A

LI = I ( )sup
N NA A

I = IU  and ( )inf ,
N NA A

LF = F ( ).U

N NA A
F = Fsup   

           
Fig. 2: Interval-valued neutrosophic set 

 

Definition 2.8:  Let   U U U     
    


N N N N N N

L LIV
N A A A A A A

L= x; T ,T , I ,A    I , F F x X, :  be IVNS, then  

(i) IV
NA  is empty if 0, 1 1U U U= =

N N N N N NA A A A

L L

A

L

A
T = T I = I = ,F = F ,  x X.  

(ii) let 0 ,0,1,1x=    and ,1,0,0 .x   

 

The interval-valued numbers and their operational properties are most valuable to survey for 

interval-valued neutrosophic numbers [IVNeNs]. Here we are given some impotent operations & facts 

about Interval valued numbers. 

 

Definition 2.9 ([65]):  An interval on R  is defined as R  L R L R= a ,a = a : a a a ,aA [ ] { } , where La in left 

limit and Ra  is the right limit of A, it may also be defined as R  c w c w c w= a ,a = a : a - a a a + a ,aA { } , 

where 
( )

2

+R L

c

a a
a =  in centre 

( )

2

−
=

R L

w

a a
a  is width of A. 

 

Definition 2.10 ([66, 67): Let  L U L UA x = a ,a x : a x a( ) [ ] = { } , then A x( ) is called an interval number. 

A x( )  is positive interval if 0 .L Ua x a    Let L UA x = a ,a( ) [ ]  and L UB x = b ,b( ) [ ]  be two interval 

numbers, then the following operational properties are holds: 

(i) ; L L U UA = B   a = b ,  a = b    

(ii) [ ];= L L U UA + B   a + b ,  a + b [ ];U= L U LA - B   a - b ,  a - b  

(iii) };max }];  L L L U U L U U L L L U U L U UA B   min a b ,  a b ,a b ,  a b  a b ,  a b ,a b ,  a b[ { {  

(iv)    L UA = a , a[ ],  > 0.  

 

Definition 2.11 ([35]): The interval-valued trapezoidal neutrosophic number [IVTrNeN]) is a special 

case of NS on the real line R. Let 
1 2 3 4
, , ,a a a a R such that 

1 2 3 4
a a a a   then  

( ) L U L U L U
1 2 3 4 a a a a a a

a = a ,a ,a ,a ; u ,u , v ,v , w ,w ,     
     IV IV IV IV IV IV

N N N N N N

IV

N  

is IVTrNeN, where L U

a a
u ,u 
 IV IV

N N

are upper and lower bound of the truth-membership degree function 

a
u ,IV

N

L U

a a
v ,v 
 IV IV

N N

 are upper and lower bound of the indeterminacy-membership degree function 
a

v IV
N

 and 
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L U

a a
w ,w 
 IV IV

N N

 are the upper and lower bound of the falsity-membership degree function 
a

w IV
N

 in [0,1] 

respectively, whose truth-membership ( )IV
Na

T x , indeterminacy-membership ( )IV
Na

I x , and a falsity-

membership ( )IV
Na

F x  are defined as follows: 

1
1 2

2 1

2 3

4
3 4

4 3

1 4

,   for ,

,                   for ,

,   for ,

0,            for  and  

)

.

(

IV
N

IV
N

IV
N

IV
N

a

a

a

a

x a
u a x a

a a

u a x a

a x
u a x a

a a

x a x a

T x

  −
   

−  
  

= 
 −

    − 
  

 

2 1

1 2

2 1

2 3

3 4

3 4

4 3

1 4

( )
,   for ,

,                             for ,

( )
,   for ,

1,                     for  and  

)

.

(

IV
N

IV
N

IV
N

IV
N

a

a

a

a

a x v x a
a x a

a a

v a x a

x a v a x
a x a

a a

x a

I

x

x

a

 − + −
  

−


 
= 

− + −
 

−
  

                                                                               

2 1

1 2

2 1

2 3

3 4

3 4

4 3

1 4

( )
,   for ,

,                           for ,

( )
,   for ,

1,                     for  a

)

d  .

(

n

IV
N

IV
N

IV
N

IV
N

a

a

a

a

a x w x a
a x a

a a

w a x a

x a w a x
a x a

a a

x a x

F x

a

 − + −
  

−


 
= 

− + −
 

−
  

 

when      
  


  1

), (0 IV IV IV IV IV IV
N N N N N N

IV L U L U L U

N 1 2 3 4 a a a a a a
   a = a ,a ,a ,a ; u ,u , v ,v , w ,wa ,  is called positive IVTrNeN, 

denoted by 0IV

N
a  , and if 

4
0,a then IV

N
a  becomes a negative IVTrNeN, denoted by 0.IV

N
a   If =

2 3
,a a

then IVTrNeN is reduces interval-valued triangular neutrosophic number [IVTriNeN], denoted as 

( ) .IV IV IV IV IV IV
N N N N N N

IV L U L U L U

N 1 2 3 a a a a a a
a = a ,a ,a ; u ,u , v ,v , w ,w     

     
 

 

On the basis of [8, 41, 58], we will take here the twelve components of IVTrNeNs i.e. 

( )  ( )  ( ) 1
1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
, , , ; , , , , ; , , , , ;IV IV IV

N N N

IV

N a a a
a = a b c d u e f g h v l m n p w 

  
  guided as     

1 1 1 1 1
l e a m f

     
1 1 1 1 1 1 1

b n g c p h d .  

 
Fig. 3: Interval-valued trapezoidal neutrosophic number 

 

2.1.      Operational Laws on IVTrNeNs 

 

Let ( )  ( )  ( ) 1
1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
, , , ; , , , , ; , , , , ;IV IV IV

N N N

IV

N a a a
a = a b c d u e f g h v l m n p w 

  
 and  
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( )  ( )  ( ) 2
2 2 2

2 2 2 2 2 2 2 2 2 2 2 2
, , , ; , , , , ; , , , , ;IV IV IV

N N N

IV

N a a a
a = a b c d u e f g h v l m n p w 

  
 be two IVTrNeNs with 

twelve components, where 
1 1 1

,L U

a a a
u u u =

  
IV LIV U IV
N N N

; 
2 2 2

,L U

a a a
u u u =

  
IV LIV U IV
N N N

; 
1 1 1

,L U

a a a
v v v =

  
IV LIV U IV
N N N

;
2 2 2

,L U

a a a
v v v =

  
IV LIV U IV
N N N

; 

and 
1 1 1

,L U

a a a
w w w =

  
IV LIV U IV
N N N

;
2 2 2

,L U

a a a
w w w =

  
IV LIV U IV
N N N

 , then the following operations hold: 

 

Addition of IVTrNeNs:  

                            

( ) 
( ) 
( ) 

1 2

1 2
1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, , , ; ,

, , , ; ,

, , , ;

IV IV
N N

IV IV
N N

IV IV
N N

a a

IV IV

N N a a

a a

a a b b c c d d u u

a a = e e f f g g h h v v

l l m m n n p p w w

 
+ + + + 

 
 
 + + + + + 
 
 

+ + + +  
 

 

Negative of IVTrNeN:  

                        ( )  ( )  ( ) 2
2 2 2

2 2 2 2 2 2 2 2 2 2 2 2
, , , ; , , , , ; , , , , ;IV IV IV

N N N

IV

N a a a
a = d c b a u h g f e v p n m l w 

− − − − − − − − − − − − −
  

 

Subtraction of IVTrNeNs:  

            

( ) 
( ) 
( ) 

1 2

1 2
1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, , , ; ,

, , , ; ,

, , , ;

IV IV
N N

IV IV
N N

IV IV
N N

a a

IV IV

N N a a

a a

a d b c c b d a u u

a a = e h f g g f h e v v

l p m n n m p l w w

 
− − − − 

 
 
 − − − − − 
 
 

− − − −  
 

 

Scalar multiplication of SVTrNeN: 

            
( )  ( )  ( ) 
( )  ( )  ( ) 

1 1 1

1

1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

, , , ; , , , , ; , , , , ;  if 0

, , , ; , , , , ; , , , , ; if 0

IV IV IV
N N N

IV IV IV
N N N

a a a
IV

N

a a a

λa λb λc λd u λe λf λg λh v λl λm λn λp w    λ

λ.a =

λd λc λb λa u λh λg λf λe v λp λn λm λl w   λ

 
  

 
 
  

 

Multiplication of IVTrNeNs:  

         

( ) ( ) ( )
             
          1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

. , . , . , . ; . , . , . , . . , . , . , .
,

, , if 0, 0, 0, 0, 0, 0

. , .

IV IV IV IV IV IV
N N N N N Na a a a a a

IV IV

N N

a a b b c c d d e e f f g g h h ; l l m m n n p p
  

u u  v v w w     d d h h p p

a d b c
a .a =

( ) ( ) ( )

( )

             
          1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1

, . , . ; . , . , . , . . , . , . , .
,

, , if 0, 0, 0, 0, 0, 0

. , . , . , . ; . , . ,

IV IV IV IV IV IV
N N N N N Na a a a a a

c b d a e h f g g f h e ; l p m n n m p l

u u  v v w w     d d h h p p

d d c c b b a a h h g g f( ) ( )

 
 
 
 
 
 
 
 
 
 
 
 

              
            1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

. , . . , . , . , .
,

, , if 0, 0, 0, 0, 0, 0IV IV IV IV IV IV
N N N N N Na a a a a a

f e e ; p p n n m m l l

u u  v v w w     d d h h p p

 

Inverse of SVTrNeN:       

         

1 1 1

1

1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
, , , ; , , , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,1
( )

1 1 1 1 1 1
, , , ; ,

IV IV IV
N N Na a a

IV

N IV

N

u v w
d c b a h g f e p n m l

  a b c d e f g h l m n p
a

a

a b c d e

−

     
     
     

           
= =

 
 
  1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1
, , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

IV IV IV
N N Na a a

u v w
f g h l m n p

  a b c d e f g h l m n p

 
 
 
 
 
 

    
    
    

             
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Division of SVTrNeNs:    

   

1 2 1 2 1 2

1

2

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2

2

1

, , , ; , , , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0,

,

IV IV IV IV IV IV
N N N N N Na a a a a a

IV

N

IV

N

a b c d e f g h l m n p
u u  v v w w

d c b a h g f e p n m l

    d d h h p p

d c
a

d
a

                                  

     

= 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2

2 2 2 2

1 1 1 1

, , ; , , , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0,

, , , ;

IV IV IV IV IV IV
N N N N N Na a a a a a

b a h g f e p n m l
u u  v v w w

c b a h g f e p n m l

  d d h h p p

d c b a h

a b c d

                                  

     

 
 
  1 2 1 2 1 2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

1 2 1 2 1 2

, , , ; , , , ; , , ,

if 0, 0, 0, 0, 0, 0

IV IV IV IV IV IV
N N N N N Na a a a a a

g f e p n m l
u u  v v w w

e f g h l m n p

  d d h h p p

 
 
 
 
 
 
  
 
 
 
                               
 

       

     

   wher  ( ) ( )
1 2

min ,minIV IV LIV LIV UIV UIV
N N N N N N1 2 1 2

L L U U

a a a a a a
u u u ,u u ,u 

 =
  

,  ( ) ( )
1 2

max ,maxIV IV LIV LIV UIV UIV
N N N N N N1 2 1 2

L L U U

a a a a a a
v v v ,v v ,v 

 =
  

  

and  ( ) ( )
1 2

max ,max .IV IV LIV LIV UIV UIV
N N N N N N1 2 1 2

L L U U

a a a a a a
w w w ,w w ,w 

 =
  

 

 

Example 2.1.1:  let =
1

(7,11,16,21);[0.6,0.8]

(6,10,15,20);[0.3,0.4]

(5,9,14,19);[0.4,0.6]

IV

N
a  and =

2

(6,11,13,20);[0.7,0.8]

(5,10,12,18);[0.4,0.5]

(3,8,11,16);[0.5,0.6]

IV

N
a  be two IVTrNeNs, 

then         + =
1 2

(13,22,29,41);[0.6,0.8]

(11,20,27,38);[0.4,0.5]

(8,17,25,35);[0.5,0.6]

IV IV

N N
a a ,  

− −

− = − −

− −
1 2

( 13, 2,5,15);[0.6,0.8]

( 13, 2,5,15);[0.4,0.5]

( 11, 2,6,16);[0.5,0.6]

IV IV

N N
a a  

=
1 2

(42,121,208,420);[0.6,0.8]

. (30,100,180,360);[0.4,0.5]

(15,72,154,304);[0.5,0.6]

IV IV

N N
a a ,  =1

2

(0.35,0.85,1.45,3.50);[0.6,0.8]

(0.33,0.83,1.50,4.00);[0.4,0.5]

(0.31,0.81,1.75,6.33);[0.5,0.6]

IV

N

IV

N

a

a
 

                   =
1

(35,55,80,105);[0.6,0.8]

5 (30,50,75,100);[0.3,0.4]

(25,45,70,95);[0.4,0.6]

IV

N
a  

 

3.      Score and Accuracy functions of IVTrNeNs 

 

Definition 3.1:  Sahin [69] used the score function concept to find comparison between two IVTrNeNs. 

Greater of score function value demonstrate the greater of IVTrNeN. According the base of [70] the 

score and accuracy functions of an IVTrNeN IV

N
a can be defined as follows: 

               
( ) ( )

( )
( )

 + + + + − + + +
 =  + − − − −
 − + + + 

1 1 1 1 1 1 1 1

1 1 1 1

81
( ) 2

12
LIV UIV LIV UIV LIV UIV
N N N N N N

IV L U L U L U

N a a a a a a

a b c d e f g h
S a u + u v v w w

l m n p
 

( ) [0,1]IV

N
S a  . The accuracy function ( ) [ 1,1]IV

N
A a  −  is defined as: 

( ) ( )= + + + − − − −  + − − − −
1 1 1 1 1 1 1 1

1
( ) 2

4
LIV UIV LIV UIV LIV UIV
N N N N N N

IV L U L U L U

N a a a a a a
A a a b c d l m n p u + u v v w w  

 

Definition 3.2 Let 
1

IV

N
a  and 

2

IV

N
a  be any two IVTrNeNs, then one has the following comparison: 

(a) If 
1 2 1 2

( ) ( )     IV IV IV IV

N N N N
S a S a a a    

(b) If  
1 2

( )  ( )IV IV

N N
S a S a=  with 

1 2 1 2
( ) ( )IV IV IV IV

N N N N
A a A a     a a , 

1 2 1 2
( ) ( )IV IV IV IV

N N N N
A a A a     a a  and 
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          = =
1 2 1 2

( ) ( ) .thenIV IV IV IV

N N N N
A a A a     a a   

 

Example 3.1. Let 
1

(7,11,16,21),(6,10,15,20),(5,9,14,19);[0.6,0.8],[0.3,0.4],[0.4,0.6]IV

N
a = and 

            
2

(6,11,13,20),(5,10,12,18),(3,8,11,16);[0.7,0.8],[0.4,0.5],[0.5,0.6]IV

N
a = be two SVTrNeNs, then 

the score and accuracy function = −
1

( ) 4.95833IV

N
S a , =

1
( ) 5.1IV

N
A a  and = −

2
( ) 9.375IV

N
S a , =

2
( ) 4.875IV

N
A a .  

Here 
1 2

( ) ( )IV IV

N N
S a S a  and 

1 2
( ) ( )IV IV

N N
A a A a implies that 

1 2

IV IV

N N
a a .  

 

4.   Neutrosophic Transportation Problem [NTP] and its Mathematical formulation 

 

In a TP, if at least one parameter such as cost, demand, or supply is in form of neutrosophic 

numbers, then TP is termed as NTP. An NTP has neutrosophic availabilities and neutrosophic demand 

but the crisp cost is classified as NTP of type-1, if NTP has crisp availabilities and crisp demand but 

neutrosophic cost, is classified as NTP of type-2. If all the specifications of TP such as cost, demand, and 

availabilities are a combination of crisp, triangular, or trapezoidal neutrosophic numbers, then it is 

classified as NTP of type-3. In last if all the specifications of TP must be in neutrosophic numbers form, 

then TP is said to be NTP of type-4 or fully NTP. 
 

4.1    Mathematical Formulation of NTP  

 

In TP if uncertainty occurs in cost, demand or supply then it is more difficult to find the strict way 

and time. During the current scenario of covid-19, it is very important for transporting the drugs and 

medical equipment from one source to another destination in an unchallenging way. Keeping in mind 

for social distancing the IVTrNeS has a deep concern and special features. To maintain this type of 

impreciseness in cost to a transferred product from ith sources to jth destination or uncertainty in 

supply and demand, the decision-maker introduces NTP with IVTrNeNs. Here we discuss NTP of 

type-4 with IVTrNeNs in cost, supply and demand.  

Let the cost and number of units and assumptions and constraints in NTP be defined as IVTrNeNs 

that are transported from ith sources to jth destination. In the formulation of NTP the following 

assumptions and constraints are required: 

m  total number of source point 

n  total number of destination point 

i  table of source (for all m)  

j  table of destination (for all n) 

IV

ij
x  number of transported neutrosophic unites from ith source to jth destination 

IV

ij
c  Neutrosophic cost of one unit transported from ith source to jth destination 

a IV

ij  available neutrosophic supply quantity from ith source 

b IV

ij  required neutrosophic demand quantity to  jth destination 

IV L U

ij ij ij
c c ,c =

   crisp cost of one unit quantity 

IV L U

ij ij ij
x x ,x =

   number of transported crisp unites from ith source to jth destination 

IV L U

i i i
a a ,a =    available crisp supply quantity from ith source 

IV L U

j j j
b b ,b =

   required crisp demand quantity to  jth destination 
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For balance of NTP 
0 0

m n
IV IV

i j
i j

a a
= =

=   i.e. total supply is equal to total demand. The objective of this 

NTP model is to minimize the cost of transported product. The mathematical formulation of NTP with 

uncertain transported units, cost, demand and supply is as follows: 

0 0

cMinimum   
m n

IV IV IV

ij ij
i j

x
= =

=Z  

( )
0

Subject to              1,  2,  3,  . . . , soua , rces ,
n

IV IV

ij i
j

i mx
=

  =  

                  ( )
0

,      1,  2,  3,  . . . , destination ,b  
n

IV IV

ij j
j

x j
=

 = n  

                         1,  2,  3,  . . . , ,0    1,  2,  3,  . . . , .,IV

ij
i m jx  = = n  

where   

 

( )

( )

( )

  
   


 =    

 
  

( ) , ( ) , ( ) , ( ) ; ,

( ) , ( ) , ( ) , ( ) ,

( ) , ( ) , ( ) , ( )

IV IV
ij ij

IV IV
ij ij

IV IV
ij ij

IV IV IV IV L U

ij ij ij ij c c

IV IV IV IV IV L U

ij ij ij ij ij c c

IV IV IV IV L U

ij ij ij ij c c

c a c b c c c d u ,u

c c e c f c g c h v ,v

c l c m c n c p w ,w





 


 
 
  

,   

( )

( )

( )

  
   


 =    

 
  

( ) , ( ) , ( ) , ( ) ; ,

( ) , ( ) , ( ) , ( ) ,

( ) , ( ) , ( ) , ( )

IV IV
ij ij

IV IV
ij ij

IV IV
ij ij

IV IV IV IV L U

ij ij ij ij c c

IV IV IV IV IV L U

ij ij ij ij ij c c

IV IV IV IV L U

ij ij ij ij c c

x a x b x c x d u ,u

x x e x f x g x h v ,v

x l x m x n x p w ,w

 
 
 
  
  
  
    

t

 

 

( )

( )

( )

  
   

  =    

 
  

a( ) ,a( ) ,a( ) ,a( ) ; ,

a a( ) ,a( ) ,a( ) ,a( ) ,

a( ) ,a( ) ,a( ) ,a( )

IV IV
ij ij

IV IV
ij ij

IV IV
ij ij

IV IV IV IV L U

ij ij ij ij c c

IV IV IV IV IV L U

i ij ij ij ij c c

IV IV IV IV L U

ij ij ij ij c c

a b c d u ,u

e f g h v ,v

l m n p w ,w







 
 
  

,       

( )

( )

( )

  
   

  =    

 
  

b( ) ,b( ) ,b( ) ,b( ) ; ,

b b( ) ,b( ) ,b( ) ,b( ) ,

b( ) ,b( ) ,b( ) ,b( )

IV IV
ij ij

IV IV
ij ij

IV IV
ij ij

IV IV IV IV L U

ij ij ij ij c c

IV IV IV IV IV L U

j ij ij ij ij c c

IV IV IV IV L U

ij ij ij ij c c

a b c d u ,u

e f g h v ,v

l m n p w ,w

 
 
 

 
  
  
    

t

 

 

4.2.    Steps for Balancing of NTP by Existing Method 

 

The total transportation cost does not depends on the mode of transportation and distance, also the 

framework of the problem will be denoted by either crisp or IVTrNeNs. For solution of NTP, first we 

convert all IVTrNeNs into crisp values by using score function and so the NTP converted into simple 

TP. After balancing by existing method, the following steps are required for solution of NTP:  

  

Step 4.2.1: To change the each neutrosophic cost c IV

ij  neutrosophic supply aIV

i
 and neutrosophic 

demand b IV

j  of NTP in cost matrix into crisp values by using score function ( )IV

N
S a .  

Step 4.2.2: For balance TP, verify that the sum of demands is equal to the sum of supply i.e. If 

= = = =

     
0 0 0 0

a b or  a b        ,
m n m n

IV IV IV IV

i j i j
i j i j

i j  the one can make sure to balance the TP, as 

0 0

  a  b ,,
m n

IV IV

i j
i j

i j
= =

=   , by adding a row or column with zero entries in cost matrix.   

Step 4.2.3: Verify that the sum of demands is greater than the supply in each row and the sum of 

supplies are greater than the demand in each column, if ok go on step 4.2.4, otherwise go 

on step 4.2.2 

Step 4.2.4: Here we use the excel solver to solve the TP and obtained optimal solution.  
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4.3.   Steps for Balancing of NTP by MRCM  

 

For balance the unbalance NTP, we use minimum row column method [MRCM] introduced by 

Saini [45] as follows: 

Step 4.3.1. Convert neutrosophic cost c IV

ij  neutrosophic supply aIV

i
and neutrosophic demand b IV

j  of 

NTP in cost matrix to crisp values by using score function ( )IV

N
S a .  

Step 4.3.2 If NTP is unbalance i.e. 
0 0

  a or  b , ,
m n

IV IV

i j
i j

i j
= =

     than we find 

     and excess supply,
(( 1) ( 1)

0 0

            a a b b  
m n

IV IV IV IV

ii m i j n j
i j

+ +
= =

= =  
  

or        and excess demand.
( 1) (( 1)

10

          b b a a
n

IV IV IV IV

j n j ii m i

m

j i
+

= =
+

= =  
 

The unit transportation costs are taken as follows: 

( 1) ( 1)1 1
      min   ,  1 ,           min   ,  1 ,

i n ij m j ijj n i

IV IV I

m

V IVc c i m c c j n
+ +

   
=   =    

and
( 1)( 1)

 ,  1 ,  1 ,          0.IV IV IV

ij ji m n
c c i m j n c

+ +
=     =  

Step 4.3.3 Obtain optimal solution of NTP by excel solver. Let the neutrosophic optimal solution 

obtained be ,  1 1,  1 1.
i

V

j

Ix i m j n  +   +  

Step 4.3.4  By assuming 
'

1
 0I

m

V

+
 =  and using the relation  

' ' '  IV I

i

V

j

V I

ij
  =   for basic variables, find the 

values of all the dual variables 
' ,  1I

i

V i m     and  ' ,   1 1, IV

j
j n   +   

Step 4.3.5. According to MRCM, 
'

i

I

i

IV V =   and '

j

I

j

IV V =   for  1 ,1i m j n    , obtain only central 

rank zero duals.  

 

5. Numerical Example  

 

Let us consider a NTP of type-4 with three container (sources) say 
1

M , 
2

M , 
3

M  in which medical 

equipment are initially stored and ready to transport in three different destinations (cities), say 
1

C ,
2

C ,  

3
C with unit transportation cost, demand and supply are as IVTrNeN. The input data of NTP with 

IVTrNeNs is given in table 1: 

 

Table 1 
1

M  
2

M  
3

M  Supply 

1
C  (7,12,21.5,28);[0.7,0.9],

(4,10,17.5,25);[0.4,0.5],

(2,8,15.5,22);[0.3,0.4]

 
(7,11,15,19);[0.6,0.8]

(5,8,12,15);[0.4,0.5]

(3,5,7,11);[0.2,0.3]

 
5,10,14,19.5);[0.5,0.6],

(3,7.5,10,15);[0.4,0.6],

(1,4,7,10);[0.3,0.4]

 
(9,19,28,34);[0.7,0.8],

(7,12,19,24);[0.4,0.5],

(3,8,11,16);[0.2,0.4]

 

2
C  (5,11,16.5,21);[0.6,0.7],

(3,8,12,16);[0.3,0.5],

(0,3,9.5,12);[0.2,0.4]

 
−

(2,4,7.5,10);[0.6,0.7],

(1,3,6.5,9);[0.3,0.5],

( 1,2,5,7);[0.2,0.3]

 
−

(3,6,11,16);[0.7,0.9],

(1,5,9,14);[0.4,0.5],

( 3,2,6,12);[0.3,0.4]

 
,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 

3
C  (6,14,21,28);[0.8,0.9],

(4,11,18,25);[0.4,0.6],

(2,8,15,22);[0.3,0.4]

 
−

(4,8.5,14,17);[0.6,0.8],

(2,6.5,11,15);[0.4,0.5],

( 2,2,7,11);[0.2,0.3]

 
−

(5,10,14,20);[0.7,0.9],

(3,8,9,15);[0.3,0.5],

( 1,5,7,12);[0.2,0.4]

 
(14,22,30,39);[0.6,0.8],

(12,18,25,34);[0.3,0.5],

(8,15,23,31);[0.2,0.4]

 

Demand 
,

(10, 20, 28, 35);[0.7,0.9],

(4,12, 22.5, 29);[0.4,0.5]

(-1,7,12,19);[0.3,0.4],

 
,

,

6,12,23,33);[0.7,0.8]

(4,10,19,28);[0.4,0.5]

(2,8,15,24);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]

 
 

 

With the help of score function, the cost, demand and supply of NTP i.e. in IVTrNeNs are convert 

into the crisp numbers as follows: 
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= −
11

( ) 4.58333IVS c ,  = −
12

( ) 1IVS c , = −
13

( ) 0.11667IVS c , = −
1

( ) 0.33333IVaS , = −
21

( ) 0.31667IVS c , 

= −
22

( ) 0.16667IVS c , = −
23

( ) 0.333333IVcS ,  = −
2

( ) 2.50IVS a ,  = −
31

( ) 4.66667IVS c ,  = −
32

( ) 0.16667IVS c , 

= −
33

( ) 0.183333IVcS ,  

= −
3

( ) 8.83334IVaS ,  = −
1

( ) 0.58333IVbS ,  = −
2

( ) 4.66667IVbS , = −
3

( ) 8.0IVS b  

 

The unbalance TP with crisp values shown in table 2: 

Table 2 
1

M  
2

M  
3

M  Supply 

1
C  -4.58333 -1 -0.11667 -0.33333 

2
C  -0.31667 -0.16667 -0.33333 -2.50 

3
C  -4.66667 -0.16667 -0.18333 -8.83334 

Demand -0.58333 -4.66667 -8.0  

In table 2,  
=

= −
0

a 11.6667,
m

IV

i
i

 
=

=−
0

b 13.25
n

IV

j
j

, i.e. 
= =

− = 
0 0

b a 1.58300,
m n

IV IV

j i
i j

 this shows that NTP is 

unbalanced. The balance TP and  the solution of NTP in crisp form by excel solver shown in table 3 and 

table 4 respectively as follows: 

Table 3 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  -4.58333 -1 -0.11667 0 -0.33333 

2
C  -0.31667 -0.16667 -0.33333 0 -2.50 

3
C  -4.66667 -0.16667 -0.18333 0 -8.83334 

Demand -0.58333 -4.66667 -8.0 1.58300  

 

Table 4 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  1.91667 -3.83333 - 1.583 -0.33333 

2
C  -2.5 - - - -2.50 

3
C  - -0.83334 -8 - -8.83334 

Demand -0.58333 -4.66667 -8.0 1.58300  

 

The optimal solution of NTP in crisp form is = −2.55419.
CTP

Z  The solution of NTP with IVTrNeNs 

shown in table 5: 

Table 5 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  (-25,-5,14,27);[0.7,0.9],

(-24,-6,12.5,25);[0.3,0.5],

(-23,-7,4,18);[0.3,0.4]

 
− −

− −

− −

( 71, 14,49,104);[0.7,0.8]

( 62, 12,43.5,88);[0.3,0.5]

( 60, 11,27,74);[0.2,0.4]

 - (-70,-21,33,80);[0.6,0.8],

(-64,-24.5,24,69);[0.3,0.5],

(-58,-16,19,63);[0.2,0.4]

 
(9,19,28,34);[0.7,0.8],

(7,12,19,24);[0.4,0.5],

(3,8,11,16);[0.2,0.4]

 

2
C  ,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 - - - ,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 

3
C  - − −

− −

− −

( 19, 3,12,27);[0.7,0.9],

( 18, 5,9,25);[0.3,0.5],

( 19, 5,9,26);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]

 - (14,22,30,39);[0.6,0.8],

(12,18,25,34);[0.3,0.5],

(8,15,23,31);[0.2,0.4]

 

Demand 
,

(10, 20, 28, 35);[0.7,0.9],

(4,12, 22.5, 29);[0.4,0.5]

(-1,7,12,19);[0.3,0.4],

 
,

,

6,12,23,33);[0.7,0.8]

(4,10,19,28);[0.4,0.5]

(2,8,15,24);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]
 

(-70,-21,33,80);[0.6,0.8],

(-64,-24.5,24,69);[0.3,0.5],

(-58,-16,19,63);[0.2,0.4]
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= +

(7,12,21.5,28);[0.7,0.9], (-25,-5,14,27);[0.7,0.9], (7,11,15,19);[0.6,0.8]

(4,10,17.5,25);[0.4,0.5], . (-24,-6,12.5,25);[0.3,0.5], (5,8,12,15);[0.4,0.5]

(2,8,15.5,22);[0.3,0.4] (-23,-7,4,18);[0.3,0.4] (3
NTP

Z

− −

− −

− −

+

( 71, 14,49,104);[0.7,0.8]

. ( 62, 12,43.5,88);[0.3,0.5]

,5,7,11);[0.2,0.3] ( 60, 11,27,74);[0.2,0.4]

(-70,-21,33,80);[0.6,0.8], (0,0,0,0);[0.6,0.8],

(-64,-24.5,24,69);[0.3,0.5], . (0

(-58,-16,19,63);[0.2,0.4]

+

+

(5,11,16.5,21);[0.6,0.7], 8,14,25,35);[0.7,0.8],

,0,0,0);[0.3,0.5], (3,8,12,16);[0.3,0.5], . (4,10,18,28);[0.3,0.5],

(0,0,0,0);[0.2,0.4] (0,3,9.5,12);[0.2,0.4] (1,8,14,22);[0.3,0.4]

(4,8.5,14,17);[0.6,0.8],

(

− −

− − +

− − − −

( 19, 3,12,27);[0.7,0.9], (5,10,14,20);[0.7,0.9], (12,18,25,33);[0

2,6.5,11,15);[0.4,0.5], . ( 18, 5,9,25);[0.3,0.5], (3,8,9,15);[0.3,0.5], .

( 2,2,7,11);[0.2,0.3] ( 19, 5,9,26);[0.2,0.4] ( 1,5,7,12);[0.2,0.4]

.7,0.9],

(9,16,23,30);[0.4,0.5],

(5,14,20,27);[0.3,0.4]

  

i.e.   =  −

(-648,94.5,1966.5,4586);[0.6,0.9],

(-403,19.5,1262.75,3218);[0.3,0.5], 7.07292

(-193,-27,587,2084);[0.2,0.3]
NTP

Z  

 

Now we balance the unbalance CTP in table 2 by MRCM, the balance CTP with crisp numbers shown 

in table 6 as follows: 

Table 6 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  -4.58333 -1 -0.11667 -4.58333 -0.33333 

2
C  -0.31667 -0.16667 -0.33333 -0.33333 -2.50 

3
C  -4.66667 -0.16667 -0.18333 -4.66667 -8.83334 

4
C  -4.66667 -1 -0.33333 0 -11.6667 

Demand -0.58333 -4.66667 -8.0 -10.0834  

 

The solution of balance CTP as in table 7 

Table 7 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  10.75001 -4.66667 -8 1.5833 -0.33333 

2
C  -2.5 0 0 0 -2.50 

3
C  -8.83334 0 0 0 -8.83334 

4
C  0 0 0 -11.6667 -11.6667 

Demand -0.58333 -4.66667 -8.0 -10.0834  

 

The cost = −
( )

8.91364
CTP MRCM

Z .  

The solution of corresponding balanced NTP shown in table 8 as follows: 

Table 8 
1

M  
2

M  
3

M  
4

M  Supply 

1
C  (-64,-35,-8,13);[0.7,0.9],

(-48,-31,-5.5,13);[0.4,0.5],

(-54,-30,-11,10);[0.3,0.4]

 
,

,

6,12,23,33);[0.7,0.8]

(4,10,19,28);[0.4,0.5]

(2,8,15,24);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]

 
(-147,-49,61,157);[0.7,0.9],

(-127,-46.5,46,132);[0.4,0.5],

(-115,-33,36,120);[0.3,0.4]

 
(9,19,28,34);[0.7,0.8],

(7,12,19,24);[0.4,0.5],

(3,8,11,16);[0.2,0.4]

 

2
C  ,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 - - - ,

,

8,14,25,35);[0.7,0.8]

(4,10,18,28);[0.3,0.5]

(1,8,14,22);[0.3,0.4]

 

3
C  (14,22,30,39);[0.6,0.8],

(12,18,25,34);[0.3,0.5],

(8,15,23,31);[0.2,0.4]

 - - - (14,22,30,39);[0.6,0.8],

(12,18,25,34);[0.3,0.5],

(8,15,23,31);[0.2,0.4]

 

4
C  - - - (31,55,83,108);[0.6,0.8],

(23,40,62,86);[0.3,0.5],

(12,31,48,69);[0.2,0.4]

 
(31,55,83,108);[0.6,0.8],

(23,40,62,86);[0.3,0.5],

(12,31,48,69);[0.2,0.4]

 

Demand 
,

(10, 20, 28, 35);[0.7,0.9],

(4,12, 22.5, 29);[0.4,0.5]

(-1,7,12,19);[0.3,0.4],

 
,

,

6,12,23,33);[0.7,0.8]

(4,10,19,28);[0.4,0.5]

(2,8,15,24);[0.2,0.4]

 
(12,18, 25, 33);[0.7,0.9],

(9,16, 23, 30);[0.4,0.5],

(5,14, 20, 27);[0.3,0.4]

 
(-39, 34,116,188);[0.7,0.9],

(-41,15.5,86,155);[0.4,0.5],

(-46,15,67,132);[0.3,0.4]
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= +
( )

(-64,-35,-8,13);[0.7,0.9], (7,12,21.5,28);[0.7,0.9], 6,12,23,33);[0.7,0.8],

(-48,-31,-5.5,13);[0.4,0.5], . (4,10,17.5,25);[0.4,0.5], (4,10,19,28)

(-54,-30,-11,10);[0.3,0.4] (2,8,15.5,22);[0.3,0.4]
NTP MRCM

Z +

(7,11,15,19);[0.6,0.8] (12,18,25,33);[0.7,0.9], 5,10,14,19.5);[0.5,0.6],

;[0.4,0.5], . (5,8,12,15);[0.4,0.5] (9,16,23,30);[0.4,0.5], . (3,7.5,10

(2,8,15,24);[0.2,0.4] (3,5,7,11);[0.2,0.3] (5,14,20,27);[0.3,0.4]

+ +

,15);[0.4,0.6],

(1,4,7,10);[0.3,0.4]

(-147,-49,61,157);[0.7,0.9], (7,12,21.5,28);[0.7,0.9], 8,14

(-127,-46.5,46,132);[0.4,0.5], . (4,10,17.5,25);[0.4,0.5],

(-115,-33,36,120);[0.3,0.4] (2,8,15.5,22);[0.3,0.4]

+

,25,35);[0.7,0.8], (5,11,16.5,21);[0.6,0.7], (14,22,30,39);[0.6,0.8],

(4,10,18,28);[0.3,0.5], . (3,8,12,16);[0.3,0.5], (12,18,25,34);[0.3,0.5],

(1,8,14,22);[0.3,0.4] (0,3,9.5,12);[0.2,0.4] (8,15,23,31);[0.2,0

+

(6,14,21,28);[0.8,0.9],

. (4,11,18,25);[0.4,0.6],

.4] (2,8,15,22);[0.3,0.4]

(31,55,83,108);[0.6,0.8], (0,0,0,0);[0.6,0.8],

(23,40,62,86);[0.3,0.5], . (0,0,0,0);[0.3,0.5],

(12,31,48,69);[0.2,0.4] (0,0,0,0);[0.2,0.4]

 

=  −
( )

(-1230,-234,3221,7857.5);[0.6,0.9],

(-593,-297,1832.75,5793);[0.3,0.5], 13.810

(-311,-264,1110.5,4340);[0.2,0.3]
NTP MRCM

Z  

 

6. Comparative Study 

 

To maintain physical distance during Covid-19 pandemic, we introduced here some advanced 

version of neutrosophic numbers such as IVTrNeNs, which provides the better results in real life for 

uncertainty and hesitation in place of crisp numbers.  For practical application of NTP type-4, the 

minimum cost of unbalanced CTP and NTP obtained by VAM and MRCM is summarized in table 9. It 

is also clear from the table 9, that minimum cost of unbalanced CTP and NTP obtained by using MRCM 

is far better than the existing method VAM. In figure 4, the bar graph represents the minimum cost of 

CTP and NTP and their comparison for better one.  

 

  Table 9:  Comparative Study 

Balance of CTP by existing method  Balance of CTP by MRCM 

= −2.55419
CTP

Z   = −
( )

8.91364
CTP MRCM

Z  

Balance of NTP by existing method  Balance of NTP by MRCM 

=

(-648,94.5,1966.5,4586);[0.6,0.9],

(-403,19.5,1262.75,3218);[0.3,0.5],

(-193,-27,587,2084);[0.2,0.3]
NTP

Z

 −7.07292  

 

=
( )

(-1230,-234,3221,7857.5);[0.6,0.9],

(-593,-297,1832.75,5793);[0.3,0.5],

(-311,-264,1110.5,4340);[0.2,0.3]
NTP MRCM

Z  

 −13.810  

 

     
                                                            Figure 3: Comparison of results by chart 
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8.  Result and discussion  

 

In this present study the optimal transportation crisp cost and optimal transportation neutrosophic 

cost of unbalanced NTP using MRCM is minimum than the existing method in [30]. It is also verified 

that in de-neutrosophication, the crisp values before and after conversion from neutrosophic to crisp 

and crisp to neutrosophic  are different. For the real life applications one can find the degree of result.  

The best of minimum neutrosophic cost of unbalanced NTP is 

=
( )

(-1230,-234,3221,7857.5);[0.6,0.9],

(-593,-297,1832.75,5793);[0.3,0.5],

(-311,-264,1110.5,4340);[0.2,0.3]
NTP MRCM

Z   i.e. total minimum transportation cost lies between  -

1230 to 7857.5 in the interval [0.6, 0.9] for level of truthfulness, -593 to 5793 in the interval [0.3, 0.5]  for 

level of indeterminacy and -311 to 4340 in the interval [0.2, 0.3] for level of falsity. 100
IVaN

T
u , 100

IVaN

I
v , 

and 100
IVaN

F
w  represents the degree of truthfulness, degree of indeterminacy and degree of falsity 

respectively. Thus  

for -1230

for
( )

for 3221 7857.5

          x ,

                                         - x ,
x

      x ,

        

 +
  − 

− 

 
=

 −
  

− 

1230
[0.6,0.9], 234

1230 234

[0.6,0.9], 234 3221

7857.5
[0.6,0.9],

7857.5 3221

0,

IVaN

T

x

u
x

for otherwise.                                             











   

for - 593

for - 297 1832.75
( )

            x ,

                                                         x ,
x

  

− − + +
  −

−

 
=

− + −

−

( 297 ) ( 593)[0.3,0.5]
, 297

593 297
[0.3,0.5],

( 1832.75) (5793 )[0.3,0.5]
,

5793 1832.75

IVaN

I

x x

v
x x

for 1832.75

for otherwise.

   x ,

                                                                    






  




5793

0,

  

for - 311 -264

for - 264 1110.5
( )

for

          x ,

                                                       x ,
x

      

− − + +
 

−

 
=

− + −

−

( 264 ) ( 311)[0.2,0.3]
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where x denotes the total cost.  

Table 10 

Degree
→


x
 

-500 0 2000 3000 4000 5000  7000 

100
IVaN

T
u   

[43.976, 5.964] [60, 90] [60, 90] [60, 90] [49.919, 74.879] [36.978, 55.467] [11.097, 16.645] 

100
IVaN

I
v  

[78.007, 84.290] [30, 50] [32.969, 52.124] [50.632, 64.737] [68.307, 77.362] [85.983, 89.987] - 

100
IVaN

F
w  

- [20, 30] [42.034, 49.280] [66.806, 70.956] [91.577, 92.630] 

 

- - 
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Figure 3: Degree of truthfulness, indeterminacy and falsity 

 

The total neutrosophic cost from the range of -1230 to 7857.5 for truthfulness, -593 to 5793 for 

indeterminacy and -311to 4340 for falsity  are concluded by degree of truthfulness, degree of 

indeterminacy and degree of falsity to schedule the transportation cost and budget allocation.  

 

9. Conclusions and Novelty 

 

Today in society, the concept of neutrosophic numbers is well linked to handling uncertainty or 

vagueness in applied mathematical modeling. The current research paper is the study of unbalanced 

CTP & NTP by introducing a new balancing approach MRCM to obtain an optimal solution where all 

parameters and values of TP are as IVTrNeNs. The proposed ranking function provides a more 

practical structure and considers the various characteristics of TP in a neutrosophic environment. Such 

a type of transportation problem with  IVTrNeNs and their comparison between the two methods are 

not introduced earlier, and we hope that in the future, the proposed MRCM will be more applicable to 

the multilevel programming problem, unbalanced multi-attribute transportation problem, and multi-

level assignment problems. The existing analysis will be a landmark for TP’s with generalization by 

considering the pick value of truth, indeterminacy, and falsity functions and for schedule 

transportation cost and budget allocation for the total neutrosophic cost, that concluded by a degree of 

truthfulness, degree of indeterminacy, and degree of falsity. 
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