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Abstract: The quadripartitioned neutrosophic set is the partition of indeterminacy function of the
neutrosophic set into contradiction part and ignorance part. In this work, the concept of
quadripartitioned neutrosophic graph structures and its properties are invented. The strong, tree,
¢ — permutation and ¢ — complement of quadripartitioned neutrosophic graph structure are
investigated. The operations like Cartesian Product, cross product, lexicographic product, composition in
graph structures and join operations are established.
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1. Introduction

The intuitionistic fuzzy sets represent a novel component in the fuzzy sets, namely a
non-membership function. However, some limits only allow for the storage of incomplete data when
interpreting the degree of true and false membership functions, but the handling of indeterminate data is
still possible. Can we look at an example where ten patients are being tested for a pandemic? Three
patients will have a positive result, five will have a negative result, and two will be uncertain or have yet
to be determined throughout that period. It can be stated as x(0.3,0.2,0.5) using neutrosophic notions.
Using the neutrosophic set, one can classify the environment as cold as truth, moderate as indeterminacy,
and hot as false for a clear comprehension. As a result, the neutrosophic field emerges to hold the
indeterminacy data. From a philosophical standpoint, it generalises the aforementioned sets. The
single-valued neutrosophic set is a generalisation of intuitionistic fuzzy sets that can be utilised to solve
real-world problems, particularly in decision support. The sum of the three components of belief in that
element (truth), disbelief in that element (falsehood), and the indeterminacy part of that element is strictly
less than 1. Smarandache [36, 38] and references therein propose neutrosophic sets as the foundation of
neutrosophic logic, a multiple value logic that generalises fuzzy logic and deals with paradoxes,
contradictions, antitheses, and antinomies.

In the situation of neutrosophic sets, indeterminacy is considered as a distinct concept, and each
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component is defined by a truth-membership function, an indeterminacy membership
function, and a falsity-membership function, all of which are obtained from the non-standard

unit interval ]07,1*[. Ignoring the fact that neutrosophic indeterminacy is independent of truth and
falsity-membership values, it is more general than the hesitation margin of intuitionistic fuzzy sets. It is
unclear whether the indeterminacy values relevant to a specific element correspond to hesitant values
about its belonging or non-belonging to it. As a result, some authors prefer to model the indeterminacy’s
behaviour in the same way they similar to truth-membership, others may prefer to model it in the same
way they similar to falsity-membership. Wang et al. [43] initiated the concept of a single valued
neutrosophic set and provide its various properties. It has been widely applied in various fields, such as
information fusion in which data are combined from different sensors [10], control theory [1], image
processing [12], medical diagnosis [42], decision making [41], and graph theory [4, 8, 15-18, 25, 35], etc.
When the indeterminacy portion of the netrosophic set is divided into two parts, we get four components:
‘Contradiction’ (both true and false) and ‘Unknown’ (neither true nor false), that is T,C,U and F which
defines a new set called ‘quadripartitioned single valued neutrosophic set’, introduced by Chatterjee., et
al. [11]. This study is completely based on “Belnap’s four valued logic" [9] and Smarandache’s “Four
Numerical valued neutrosophic logic" [39]. By employing the concept of Quadripartitioned neutrosophic
set, this paper presents the quadripartitioned neutrosophic graphs structure. Operations on single-valued
neutrosophic graph structures are studied in [2, 6]. Motivated by the above mentioned works, to the best
of authors’ knowledge, there is no work reported on the concepts of quadripartioned single valued
neutrosophic graphs with application. The major contributions in this work are foregrounded as follows:

1. The notions of Quadripartitioned Neutrosophic Graph Structure (QNGS) and its
properties are introduced.

2. Inaddition, the complete, strong and complement of QNGS are defined.

3. Furthermore, the ¢ —permutation and ¢ —complement of QNGS are investigated. The
proposed concepts are illustrated with examples.

4. The operations like Cartesian Product, cross product, lexicographic product, composition
in graph structures and join operations are established.

2. Preliminaries

Definition 2.1 A graph structure ® = (P, R, R,,..R,) consists of a non-empty set V together with relation
R, R, ..., Ry on P which are mutually disjoint such that each R;, 1 < i < n, is symmetric and irreflexive.

Definition 2.2 A neutrosophic set N on a universal set P is an object of the form
N ={@,Ix®).3n®@).InP):p €P)} , where Ty, Ty, Fy:P - 107,1°[ and 07 <
T (@) 3n (@), Ex () < 3.

Definition 2.3 A single valued neutrosophic set N on a universal set P is an object of the form
N ={@:ETx®).3In@). Fx®):p €P)} where Tovs Ipe» Far: P = [0,1] and 0=
Tn @), 3In (@), Ex(p) < 3.

Definition 2.4 [3] A neutrosophic graph is defined as a pair G* = (V, E) where
(i) V = {vy,v3,.., v} such that T,:V - [0,1], 9,:V - [0,1] and F,:V — [0,1] denote the degree of
truth-membership function, indeterminacy function and falsity-membership function, respectively and
0T (WM+I,w)+F,w)<3, V vel.
(ii) E €V xV where J3:E = [0,1], J5: E = [0,1] and Fp: E - [0,1] are such that

Tp(uv) < min{T, (w), Ty (v)},

Ip(uv) < minfly(w), L(V)},

Fp(uv) < max{F,(w), F,(v)},

Yu,v eV.
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For more details about the following definitions and results, see the article [11].

Definition 2.5 Let X be a non-empty set. A quadripartitioned neutrosopohic set (QSVNS) A over R
characterizes each elements x in X by a truth membership function T, a contradiction membership function C,,
an ignorance membership function U, and a false membership function F.4 such that for each x €
RT4CaUgFru€el01] and 0 ST (r) +Crq(r) +Uy(r) + Fu(r) < 4.
Remark 2.6 A QSVNS U, can be decomposed to yields two SVNS say, U, and U where the respective
membership functions of both these sets are defined as

Ty, (r) = Ty (r) = Ty, (r)

T, (r) = Cu(1), Jou, () = Uy (r)

Tmt(r) = Fy(r) = Tglf(r), Vr € R.

In this respect to needs to be stated that while performing set-theoretic operations over these SVNS,

behavior of Jy, is treated similar to that of Ty, while the behavior of Ty ; is modeled in a way similar to
that of Fy "

Definition 2.7 A QSVNS is said to be an absolute QSVNS, denoted by ¥, if its is membership values are
respectively defined as Ty(r) =1, Cy(r) =1, Uy(r) = 0 and Fy(r) = 0.

Definition 2.8 Consider two QSVNS U and B, over R. W is said to be contained in B, denoted by A € B if,
and only, if Ty (r) < Ig(r), Cy(r) < Cu(r), Uy(r) = Ug(r) and Fy(r) = Fg(r).

Definition 2.9 The complement of a QSVNS U, is denoted by U° and is defined as
A = Fisy (Fu(r), Un(r), Cu(ri), Tu(r)),  Vri €R.
ie. Tye(r) = Fyu(r), Cye(ry) = Uy(r)
Uye(r;) = Cy(ry), Foe(r) = Tu(r), Vi € R.

Definition 2.10 The union of two QSVNS U and B is denoted by W U B and is defined as
AU B =YL, (Tu(r) VIp(1y), Culry) V Cy(1y)
Uy(r;) AUg(ry), Fu(r) A Fg(ri))/R.

Definition 2.11 The intersection of two QSVNS U and B is denoted by U N B and is defined as
ANB =YLy (Tu(r) ATg(ry), Cu(ry) A Cy(ry)
Uy(ry) V Ug(ry), Fu(r) V Fg(r))/R

3. Quadripartitioned Neutrosophic Graph structure

Definition 3.1 Let R be a non-empty set and Eq,E,, ..., E, relationon R. ® = (U,B,,B,,...,B,) is called a
quadripartioned neutrosophic graph structure if
U = {n, T;(1), C;(D), U (D), Fy(D):n € R}
is a quadripartitioned neutrosophic set on R and
B; = {(k, D), T(k, 1), 1(k, D), U(k, 1), F(k,1):n € E;}
is a quadripartitioned neutrosophic set on E; such that
T;(k,1) < min{T(k), T(D)},
C;(k, 1) < min{C(k), C(D)},
U;(k, 1) < max{U(k), U(D)},
F;(k, 1) < max{F(k), F(1)},
vm,n € R.
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0<T;(k, 1)+ C;(k, 1)+ U;(k, 1) + Fi(k,]) < 4. forall (k,I)€E,
where R and E; (i = 1,2,...,n) are underlying vertex and underlying i-edge sets of G,
respectively.

Example 3.2 Let " = (R, Eq, E,) be a graph structure ® = {q4, 92, 93,9495, 95,96}, E1 =

{9196, 9293, 9394, 9495}, E2 = {4192, 9596, 9496, 9193} Now we can define quadripartitioned neutrosophic sets
A B,,B, on R, E,, E, respectively,
Let A ={(gy,0.3,0.7,0.7,0.4), (¢, 0.4,0.7,0.6,0.6), (3, 0.4,0.4,0.3,0.2)
(94,0.5,0.6,0.7,0.4), (¢s, 0.3,0.4,0.7,0.8), (¢,, 0.4,0.3,0.4,0.3)}
%1 =
{(4196,0.2,0.1,0.4,0.3), (¢29s, 0.3,0.4,0.5,0.5), (¢34, 0.3,0.3,0.5,0.1), (¢4 qs, 0.3,0.4,0.7,0.4)}
%2 =
(195, 0.3,0.2,0.6,0.3), (¢sqs, 0.2,0.3,0.3,0.2), (¢4qs, 0.3,0.,0.6,0.2), (¢1qs, 0.2,0.2,0.2,0.2)}
By direct calculation, it is easy to show that ® = (U, B;,B,) is a QNGS of &* is shown in figure 1

(0.5.0.6.0.7.0.4) (0.4.0.4.03.02
qs B, (03.03,0501)  4s
— By B B,
= a1 (0.3.0.4.0.5.0.5)
= b
S &
— =
= <gs 2,0.2,02.0.2 =
NG B, | (0.3.02.0.6.0) N R N
S, 2 =
31 C‘:\
: .
S
0.2.0.3.0.3.0.2
(0203.03.09 B, (02.03.0.1.04) ,(0.3,02,0.6.0.3)
ds g1
(04.03.04.0.3) (03.0.7.0.7.0.4)

Figure 1: QUADRIPARTITIONED NEUTROSOPHIC GRAPH STRUCTURE

Definition 3.3 Let ® = (U, B,,B,,..,B,) bea QNGS of 6. If H = (A, B, B3, ..., By) is a QNGS of G*
such that

() < T, C ) <C),U M =u),F @) =FU)
forall n € R,
Ti(k, 1) < T;(k, 1), Ci(k, 1) < Ci(k, 1), Ui(k, 1) = U (k, 1), Fi(k, 1) = F;(k, 1)
for all m,n € E;, where i =1,2,...,n. Then H is called a quadripartitioned neutrosophic subgraph
structure of QNGS G.

Example 3.4 Consider a graph structure & = (R, Ey, E;) and let (U, B,,B,) be quadripartitioned neutrosophic
subsets of (R, Eq, E,) respectively, such that

A = {(n,,0.8,0.6,0.5,0.4), (n,,0.7,0.6,0.5,0.4), (ns, 0.6,0.8,0.4,0.4), (n,, 0.5,0.5,0.3,0.4)}

B, = {(n11n,0.6,0.5,0.4,0.3), (n,n,,0.3,0.3,0.4,0.3)},
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B, = {(nsn,, 0,4,0.3,0.3,0.3), (nyny,0.4,0.4,0.5,0.3)}
Direct calculations show that ® = (%, 8,,B,) isa QNGS of 6" as presented in Figure 3.

(0.7.0.6.0.5.0.4) (0.6.0.8,0.4,0.4)
1y .

B1(03.03.04.03)

81 |(0.6.0.5.0.4.0.3) 3, | 04030303

B,(04040503)

ny My

(0.8.06.05.04) (0.5.0.5.03.0.4)

Figure 2: QUADRIPARTITIONED NEUTROSOPHIC GRAPH STRUCTURE

(0.6,0.5,0.6,0.6) (0.5,0.5,0.5,0.5)
M, "y

B (0.2.02.0.02)

B1 1(05.04.05.04) 2. | ©3020404

B,(03.03.0604)

n Mg

(0.6.0.5.06.0.5) 04.04.0403)

Figure 3: QUADRIPARTITIONED NEUTROSOPHIC SUBGRAPH STRUCTURE

Definition 3.5 A QNGS H = (W', B, B3,...,By,) is called an induced subgraph structure of ® by a subset R of
X if

T'(D) = T),C'() =C),U'(H) =Uu),F' ) =FQ1)
forall n € E,
Ti(k, ) = Ti(k, 1), Ci(k, 1) = C;(k, ), Ui (k, 1) = Uy (k, 1), Fi(k, 1) = Fi(k, 1)
for all m,n € E;, where i = 1,2,...,n.

Definition 3.6 A QNGS H = (', B, By, ..., By) is said to be a spanning subgraph structure of ® when A =
A and

Ti(k, D) < Ti(k, 1), Ci(k, 1) < Ci(k, D), Ui (k, 1) = U (k, 1), Fi(k, 1) = Fi(k, 1)
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i=1.2,...,n

Definition 3.7 Let ® = (U, B, B,,...,B,) bean QNGS of &*. Then kl € E; is called B; edge if T;(k,1) >0
or C;(k,1) >0 or U;(k,I) > 0 or F;(k,1) > 0 all the four conditions hold. Consequently, support of B; is
defined as:

supp(B;) = {kl € B;: T;(k,1) > 0} U {kl € B;:C;(k,1) > 03U {kl € B;:U;(k,1) >0} U {kl €
B;:Fi(k, 1) >0},i=12,...,n

Definition 3.9 B; —path in a QNGS 6 = (U, B,,B,,...,B,) is a sequence of different nodes ny,n,,..., Ny,
(except choice that n,, = ny) in X, such that n;_in; is a quadripartitioned neutrosophic B;-edge, for all j =
2,..,m.

Definition 3.10 A QNGS 6 = (U, B, B,,...,B,,) is called B;- strong for some i € {1,2,3,...n} if

T;(k, 1) = min{T(k), T(1)},
Ci(k, 1) = min{C(k), C(D)},
U;(k, 1) = max{U(k),U(D)},and
F;(k, 1) = max{F(k), F(D)}, Ymn € supp(B;).
Further, QNGS © is said to be strong if it is 8B;- strong for all i € {1,2,...,n.}

Definition 3.11 A QNGS 6 = (U,B,,B,,..,B,,) is said to be complete if ® is a strong QNGS, supp(B;) # ¢
forall i =1,2,...,n and for all pair of nodes k,l € X, kl is a B; edge for some i.

Definition 3.12 Let & = (U, B, B,, .., B,) be a QNGS. Now truth strength, contradiction strength, ignorance
strength and false strength of a B;-path Py, = ny,n,,..., Ny, are denoted by T. Py, C. Py, U. Py, and F.Pg,
respectively, and defined as
m
T.Pg, =4, [Tg, (17j-11))],
™ P
C. Py, =4, [Cg, (nj-1m)],
m
U. P%i :]\=/2 [U%i(nj—lnj)]i

m
F.Pg, =Y, [Fg, (n—11))]-

Definition 3.13 Suppose ® = (U, B4,B,,..,B,,) isa QNGS. Then
1. B;- truth strength of connectedness between m and n is defined as: Tg, (kl) =

v (T}, (kD)} such that TS (kl) = (T4 ' o T4 )(kl) for j = 2 and
j= i i i 13
T3, (kD) = (T}, © Th ) (kD) =V (T}, (mz) A Th, (zn)).
2. 8;- contradiction strength of connectedness between m and n is defined as: Cg, (kl) =
v (€S, (kD)} such that €} (kl) = (C, o €& )(kl) for j =2 and
j= 13 14 L L
€, (k1) = (Ch, © Ch) (kL) =V, (Ch,(m2) A T}, (zn).
3. B;- ignorance strength of connectedness between m and n is defined as: Ug, (kl) =
y (UL (kD)} such that U} (kl) = (Uy o UL )(kl) for j =2 and
j= 13 i L L
U3, (kD) = (U, o Uk ) (kD) =A (U}, (mz) v U, (zn)).
4. 9B;- false strength of connectedness between m and n is defined as: Fg, (kl) =
y {FJ, (k1)} such that F} (kl) = (Fy o Fy )(kl) for j =2 and
j=z 13 14 15 L
F, (kD) = (F, o Fy,) (kL) =A (Fh,(m2) v F, (2n).
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Definition 3.14 A QNGS 6 = (U,8,,8,,...,B,) isa B;-cycle if
(supp (), supp(B,), supp(B,), ..., supp(B,,))isaB; — cycle.

Definition 3.15 A QNGS 6 = (U,B,,B,,...,B,) is a B;-cycle (for some i) if © is a B;-cycle, no unique
B;-edge kl belongs to 1 ® with

Tg, (kD) = min{Tg, (rs):rs € E; = supp(B;)},

Cg, (k1) = min{Cg, (rs):7s € E; = supp(B,)},

Up, (k1) = max{Cg,(rs):rs € E; = supp(B,)},

Fg,(kl) = max{Fg, (rs):7rs € E; = supp(B;)}.

Definition 3.16 Let & = (U, B,,B,,...,B,) be a QNGS and q be a node in ®. Let (U, B, B,,...,By,) be a
QNGS induced by X\{q} such that, forall m # q, o # q,

Ty (q) =Cu(q) =0=Uy(q) =Fy(q),
TB{ (gm) = (CB{ (gm) =0 = UB{ (gm) = [FBir(qm),V edges gme®

T, (m) = T,(m), Cyr(m) = Cy(m), Uy (m) = Uy(m), Fyr(m) = Fy(m),
TB{ (mo) = ']I‘Bi(mo),(CBlg(mo) = Cg,(mo), IUBir(mo) = Ug, (mo), IFBir(mo) = Fp,(mo).

Now ¢ is quadripartitioned neutrosophic B; cut vertex for some i if

Tg, (mo) > Ty (mo), Cg, (mo) > Cpr(mo), Uy, (mo) > Uy (mo), Fy, (mo) > Fyr(mo)

for some m, o0 € X'\{q}. Note that q isa

* B;- T quadripartitioned neutrosophic cut node if Ty, (mo) > T (mo).

* B;- C quadripartitioned neutrosophic cut node if Cg (mo) > C,r(mo).

* B;- U quadripartitioned neutrosophic cut node if Ug (mo) > U, (mo).

* B;- F quadripartitioned neutrosophic cut node if Fg (mo) > F,s(mo).
Definition 3.17 Suppose ® = (U, B,,B,,...,B,) be a QNGS and kl be B;-edge. Let (A, By, Bs,...,By) be a
quadripartitioned neutrosophic graph spanning subgraph structure of ® with for all lines kl # rs,

Ty (kD) = (CB{(kl) =0= [Usi’(kl) = [FB{(kl)'

TB{ (rs) = Tg,(rs), CB{(rs) = CBi(rS),[UB{ (rs) = Ug,(rs), FB{(TS) = Fp,(rs).
Then ki is quadripartitioned neutrosophic B;-bridge if

Tg,(mo) > Ty (mo), Cg, (mo) > Cp(mo), Uy (mo) > Uy (vw), Fg, (mo) > Fy (mo)
for some m,o0 € X. Note kl isa
* B;- T quadripartitioned neutrosophic bridge if Tg, (mo) > T}/ (mo).
* B;- C quadripartitioned neutrosophic bridge if Cg (mo) > C.r(mo).

* B;- U quadripartitioned neutrosophic bridge if Ug (mo) > Uz (mo).

* B;- F quadripartitioned neutrosophic bridge if Fg, (mo) > F,r(mo).
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Definition 3.18 A QNGS & = (U, B,,B,,...,8,) isa B; tree if

(supp (A), supp (By), supp (By, ..., supp(B,))
is a B;-tree. In otherwords, ® is a B;-tree provided a subgraph of ® induced by supp(8;) produces a

tree.

Definition 3.19 A QNGS 6 = (U,B,,8,,...,B,) isa B;- tree if ® has a quadripartitioned neutrosophic
spanning subgraph structure H = (A, By, By, ..., By,) with for every B;-edges kl not belongs to I, H is a B;-
tree,
Tg, (k1) < Ty (kD), Cg, (k) < € (kD), Ug, (kD) > Uy (kD), Fg (k1) > Fpi (kD)
In particular, ® is a:
* B;- T quadripartitioned neutrosophic tree if T, (kl) < ']I‘;'} (kD).

B;- C quadripartitioned neutrosophic tree if Cg,(kl) < (C;'} (kD).

B;- U quadripartitioned neutrosophic tree if U, (kl) > Ug} (kD).

B;- F quadripartitioned neutrosophic bridge if Fg, (kl) > ]F;'} (kD).

Definition 3.20 A QNGS 6, = (U, B11,B1z,...,Biy) of the graph structure ©] = (Ry, Eqq, Eqp,..., Eqy) is
isomorphic to QNGS ©, = (Uy, B,1,Byz, ..., Byy) of graph structure ®; = (Ry, Eyq, Eygy, ..., Epy) if f1 Ry =
R, is a bijection and the conditions below are fulfilled:
Ty, (k) = Ta, (f (k)), Ca, (k) = Cpu, (f (k)), Ug, (k) = Uy, (f (k)), Fy, (k) = Fu, (f (k)),
forall m € R; and
Ty, (k1) = Tp,, , (FROF (D), Co (kD) = s, (FOOF D),
Up, (kD) = Up,, o (FOF (D), Fp, (kD) = By, (FRIFD),
forall kl € E;; and i =1,2,..,n.

Definition 3.21 A QNGS 6, = (U, B11, B1s, .., Biy) of the graph structure ®] = (Ry, Eq4, Eqy, ..., Eqy) is
identical to QNGS ®, = (U3, B34, Byy, ..., Bay) of graph structure ©5 = (Ry, Eyq, Epy, ..., Exp) if f1 R = R,
is a bijection and the conditions below are fulfilled:
Ty, (k) = Ta, (f (k)), Ca, (k) = Cp, (f (k)), Ug, (k) = Uy, (f (K)), Fa, (k) = Fy, (f (K)),
forall m € R; and
Tp,, (kD) = Tp,,(f (k) f (1)), Cp,, (kD) = Cp, (f (K)F (D),
Ug, (kD) = Ug,, (f () f (D), Fp,, (kD) = Fp,, (f () (D),
forall kl € E;; and i =1,2,..,n.

Definition 3.22 Let ®; = (Uy,B11,B1s,...,Biy) bea QNGS and ¢ —permutation on By, B,,.., B, and on
{1,2,...,n} defined by ¢(B;) = B; if and only if ¢p(i) =j for every i. If kl € B; for some i and

Ty (kD) = Ty (k) A Ta(D) = ¥, Ty (kD)

[U%? (kl) = Uy (k) v Uy (D) _ji\l Ugm)) (kD)
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IF‘IB? (kD) = Fy(k) v Fy (D) —j;\l FompkD),i=12,...,n,
then kl € %,‘f, where k is selected such that

T]Bf (k) = ']I‘SB? (kD),

(C&rsf (kD) = (Csaf’(kl)'

[USB? (kD) = [USB? (kD),

IFSB% (kD) = ]F%?(kl).

then quadripartitined neutrosophic graph structure (¥, %d’,%f,...,%i}) is called ¢- complement of ®
and dentoted by ®%¢

Proposition 3.23 ¢-complement of a QNGS ® = (U, By, B,,...,B,,) is always a strong QNGS. Further, if
¢ (@) =k, where i,k € {1,2,...,n} then for all By-edges in quadripartitioned neutrosophic graphic structure
(U, B,,B,,...,B,) become SB?—edges in (914’,584’,23(2’5,...,58;?).

Proof. We know that,
T%f’ (kl) = Ty(k) A Ty(l) N Ty ;) kD),
(C%qu (kD) = Cy (k) A Cy(D) —j\ii (C¢(1Bj)(kl)»
[U%;h (kD) = Uy (k) v Uy (D) _j/;}l. Ug s kD),
IFSB? (kD) = Fy(k) Vv Fy (D) —j/;i IF¢(]Bj)(kl)»
for i€12,...,n. Due to the expression of truthness in ¢ -complement, Ty(k) A Ty(l) =0,
Y Ty (kD) 2 0 and Tg, (k1) < Ta(k) A Tu(), for all B, now v Ty (kD) < Tu(k) A Ta()

which implies that

Ty (k) A Ty () —]_\ii Tom) (kD) 2 0
Hence, T%?(kl) > 0 for every i. Further, T%?(kl) attains its maximum provided V;; 11"¢(Bj)(kl) >0 is
zero. Clearly, when ¢(B;) = By and kl isa By-edge then V;; T(p(maj) (kl) gets zero value. So
Ty (k) = Ty (k) A Ty (), for some (ki) € By, ¢(B;) = By

Similarly, we have
Cyo (k1) = Cy(k) A Cy(1), for some (kI) € By, ¢(B;) = By

Uge (k) = Cy(k) v Uy (D), for some (kl) € By, ¢(B;) = By
Fgo (k) = Fy(k) V Fy(1), for some (ki) € By, ¢(B;) = By.

Likewise, the expression of falsity in ¢- complement:

J#i
Then
j;\l Fow; (kD) < Fy(k) v Fy (D)
yields,
Fo (k) V Fy (1) _j/i\i Fow kD) = 0
Therefore, T o (kl) is non-negative for all i. Morevoer, Ty (kl) reaches its maximum when

j/i\i IF¢(%j)(kl) becomes zero. It is clear that when ¢(B;) = By and kl is a B, edge then Aj,; IF¢(%1.)(kl)

gets zero value. So
F%¢(kl) =Fy(k) VFy() for (kl) € By, ¢(Bi) =B,
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Definition 3.24 Let ® = (U, B, B,,...,B,) bea QNGS and ¢ be a permutation on {1,2,...,n} then
e If 6 isisomorphic to 6%, then G is called self-complementary.
e If ® isidentical to G%¢, then G is called strong-self-complementary.

Definition 3.25 Suppose © = (U, By, B,, ..., B,) be a QNGS. Then

e If ® isisomorphic to ®%¢, for all permutation ¢ on {1,2,...,n}, then © is totally self
complementary.

e If ® isidentical to G?¢, for all permutation ¢ on {1,2,...,n}, then ® is totally strong self
complementary.

Remark 3.26 All strong QNGSs are self complementary or totally self-complementary QNGSs.
Theorem 3.27A QNGSs is totally self-complementary if and only if it is strong QNGS.

Proof. Consider a strong QNGS ® and permutation ¢ on {1,2,...,n}. In the view of Proposition 3.22, ¢-
complement of a QNGS ® = (U, B;,B,,...,B,,) is always a strong QNGS. Moreover, if ¢ (i) =k, here
i,ke{12,...,n}, then every B, lines in QNGSs (U,B;,B,,...,B,) becomes 23? -edges in
u?, 8%, 82,...,89). It yields

T, (k1) = Ty (k) ATy (D) = ’JI‘%? (kD

Ca (kD) = Cu(k) A Cu(1) = Cypp (k1)
Usy (kD) = Uy () V U (1) = Uy (kD)

Fg, (kD) = Fy(k) v Fy(D) = IFSB?(kl)
Thus, in identity mapping f: X - X, ® and G? are isomorphic with
Ty (k) = Tu(f (k)), Cu(k) = Cu(f (k)
Uy (k) = Uy (f (k)), Fu(k) = Fo(f (k)),
Ty, (k) = Tgo (F (F (1)) = Tgg (kD), Cs, (kD) = Cpo (f (K)f (D)) = Cygo (KD,
Ussy (kD) = Ugo (f (k) (D) = Uy (kD), Fag, (k) = Fogo (f (I (D)) = Fypor (kD)
forall kle &, ¢ (k) =i and k =1,,...,n. It holds for all permutation ¢ on {1,2,...,n}. Thus,
® is totally self-complementary QNGS. Conversely, suppose for all permutation ¢ on {1,2,..,n} ® is
isomorphic to 6?. Then according to the definition of isomorphism of QNGSs and ¢ -complement of
QNGS,
Ty, (kD) = Tye (f (OF (D) = Tu(f (k) A Tu(f (D) = Ta(k) A To(D)
Cyy, (kD) = Cyo (F(IF (D) = Cu(F (k)) A Cu(f (D) = Cu(k) A Co(D)
Us, (kD) = Uge (f () f (D) = U (f (k) V U (f (D)) = U (k) v Uy (D)
Fyg, (k) = Fygo (f (O f (D) = Fa(f (k) V Fu(f (D) = Far(l) V For (D).
forall kl € § and k = 1,2,..,n. Hence, ® is strong QNGS.

Remark 3.28 All self-complementary QNGS is totally self-complementary.
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Theorem3.39If 6" = (X,&,,E,,..., &) is totally strong self-complementary QNGS and A = (Ty, Cy, Uy, Fyr) is
a quadripartitioned neutrosophic subset of X here Ty, Cy, Uy, Fy are constant value functions, then a strong
QNGS of 6" with quadripartitioned neutrosophic node set U is always a totally strong self-complementary
QNGS.

Proof. Let the four constants be p,q,7,s € [0,1], such that Ty (k) =p Cy(k) = q, Uy(k) =1, Fy(k) =s for
all m € X. Because ®" is totally self-complementary strong QNGS, hence there exists a bijection f: X —
X for permutation ¢! on {1,2,...,n}, with for any E,- edge (k), (f(k)f(})) [an E;-line in G*]is an E,
line in &*¢"¢. Thus, for all By- edge (kD), (f(k)f (D)) [an B;-edgein G]isa EB?— edge in ®*¢”'<. Further,
® is strong QNGS. Hence

Ty (k) =p = Tu(f (k)), Cu(k) = g = Cy(f (k)),

Uy(k) =1 = Uy(f (K)), Fy(k) = s = Fy(f (k)), Ym € X,

Ty, (kD) = Tu(k) A Ty (D) = Tu(F () A Tu(F (D) = Tye (f ()F (1))
Cys,, (k) = Cu(l) A Coe(D) = Ty (F (1)) A Cu(f (D) = Cygo (F (RS (D)
Uss, (kD) = Uy () V Uu (D) = Uu(f (k) V Uu (F (D) = Ugg (f ()F (D)
Fe, (kD) = Fu(k) V Fy () = Fy(f (k) V Fu(f (D)) = Fyo (f (k) (D).
for every kl€E; and i=12,...n. This leads to ® is self (;omplementary strong QNGS. All

permutation ¢ and ¢~ on {1,2,..,n} fulfils the above arguments, hence ® is totally strong
self-complementary QNGS. Converse of the theorem may not be true.

Definition 3.40 Let ®,; = (Qq, Qq1, Rz, ---- Qupy and Gy = (Qy, Va1, Qazs -+ .- Qapy be QNGS. The Cartesian
product of ®; and ®, denoted by
On1 X Opz = (R X Qz, Q1 X Qa1, Quz X Qaz, -+, Qip X Qo)
is defined by the following;:
(1) Taixgz(rs) = (Tgy X Tgy)(rs) = Taq(r) A Taz(s).
Coixgz(rs) = (Cgy X Cqp)(rs) = Cqy (1) A Caa(s).
Ugixgz(rs) = (Ugy X Ugy)(rs) = Ugy (1) V Ug, (s).
Faixgz(rs) = (Fa1 X Fg,)(rs) = Fa1(r) V Fg,(s).
Vrs € §; X S,.

@) ']]'(Qlixgzi)(rsl)(rsz) = (TDH X ']]"in)(rsl)(rsz) = To1 (1) A Tgzi(5152)
(C(Qlixnzi)(rsﬂ(rsz) = (lei X ngi)(rsl)(rsz) = Co1 (1) A Coz2i(5152)
[U(Qlixnzi)(rsﬂ(rsz) = ([Umu- X [ngi)(rsl)(rsz) = Uy () V Ugzi(s5152)
F(DlixDzi)(rsl)(rSZ) = ([Fnli X [F‘in)(rsl)(rsz) =Fo1(r) V Fozi(5152)

Vr € 51,5152 € Sy,

(@) Tig,xe,)(M15)(r2s) = (Tg,; X Tq,,)(r15)(r2s) = Tea(s) A To1i(r172)
Clayx,p (115)(128) = (Cg,; X Cq,, ) (115)(r25) = Ca(s) A Cgy;(1172)

Ui, x0,) (115)(125) = (Ug,; X Ug,,)(115)(125) = Ugz(s) V Upq;(1172)
Fla,x,y (115)(125) = (Fg,; X Fg,,)(115)(125) = Fa(s) V Fo1:(r172)

Vs € S,, 11y € Sy;.

Theorem 3.41 The Cartesian product Gy X 6,5 = (Q1 X Qz, Qq1 X Qu1, Qa2 X Quz, -+, Qip X Qyy) of two
QNGS of the GS ®, and ®, isa QNGs of 61 X G,.
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Proof. According to the definition of Cartesian product there are two cases:
Casel: when r € S;, 1, € S,;

T (@, ix2,) (S1)(1S2) = Ty (1) A Tp2i(51S2)
< To1() A[Toa(s1) A Tgz(sz)]
= [To1 (1) A Toz(s1)] A [To1(r) A Toz(s2)]
= T(Q1XQ2) (TSl) A T(Q1XQ2) (rSZ)'

Clayx0,) (51)(1s2) = Co1 (1) A Czi(5152)
< Co1 (1) A [Coz(s1) A Cga(s2)]

= [Co1(r) A Coz(s1)] A [Co1 () A Cpa(s2)]
= C01x02)(151) A Cgyx,) (1S2)-

Uig,ix0,) (rs1)(1sz) = Ugq () V Ugyi(s152)
S Ugi (M) V [Foza(s1) V Ugz(s2)]

= [Ug1(r) V Uga(s1)] V [Ug1 (1) V U, (s2)]
= Ug,x02) (r51) V U(gy xqy) (rS2)-

Flo,ix0,)(rs1)(rs2) = Fo1(r) V Fgai(5152)
< Fo1(r) V [Fa(s1) V Foa(s2)]
= [F1(r) V Fa(s1)] V [Fo1 () V Fga(s2)]
= Fg,x0,) (151) V Fg,x0,) (rS2)-
for rs,,rs, €S; X S,.
Case 2: when r € S,,s;5, € 5y;

T, x0,) (517)(S21) = T2 (1) A Tg1;(1172)
< T2 (1) A [To1(51) A Toz(s2)]
= [To2(r) ATo1(s1)] A [Tz (r) A Toi(s2)]
= T(0,x05)(517) A T (g, xq,)(S27)-

Ciayx0,) (517)(S21) = Coa (1) A Coq(1173)
< Coa (1) A [Co1(51) A Cpa(s2)]

= [Co2(1) A Co1(s1)] A [Co2 (1) A Cope(s2)]
= C0ux02)(517) A Cgyxg,) (527

U g, x0,) (517)(527) = Uga (1) V Ugy;(1173)
< Uga(r) V [Up1 (1) V Uga(s2)]
= [Ug2(r) AUg1(s1)] V [Uga (1) AUgpq(s2)]
= [U(Q1><Q2) (s1m) vV U(leQz)(SzT).

Fo,xg,n(517)(s27) = Fpa (1) V Foq;(1173)
S Foo(1) V [Fo1(s1) V Foa(s2)]
= [IFQZ(r) A IF()1(51)] \ [lFQz(r) A IFQl(SZ)]
= 11:(Q1><Q2) (s1m) v 1F(Q1><Qz)(szr)'
for s;r,s,7 € §,5,.
Hence Proved.
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Defil‘lition 3.42 Let 61’11 = (Dli Qll’ 912, P an) lZi’ld 6112 = (Dz, ;821, Dzz, cnan DZTI) be QNGS. The Cross
product of ®; and ®, denoted by
Gp1 * Opy = (Qy * Qz, Q1 * a1, Wiz ¥ Qypp e+, Qi * Qi)
is defined by the following:
(D) Taiuga(rs) = (Tgq * Tay)(rs) = Tai (1) A Ta,(s).
Ca1x02(rs) = (Cqq * Cqp)(rs) = Cqq (1) A Cr(5).
Ugi.02(rs) = (Ugy * Ugy)(rs) = Ugq (1) V Ugy (5).
Faie2(rs) = (Fgq * Fap)(rs) = Fq (1) V Fg,(s).
Vrs € §; x S,.

(i) Tiq,x,)M151)(12s2) = (Tg,; * Tg, )(1151)(1252) = T1:(r172) A Tgzi(5152)
Cia, 0, (1151 (1252) = (Cq,, * Cq, ) (1151)(1252) = Co1i(r172) A Cg2i(5152)
Uig,x0,) (1151 (1252) = (Ug,, * Ug, ) (1151)(1282) = Ugqi(11712) V Ugzi(s152)

Fq, 0,y (1151 (1252) = (Fg,, * Fg, ) (1151)(1252) = Fo1:(1112) V Fpi(5152)

Vrir, € S1i, 5152 € Sy,

Theorem 3.43 The cross product ©,1 * ©,; = (Qp * Qz, Qi1 * Qu1, Qi * Quy, o0, Qup * Qyy) 0f two QNGS of
the GS ®; and ®, is a QNGs of ®; *x ©,.

Proof. For all 115,,1,5, € S * S,

T (@,x0,) (1151 (1252) = (Tq,; * Tq, )(1151) (1252) = To1:(1172) A To2i(5152)
< [To1 (1) ATo1 ()] A [Toz(s1) A Tgz(s2)]

= [To1 (1) AToa(s)] A [To1(r2) A Tgz(s2)]

= T(g,+0,)(1151) A T(q,x0,)(12S2),

(C(Qli*nzi)(ﬁsﬂ(rzsz) = ((Cmu- * (szi)(r151)(7”252) = Co1i(r1712) A Cozi(5152)
[Co1(r1) A Cor(12)] A [Coa(51) A Cpa(s2)]

[Co1(r1) A Coa(s] A [Cor(12) A Cpa(s2)]

= C(q,+,)(1151) A Cg,+0,)(1252),

I IA

Uig,x0,) (1151 (1252) = (Ug,, * Ug, ) (1151)(1282) = Upqi(1172) V Ugzi(s152)
< [Ugi(r) VUg1 ()] V [Uga(s1) V Uga(s2)]

= [Ug1(r1) V Uga(s1)] V [Ug1(12) V Uga(s2)]

= U(q,+,)(1151) V U(g,+0,)(1252),

F(Dli*mzi)(ﬁsﬂ(rzsz) = (IFDH * IF‘Dzi)(7'151)(7”252) = Fo1i(r172) V F2i(5152)
< [IFQ1(T1) v lFQ1(7'2)] \ [lFQz(Sl) \ IFQZ(SZ)]
= [Fo1(r1) V Fga(s1)] V [Fo1(12) V Foa(s2)]
= F(ml*mz)(ﬁsﬂ v IF(QI*QZ)(rzsz);
for i € 1,2,...,n. This gives required result.

Definition 3.44 Let ©,; = (Q1, Q11,Qqz,--.- Qi) and Gy = (Qy, Va1, Qpz, -+ .- Qany be QNGS. The
lexicographic product of ®, and ®, denoted by
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Gni e Gnz = (Qr * Q2 Q11 * V1, V12 * Qaz, -, Qi * Q)

is defined by the following;:
(1) Tg1eg2(rs) = (Tgy * Taz)(rs) = Toy(r) A Tga(s).
Ca1e02(rs) = (Cqq * Cgz)(1s) = Cqy (1) A Cga ().
Ugieg2(1s) = (Ugy * Ugy)(rs) = Ug (1) V Ugy ().
Fo1.02(rs) = (Fay @ Fo)(rs) = Foi (1) V Foa(s).

Vrs € 51 5,.

(@) Tia,en,)(s1)(rsz) = (Tg,; * Ta,)(rs1)(rsz) = Tei(r) A Tyzi(s152)
Ciayo0,) (rs1)(rsz) = (Cq,; * Cq, ) (s (1s2) = Co1 (1) A Cgai(51S2)
Uig,;e0,n (rs1)(rsz) = (Ug,; * Ug, ) (rs1)(rsz) = Ugi (1) V Upz;i(5152)
Fq,00,)(Ts1)(rsz) = (Fg,; * Fq, )(rs1)(sy) = Fo1(1) V Fozi(5152)
Vr € 81,5152 € Sy,

(@) T(g,en,)(M151)(1252) = (Tg,; ® Tq, ) (r151) (1252) = To1:(r112) A T2i(5152)
Claye0,) (1151) (1282) = (Cgq,; * Co, ) (1151)(1282) = Co1i(1172) A Co2i(5152)
Uq, o0, (1151 (1252) = (Ug,; ® Ug, ) (1151)(1252) = Up1i(1i72) V Ugzi(512)
Fa,;00,)(1151)(1252) = (Fq,; ® Fo,, ) (1151) (1252) = Fo1:(112) V Fai(8152)

V11, € Sii, 5152 € Sy,

Theorem 3.45 The lexicographic product ®p; ¢ Oy = (Qg ¢ Qu, Qi1 * Qu1, Qi * Qo Qi * Quy) of two
QNGS of the GS ®; and ©, isa QNGs of G, ¢ ©,.

Proof. According to the definition of lexicographic product there are two cases:
Case 1: when r € 5,55, € Sy;

T (Q,;00,)(rS1)(rs2) = To1(r) A Tozi(51S2)
< To1(r) A[Toz(51) A Toa(s2)]
= [To1(r) ATga(s1)] A [To1(r) A Tga(s2)]
= T (100, (751) A T(gye0)(7'52)-

Clay e, (151)(1rs2) = Co1(1) A Cgzi(5152)
< Co1 (1) A [Coz(s1) A Cpa(s2)]
= [Co1 (1) A Coa(s1)] A [Co1 (1) A Copa(s2)]
= (C(Ql'QZ) (rs1) A (C(QPQZ)(rSZ)'

U(g,;e0,) (r51)(rsz) = Up1 (1) V Ugzi(5152)
< Ui (1) V [Uga(s1) V Uga(s2)]
= [Ug1 () V Uga(51)] V [Ugy (1) V Uz (s2)]
= U100 (151) V U0, (rS2)-

Fo, ;00,0 (rs1)(rsz) = Fo1 (1) V Fzi(5152)
S Fo1(1) V [Fa(s1) V Foa(s2)]
= [IFQ1(T) V Fo, (sDlVv [IFQ1(7') V Fo, (s2)]
= 1F(Q1'Qz) (rs1) v 11:(Q1'Qz) (1s2).
for rs;,rs, €S, S,.
Case 2: For all rys5;,1,5, €ES; S,

T (@000 (1151) (1252) = (Tg,; ® Ta,, ) (1151)(1252) = To1i(r172) A To2i(5152)
< [TQ1(T1) A TQI(TZ)] A [TQZ(Sl) A TQZ(SZ)]
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= [To1 (1) ATg2(s1)] A [To1(r2) A Toa(s2)]
= T(n,.0,)("151) A T(g,.9,)(1252),

Ciaypen,) (1151) (1252) = (Cyqy; * Cq, ) (1151)(1252) = Coqi(1172) A Cozi(s152)
< [Cor(r) A Cor ()] A [Coa(s1) A Coz(s2)]

= [Co1(11) A Coz(s1)] A [Co1(12) A Coa(s2)]

= C(g,.9,)(1151) A Cg,.0,)(1252),

Uig, o0, (1151) (1252) = (Ug,; * Ug, ) (1151) (1282) = Ugq;(1172) V Ugai(s152)
< [Ugr(r) VUqg1 ()] V [Uga(s1) V Ugz(s2)]

= [Ug1(11) V Uga(51)] V [Ugq (12) V Upz(s3)]

= U(q,.0,)(1151) V U(q,.0,) (1252),

Fig,;00,)(1151)(1282) = (Fq,; * Fo, ) (1151)(1252) = Fo1i(1172) V Fzi(5152)
< [Foi (1) V Fo1 ()] V [Foa(s1) V Foa(s2)]
= [Fo1(11) V Foa(s)] V [Fo1(12) V Foa(s2)]
= F(g,.0,)(1151) V F(g,.0,)(1252),
for i € 1,2,...,n. This gives required result.

Definition 3.46 Let G, = (Qq, Qi1, Quz, -+ Quny and Gpp = (Qy, Va1, Qz, -+ Qo be QNGS. The strong
product of ®; and ®, denoted by
On1 X Gy = (21 X Qz, Q11 X Q21, Q1 K Q3,0 Qun X Qan),
is defined by the following;:
(1) Taigoa(rs) = (Tar X Tay)(rs) = Ta1(r) A Tgz(s).
Coimaz(1s) = (Cgy X Cqp)(rs) = Cqi () A Cgy(s).
Ugimgz(rs) = (Ugs & Ugz)(rs) = Ug; (1) V Ug,(s).
Foimaz(s) = (Fa1 X Fo,)(rs) = Fau(r) V Fau (s).
vrs €S, X S,.

@) T(Qliggzi)(rsl)(rsz) = (Tali X ']I‘in)(rsl)(rsz) = To1(1) A Tozi(5152)
(C(Qlixnzi)(rsﬂ(rsz) = ((Cmu- X szi)(rsl)(rsz) = Cp1(1) A Cyzi(5152)
U(Qliggzi)(rsl)(rsz) = ([UD“» X [ngi)(rsl)(rsz) = Up1(r) V Ugzi(5152)
F(Dlignzi)(r%)(rsz) = ([Fnli X IFQZ,»)(rSO(T'Sz) = Fo1(r) V Fgzi(s152)

Vr € 51,5152 € Sy,

(i) Tia,ma,)1s)(2s) = (Tg,, X Tg,)(115)(125) = Toa(s) A Tg1;(1172)
C(D1i®@2i)(rls)(rzs) = (CQH X (Cin)(rls)(rzs) = Cg2(s) A Cqyi(1172)
U(D1i®@2i)(rls)(rzs) = ([UQH X Umzi)(r15)(7”25) = Uga(s) VUqq(1172)
F(Dlﬂﬁzi)(rls)(rzs) = (IFDH X Fazi)(ﬁs)(rzs) = Fy (s)v IFQli(Tﬂ”z)

Vs € S, 1y, € Sy;-

(v) Tig,re,)M151)(252) = (Tg,; W Tg,,)(1151)(1282) = To1:(1172) A Toai(51S2)
C(Qlixaﬁ)(ﬁsﬂ(rzsz) = ((lei X (szi)(ﬁsﬂ(’”zsz) = Co1:(12) A Cp2i(51S2)
U(Dlﬂmzi)(ﬁsﬂ(rzsz) = ([Umli X Unzi)(rlsl)(rzsz) = [UQli(rlrz) \ [Uin(5152)
F(Dlixmzi)(rlsl)(rzsz) = ([FQH X Fnzi)(ﬁsﬂ(’”zsz) = Fo1:(n12) V Fai(5152)

V175 € S1i, 5152 € Sy,
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Theorem 3.47 The strong product G,1 X 6, = (21 K Qy, Q11 K Qu1, Q12 K Qyy, ..., Qi X Qyy) of two
QNGS of the GS ®; and ©, isa QNGs of 61 X 6.

Proof. According to the definition of strong product there are three cases:
Casel: when r € §;,5,5, € Sy;

T (q,;m,)(S1)(1s2) = To1 (1) A Tozi(s152)
< To1() A[Toa(s1) A Tgz(sz)]

= [To1(1) AToz(s)] A [To1 (1) A Toa(s2)]
= T (.m0, (751) A T(g,m0,) (rS2)-

Ca,mo,) (s1)(1rsz) = Co1 (1) A Cyzi(51S2)
< Co1(r) A [Coza(s1) A Cpa(sy)]

= [Co1(m) A Coa(s1)] A [Coq (1) A Cya(s2)]
= Coum0,) (r51) A Ciom0,) (1S2)-

Ui, me,n(rs1)(rsz) = Ugi (1) V Uy (s152)
S Ugi (M V [Foz(s1) V Ugz(s2)]

= [Ug1 () V Ugz(s)] V [Ugs (1) V Ugz(s2)]
= U0, (r51) V Ug,m0,) (752)-

Fo,mo,) (rs1)(rsz) = Fo1(r) V Fyui(s15;)
S Foi(r) V [Foa(s1) V Foa(s2)]
= [F1(r) V Fpa(s1)] V [Fo1 () V Foa(s2)]
= Foim0.) (751) V Fio,m0,) (752)-
for rsy,rs, € 5; X S,.
Case 2: when r € §,,s;5, € §y;

Tia,;m0,) (517 (S27) = Toa(r) A To1i(s152)
< T2 (1) A [To1(51) A Toz(s2)]

= [To2(r) ATo1(s1)] A [Tz (r) A Toi(s2)]
= T(Q1®Qz)(51r) A T(Q1®Qz)(52r)'

(C(Du&Dzl-) (s1m)(s27) = Cpa () A Cp1(5152)
< Coa (1) A [Co1(51) A Cpa(s2)]

= [Co2(1) A Co1(s1)] A [Co2 (1) A Cope(s2)]
= Coum0,) (517) A Ciomq,) (S27)-

Uig,im0,) (517 (s21) = Uga (1) V Up1;(5152)
S Uga (1) V [Uge(s1) V Uga(s2)]

= [[UQZ A UQI(Sl)] \ [UQZ(T) A [UQI(SZ)]
= Um0 (517) V U g, mg,) (S27)-

Fo,m0,)(517)(s27) = Foa(r) V Fo1(5152)
< Foa(r) V [Fo1(s1) V Foa(s2)]
= [IFQZ(r) A IFQl(Sl)] \ [IFQZ(r) A IFQl(SZ)]
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= Flo,m0,)(517) V F(g,m0,) (S27)-
for s;r,s,7 €5, X S,.
Case 3: For all iy, € S;;,5:5, € Sy;

T (g,im,) (1151)(1252) = (Tg,; W Tg,,)(r151)(1252) = To1:(1172) A To2i(5152)
< [To1(r1) ATo1 ()] A [Toa(s1) A Tgz(s2)]

= [To1(11) ATg2(s1)] A [To1(r2) A Tpa(s2)]

= T(a,xm9,)(1151) A T(q,,m9,)(252),

Cloma,) (151)(1282) = (Cgq,; W Cg, ) (r151)(1282) = Co1i(r172) A Cga(5152)
< [Co1 (1) A Cop1(12)] A [Coa(s1) A Cga(s2)]

= [Co1(r1) A Cpa(51)] A [Coq(12) A Cga(s2)]

= Cq,m0,) (1151) A Cg,,m0,)(1252),

Ui, me,)(151)(1282) = (Ug,; W Ug, ) (1151) (1282) = Ugqi(r172) V Ugai(s152)
< [Upr (1) VUgr ()] V [Uga(s1) V Uga (s2)]

= [Ug1 (1) VU2 ()] V [Up1 (1) V Upa (s2)]

= Ui, m0,)(1151) V U(g,,x0,)(1252),

Fo,ma,)(1151)(1252) = (Fg,, K Fq, ) (r151) (1282) = Fo1i(1172) V Fo2i(s152)
< [Fo1(r1) V Fo1 ()] V [Foa(s1) V Foa(s2)]
= [Fo1(11) V Foa(s1)] V [Fo1(12) V Foa(s2)]
= Fo,m0,)("151) V F(a,,x0,)(1252),
for i € 1,2,...,n. This gives required result.

Definition 3.48 Let 6711 = (’Qli Qll’ le, ceas an) and 6112 = (Dz, 221, Dzz, ceee Dzn) be QNGS. The
composition product of ®; and ®, denoted by
Gr1 0Oy = (Qq 0 Q, Q11 ° V21, Q12 © Qypye- 1, Qi © Qo)
is defined by the following;:
(D) Taega(rs) = (Tqq 0 Tay)(1s) = Taq (1) A Tay(s).
Ca1o02(1s) = (Cqq 0 Cqy)(1s) = Cqy(r) A Cqp(s).
Ug1o02(1s) = (Ugq 0 Ugy)(rs) = Ugy (1) V Ug, ().
Faiona (15) = (Fay © Fop)(rs) = Fq (1) V Fg,(s).
Vrs € §;085,.

@) T(Qlionzi) (rs)(rsz) = (TDH ° ']I‘in)(rsl)(rsz) = To1 (1) A Tgai(5152)
C(mliomzi) (rs))(rsz) = ((Cmu- ° (szi)(rsl)(rsz) = Co1(1) A Cyzi(5152)
U(Dliogzi)(rsl)(rsz) = ([Uau- ° [ngi)(rsl)(rsz) = Up1(1) V Ugzi(5152)
F(Dlioazl-) (rsp(rs;) = ([FQH ° IF‘DZi)(rsl)(rsz) =Fo1(r) V Fozi(5152)

Vr € 1,515, € Sy,

(@) T(Dliomzi)(ﬁs)(rzs) = (Tmli ° ']I‘in)(rls)(rzs) =Ty, s)A TQli(rlrz)
C(mliomzi)(rls)(rzs) = ((Cmu- ° (szi)(rls)(rzs) = (CQZ(S) A (CQ1i(7'17'2)
U(Dliomzi) (r18)(128) = ([UD“- ° [UQZi)(rls)(rzs) = Uga(s) VUqy;(r172)
F(Dlioizzi)(ﬁs)(rzs) = ([qu- ° szi)(r15)(7'25) = Fy (s)v IFQli(rer)

Vs € Sy, 7y, € Sy;-
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(v) T(g,e0,)(151)(1282) = (Tg,; ° Ty, )(1151)(1252) = To1i(r172) A Tgz(s1) A Toz(s2)
Cia,09,) (1151) (1282) = (Cgq,; © Cq, ) (1151)(1252) = Co1i(r172) A Coa(s1) A Cya(s2)

Uig, ;00,0 (1151) (1252) = (Ug,; © Ug, ) (1151) (1282) = Ugq;(1172) V Uga(s1) V Uga(s2)
Fio,00,) (1151) (1282) = (Fyq,; © Fo, ) (1151)(1252) = Fo1i(r172) V Fpa(s1) V Foa(s2)

V11, € 811,515, € Sy;suchthats; # s,.

Theorem 3.49 The Composition product G, 0 Gy = (Qg 0 Qy, Qp1 © Qu1, Qi © Qyzy v o, Qi © Qyp) of two
QNGS of the GS ®, and G, isa QNGs of G, o ®,.

Proof. According to the definition of composition product there are three cases:
Casel: when r € §;,5;5, € Sy;

T (@,;00,) (151 (1S2) = To1(r) A Tozi(5152)
< To1 (1) A [Toz(s1) A Toz(s2)]
= [To1 (1) A Toz(s1)] A [To1(r) A Toz(s2)]
= T (0100, (751) A T(g00,)(7'S2)-

Ciay 09,0 (rs1)(rsz) = Co1(1) A Cozi(5152)
< Co1 (1) A [Coa(s1) A Cpa(s2)]
= [Co1(r) A Copa(s)] A [Cor(r) A Cpa(s2)]
= C€01005) (151) A C(g,00,) (152)-

U(q,;00,) (151)(1s2) = Up1 (1) V Uz (5152)
S Upe (1) V [Foa(s1) V Uga(s2)]
= [Ug1 () V Uga(s1)] V [Ug1 (1) V U, (s2)]
= U100 (151) V U(g,00,) (rS2)-

Fi@,00,) (1s1)(rsz) = Fo1 (1) V Fzi(5152)
< Fo1(r) V [Foa(s1) V Foa(s2)]
= [Fo1(r) V Foa(s)] V [Fo1 (1) V Foa(s,)]
= Fg,00,)(T51) V F(g,00,)(7'52)-
for rs;,rs, €Sy 08S,.
Case 2: when r € §,,s;5, € §y;

T (@, 00,0 (517)(527) = T2 (S) A Tp1i(5152)
S Toa(r) A[To1(51) A Toa(s2)]
= [Tg2(r) ATg1(s1)] A [To2(r) A Tgi(s2)]
= T(Q1°Q2) (s17) A T(Q1°Qz)(32r)'

Claypon,) (517)(527) = Coa(s) A C14(5152)
< Coa (1) A [Co1(51) A Cpa(s2)]
= [Co2(r) A Co1(51)] A [Coa (1) A Coy(S2)]
= (C(Q1°Q2) (s17) A (C(Q1°Qz)(szr)'

Ug, 00,0 (517 (527) = Uga(s) V Ugyi(s152)
< [UQZ(r) \% [UQ1(51) \ UQZ(SZ)]
= [Uga(r) AUp1(51)] V [Uga (1) AUp4(s2)]
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= [U(Q1°Q2) (s1m) vV u'](Ql°Qz)(52r)'

Fo,00,) (517 (527) = Fa(s) V F1i(5152)
< Foa(r) V [F1(s1) V Foa(s2)]
= [Fo2(r) AFp1(s1)] V [Foa (1) AFgi(s2)]
= ]F(Q1°Qz) (1) Vv lF(Qf’Qz) ($27).
for s;r, s, € S,S,.

Case 3: For all ryr, € S;;,5,5, € S, such that s; # s,
T (@,00,) (1151) (1252) = (Tg,, © Ty, ) (1151)(1252) = To1i(r172) A Toz(51) A To(s2)
< [To1(r1) ATo1(12)] A Toz(s1) AToz(s2)
= [To1 (1) AToa(s] A [To1(72) A Tgz(s2)]
= T (q,09,)(1151) A T(g,.0,)(1252)

Cia, 09, (1151) (1282) = (Cgq,; © Cq, ) (1151)(1282) = Coq1i(1172) A Coa(s1) A Cya(s2)
< [Co1 (1) A Cor(12)] A Coa(s1) A Coa(sz)

= [Co1(r1) A Coz(51)] A [Cor(72) A Coz(52)]

= C(a,00,)(1151) A C(q,.0,)(1252)

U(q,;00,) (1151 (1252) = (Ug,; © Ug, ) (1151) (1252) = Up1i(1172) V Uga(s1) V Uga(s2)
[Ug1(r) VUg1(12)] V Uga(s1) V Uga(sz)

[Up1 (1) V Uga(s]V [Ug1(72) V Uga(s2)]

= U(q,00,)(1151) V U(q,.0,)(1252)

A

F(DliODzi)(rlsl)(rZSZ) = (IFDH ° [Fnzi)(7’151)(7'252) = Fo1:(n12) V Foa(s1) V Foa(s2)
< [Foi (1) V Fo1(12)] V Fga(s1) V Foa(s2)
= [Fo1(r1) V Fga(s1)] V [Fo1(12) V Fa(s2)]
= F(g,00,)(1151) V F(g,.0,)(1252)
for ry54,7,5; € S5 0 S,. Hence proved.

Definition 3.50 Let Gy = (Qq, Qu1, Quzs -+ Quny and Gpp = (Qy, Va1, Qz, -+ Qo be QNGS. The union of
®, and ®, denoted by
Gn1 UBp, = (Q1 U R, Q1 Uy, Q12 Uy, -+, Q1 U Qyp),
is defined by the following:
@) Tigyuan @) = (Ta, UTg,)(1) = Tos (1) V Tea (1)
Ug,un,)(r) = (Ug, Ulg,)(r) = Upy: () V Upa (1)
Ciouny) (M) = (Cq, U Cq,)(r) = Co1(r) A Cpa (1)
Fa,un,)(r) = (Fg, U Fg,)(r) = Fo1(r) AF,,(r),
Vr e S; US,,

(@) Tun,nTs) = (Tg,; UTg,)(rs) = Toui(rs) V Te(rs)
Ciayun,n(rs) = (Cq,; U Cq, ) (1s) = Coq(rs) V Cypi(1s)
Uig,;un,p(s) = (Ug,; UUg, )(1s) = Ugy;(rs) A Ugyi(rs)
Fau,n(rs) = (Fg,, U Fq, )(s) = Fo1;(rs) A Foai(rs),

for all (rs) € S;; U S,;.

Theorem 3.51 The union G,q U Gy = (Q1 U Qy, Q11 U Quq, Q12 U Qpy,.. ., Qi U Qyy) of two QNGS of the
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GS ®, and 6, isa QNGs of ®;, U ©,.

Proof. Let ry1, € 53; U S,;. Here we consider two cases:
Case 1: when nyr; € S;, then according to Definition 3.39, Tq, (n) = Tq, (rp) = ']I‘in(rlrz) =0
Cq,(r1) = Cq,(rp) = Cg,,(n12) =0
Ug, (1) = Ug,(r,) = Ug,,(nm) =1
Fg,(r) = Fg,(r;) = Fg,,(nm) =1, s0
T g,u0,) (M172) = To1:(r112) V Toi(r172)
= TQ1i(T1T2) vo
< [To1(r1) ATge(r2)] VO
= [To1(r1) VO] A [Tp.(rz) VO]
= [To1(r1) V T (r)] A [T1(12) V T2 (72)]
= T(q,un,) (1) A Tiq,ua,)(12)

Ciaun,)(172) = Co1i(r112) V Copi(1173)
= Cg1i(ri12) VO

[Co1(r) ACoe(12)] VO

[Co1(r1) V O] A [Cyq(72) VO]

= [Co1(r1) V Coa ()] A [Co1(12) V Cga(73)]
= C(q,un,) (M) A Cg,un,)(12)

A

Uig,u,) (1172) = Ugqi(ri12) A Ugzi(1172)
= [UQli(TITZ) v1

< [Ugi(r) VUg ()] A L

= [Ug1(r) A1)V [Ugq (1) A 1]

= [Ug1(r) AUga ()] V [Ugq (12) A Ug,(13)]
= Uiq,un,) (M) V Ug,un,) (2)

Foum,n(nr2) = Foui(rim) A Fgi(ri2)
=Foi(nm) V1
< [Foi(r) VEFpi ()] AL
= [Fo1(r1) A1]V [Foqi(r2) A 1]
= [Fo1(r1) AFga(r)] V [Fo1(r2) A Fga(12)]
= F(g,un,) (M) V Fg,un,)(2)
For rn, €5, US,.
Case 2: when 77, € S, then according to Definition 3.39, Tg, (1) = Tq, (r;) = Tg,,(rn12) =0
(Cs::l(ﬁ) = Cq, (r) = (Cali(rﬂ’z) =0
UQ1(7‘1) = Unl(rz) = [Umll-(rﬂ”z) =1
Fg, (r) = Fg, () = IFDli(rﬂ'z) =1,s0
T g,u2,) (1172) = To1:(r112) V Tz (ri72)
= TQZi(rITZ) Vo
< [TQZ (r) A Top2 (r)]vo
= [Tg2(r1) VO] A [Tg,(r2) v 0]
= [TQ1(T1) V Ty, )] A [TQI(TZ) V Ty, ()]
= T(q,un,) (") A Tiq,un,)(12)
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Cioun,)(172) = Co1i(ri12) V Cozi(1173)
= (CQZL'(rIrZ) Vo

< [Coa(11) A Coa ()] VO

[Coz2(11) V O] A [Cgp(12) V O]

= [Co1(r1) V Coa ()] A [Co1(12) V Cga(72)]
= C(q,un,) (M) A Cg,un,)(12)

U g, un,n (1172) = Ug1i(ri12) A Ugai (1172)
= [UQZi(TIrZ) v1

[Ugz(r1) VUga ()] A1

[Ugz(r1) A1)V [Uga () A 1]

= [Ug1(r) AUga(r)] V [Uge (12) A Ug, (7))
= U(q,ua,) (M) V Uig,un,) ()

A

Fo,u0,)(172) = Fo1i(ri12) A Fgi(r172)
= Foi(nm) V1
[Foa(ri) V Fpa(r)] A1
[Foa(r) A1)V [Foa (1) A 1]
= [Fo1(r1) AFga(r)] V [Fo1(r2) A Foa(12)]
= F(g,un,) (M) V Fg,un,) ()
For nyr, € S; US,. Hence Proved.

I IA

Theorem 3.52 Let ® = (S; U S;, 511 U 831,512 U Sz,.... 810 U Syp) o be union of two GSs G, =
(51, 511, 512, e 'SITL) ClTld 62 = (Sz, 521, 522, e ’SZTL)' Then €Z)€1’y QNGS 6 = (D,, Dl’ Dz, ceen Qn) Of 6 15 unlon
of two QNGs ©,, and ®,, of GS ®, and G,, respectively,

Proof. First we define Q,,Q,,Q4; and Q,; for i € 1,2,...,n as

To1(r) = To(r), Co1(r) = Co(r), Ugs (r) = Up(r), Fo1(r) = Fo(r),ifr € 5,
']I‘Qz(r) = ']I‘Q(r), CQl(r) = Cq ™), [UQl(r) = IUQ(T), IFQl(r) = IFQ(T), ifr € S,.

To1:(112) = Ti(11712), Co1i(1i12) = Coi(1172), Ugqi(ri12) = Ugi(1i73), Fo1;(1i12) = Foi(ri12),
if nry, € S35,

To2i(1172) = Tgi(r112), Coai(r172) = Coi(1172), Ugai(1i72) = Ugi(r172), Foai(ri12) = Foi(i12),
if nry, €8y,
Then Q=9Q,UQ, and Q; =Q,; UQy,;, i €12,...,n.
Now for 7, € S,k =1,2,i =1,2,...,n
Toki(r172) = To1i(r172) < To1 (1) AT1(r2) = Tor(r1) A Tow(r2)
Cori(r112) = Co1:(r112) < Co1(r1) A Co1 (1) = Coi (1) A Coie (12)
Ugri(ri12) = Ugqi(n112) < Upr (1) V Uqga (12) = Ugre (1) V Ugr (72)
Fori(rir2) = Foui(rir2) < Foi (1) V Foi(r2) = Fore (1) V Foi (12).
i.e
G = (oo Dty .- Qi) 15aQNGS of Gy, k = 1,2. Thus Gy = Q,Q,,Qs,....,Q,, a ONG of
® = ®; U B, is union of two QNGSs ®,; and 6,,;,.

Definition 3.53 Let Gpq = (Q1, Qi1, Quzs -+ Quny and Gpy = (Qy, Va1, R, -+ Qo be QNGS and let S N
Sy = @. The join of ®p, and ©,,,, denoted by
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67’11 + (Y)TI.Z = (Ql + DZ’ Dll + D21, DlZ + Dzz, . "Dln + QZTL)’
is defined by following;:

D Tea+a) ) = Ta,un,) ()

C(QI+QZ)(r) = C(Qluﬂz)(r)

Ua,+2,) (™) = Ug,un,) (M)

Fea,+0,) (M) = Fa,un,) (M)

V TESUS,,

(@) Ta,+0,)TS) = Ta,un,) (1)
(C(Du‘*'gzi)(rs) = (C(Qu'Uin) (rs)
U(Q11+in) (rs) = [U(DUUin) (rs)
IE:(5:311"'532i)(r‘s‘) = F(DliUDZi)(rS)

V rs€S;US,;,

(1)) Tg+0,p(rs) = (Tg,; + To,)(rs) = To1(r) ATe(s)
Ciayro,n(rs) = (Cg,, + Cq, )(rs) = Cop1 (1) A Coa(s)

Ui, +9,)(1s) = (Ug,; + Ug,)(rs) = Up1(r) V Ug,(s)
Fo,+0,)(rs) = (Fq,; + Fq,,)(rs) = Fo1(r) V Fy(s)

V r€S;,SES,.

Theorem 3.54 Th@ join 61’11 + Dnz = (Dl + Qz, Qll + 821, le + sz, veny an + DZ‘H) Of two QNG Ofthe GSS
® and ®, isa QNG of 6, + 6,.

Proof. Let ryr, € S3; + S5;. Here we consider three cases:
Case 1: when ny1, € S;, then according to definition 3.40
Tg, () = Tg,(ry) = Tg,,(nr2) =0
Cq, (r) = Cq, () = (ani(ﬁrz) =0
Ugq, (r) = Ug, (r) = Unzi(rﬂ’z) =1
Fg,(r1) = Fgq,(r;) = Fg,,(nm) =1, s0
T @, i+2,0(1172) = To1:(ri12) V Toai(1172)
= Tg1:(ri12) VO
< [To1(r) AT ()] VO
= [Tg1(r1) VO] A [Ty1(r2) V 0]
= [To1(r) V Toa (r)] A [To1(12) V T (72)]
= T(a,+9,) (") A T(q, +0,)(2)

Ciay+0,)(1172) = Co1i(ri12) V Cozi (11732)
= (CQli(rer) Vo

< [Co1(r) A Coe(12)] VO

= [(CQ1(T1) VO] A [(CQ1(7'2) v 0]

= [(CQ1(T1) \ (CQz(Tl)] A [(CQ1(T2) \ (CQZ ()]
= C(a,+0,) (M) A Cg, +9,)(12)

U, +0,0 (riry) = Ug1i(r112) A Ugai(ri72)
=Upu(nr) V1

< [[UQ1(T1) \ UQl(Tz)] Al

= [[UQ1(T1) AV [[UQl(TZ) A 1]
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= [Ug1 (1) AUga ()] V [Up1 (12) A Ug,(12)]
= Uiq,+9,)() V U(g,+0,)(12)

Fa,+0,)(1112) = Fo1i(12) A Fopi(112)
=Fo1i(nr) V1
< [Fo1(r) V()] A1
[Fo1(r1) A1]V [Foq(r2) A 1]
[Fo1(r1) AFga(r)] V [Foi(12) A Foz(12)]
= Fa,+9,) (1) V Fq,+9,)(2)
For i, € 5, + S,.
Case 2: when i1, € S, then according to Definition 3.40, Tg, (1) = Tg, (ry) = Tg ,(nr2) =0
Cq, () = Cq,(r2) = Cq,,(n1,) =0
Ug, () = Ug, (r2) = Ug,,(n1,) = 1
Fq,(r1) = Fg,(r2) = Fq,,(n12) = 1,50
T, +0,)(172) = To1:(ri12) V Toai(r112)
= Tgi(r112) VO
[To2(r1) ATga(r2)] VO
[To2(r1) VO] A [Tg(r,) VO]
= [To1(r1) V Tz (r)] A [To1(r2) V Tz (72)]
= T(a,+9,)("1) A T(q, +0,)(2)

I IA

Ca,+9,)(1112) = Co1i(ri1y) V Cozi(1172)
= Cgzi(ri12) VO

< [Coa(r) A Coa(12)] VO

= [Coz2(r1) V O] A [Cy2(72) V O]

= [Co1(r1) V Coa(1)] A [Co1(12) V Cga(72)]
= Cia,+9,) (M) A Cig,+9,)(12)

Uig,+9,0(1172) = Ug1i(1172) A Uy (1172)
=Ugi(nrz) V1

< [Uga(r) VUga ()] A 1

= [Uga(r) A1)V [Uga (1) A 1]

= [Ug1(r) AUga ()] V [Ugq (12) A Ug,(13)]
= Uig,+9,)(1) V U(g,+9,)(12)

Fo,+0,0(1112) = Fo1i(1i12) AFgai(ri12)
= lFin(TiTz) vi
< [IFQZ(rl) v lFQz(Tz)] Al
= [Foa(r1) A1]V [Foa(r2) A 1]
= [IFQ1(T1) A IFQZ(rl)] \ [IFQI(TZ) A lFQz(Tz)]
= Fg,+9,) (M) V F(q,+0,)(2)

For nyr, € 5, + S,.

Csse3: 1y € §1,1, € S,, then according to definition 3.42,

T+, (1) = To1(11) A To2(r2)
= [Tg1(r1) VO] A [Tg,(r2) v 0]
= [To1(r1) V Toa (r)] A [Tz (12) V Ty (72)]
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= T(g,+9,) (1) A T(q,+9,)(2)

Ciay o, (1112) = Co1 (1) A Coa(72)

= [Co1(r1) VO] A [Cya (1) V O]

= [Co1(r1) V Coa ()] A [Co2(12) V Co1(72)]
= C(q,+9,) (1) A Ciq,+9,)(12)

U@, +9,0(1172) = Ug1 (1) V Uga (12)

= [Ug1(r1) A O]V [Uga(12) A 0]

= [Ug1 (1) AUgz ()] V [Uga (r2) A Ugy (72)]
= Uiq,+9,)() V U(g,+0,)(12)

Fa,40,)(1112) = Fo1 (1) V Foa(72)
= [Fo1(r1) A O] V [Fgo(r,) A O]
= [Fo1(r1) AFga(r)] V [Foa(r2) AFoq(12)]
= Fg,+9,)(1) V F(q,+9,)(2)
For nyr, € §; + S,. Hence proved.

Theorem 3.55 Let ® = (S; + 53,511 + 21,812 + S22, S15 + S2) to be join of two GSs G, =
(51,511,812, -+, S1n) and ©y = (83,521, S22, .-+, Son). Then every strong QNGS 6 = (Q, 21, Q,,....Q,) of 6 is
join of two strong QNGs ®,; and ©,, of GS &, and ©,, respectively,

Proof. First we define Q; and Q; for k=12 and i =1,2,...,n as:
To, (1) = To(), Ca, (r) = Co(), Ug, (1) = Ug(r), Fa, (r) = Fo(r), if 7 €S,
To,; (nr2) = To,(11712), Cgy (1172) = Co,(1172), Ug,, (1172) = Ug, (112), Fg (1n12) =
Fo,(nmy), if nr, €Sy
Now for i, € Si;, k=1,2,i =12,...,n
Tq,;(n1r2) = To,(n1r2) = To(r) ATo(ry) = Tg, (1) A Tg, (12)
Cq,,;(1i12) = Cy,(r112) = Co(r) A Cy(ry) = Cq, (1) A Cq, (72)
Ug,,(n1r2) = Up,(ri12) = Ug(r) V Uy (ry) = Ug, (1) V Ug, (12)
Fy,, (1) = Fo,(nny) = Fo(r1) V Fo(r2) = Fyg, (1) V Fg, (12).
(i.e) Onx = (Qu, Qi1 Quezs -+ Qi) is a strong QNGS of G, k = 1,2.
Moreover, ®,, is join of ®,; and ®,, as shown: Using Definition 3.39 and 3.42, Q = Q, U Q, =
Q1 +0Q; and Q; = Qy; URy; = Qg +Qyy, Vi € 51,0 Sy,
when i, € S;; +S5, (S;;US,), (ike) ; €S, and 1, €S,
T, (r112) = To(r1) ATo(12) = Tor(r1) AT (12) = Tg,;+0,,(1172)
Cq,(n1y) = Co(r)) A Co (1) = Core (1) A Coie (1) = Cyyy 1, (1172)
Ug, (1) = Ug(r) VUq(ry) = Ugi (1) V Uge (12) = Ug;10,,(1172)
Fg,(nmy) = Fo(r) VFo(12) = For(r) V For(r2) = Fg,40,,(1172)
Calculation are similar when r, € S, 1, € ;. It is true when i = 1,2,...,n. Complete the proof.

4. Conclusions

In this work, the concept of quadripartitioned neutrosophic graph structure and its properties
have been discussed. The strong, tree, ¢ —permutation and ¢ —complement of quadripartitioned
neutrosophic graph structure have been studied. The operations like Cartesian Product, cross product,
lexicographic product, composition in graph structures and join operations are established. In future, the
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authors will extend this proposed concept to some applications in decision making and bipolar
environment. Wiener index of QNGSs will be studied based on [21, 22]. The proposed concepts are also
extended to bipolar QNGSs, interval QNGSs, single valued neutrosophic quadripartitioned hypergraphs
and in soft QNGSs.
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