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Abstract: We presented in this paper a new concept of sets that we launched it neutrosophic axial 

sets . These sets are considered as generalization of neutrosophic sets . The union relationships , 

intersection, union , belonging and other concepts were built on these sets , then we created two 

different concepts of points . Also we studied many important properties and basic theories about 

axial sets theory. 
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1. Introduction 

The neutrosophic sets [1] are the important and influential topic in human life in direct way. It’s 

considered to be one of the applied and pure topics at the same time . 

Also it contributes  to quantum leaps in the field of electronics , software and other sciences as well 

as in various engineering branches . Where Salama, A., FlorentinSmarandache, and Valeri Kromov 

who were the researchers first to know these sets in [2,3]. Researchers and scientists have taken it 

upon them and solves to develop and work on it . On the other hand , these sets are considered to be 

a development to the second type of fuzzy sets , which the researcher Zadeh , L. A.  know in 1965 [ 4 

] introduced. At the same time , the fuzzy sets are generalized into so-called the soft sets which were 

defined in [ 5- 7] and attributed to Molodtsov [ 8 ]. There are many researchers who worked in this 

field and remind them of [ 9- 12 ]. 

      In 2019  Abdulsada, D.A., Al-Swidi, L.A.A.  defined a new concept of sets and called it the 

center sets , for more information , you can review the papers [ 13- 15] , and the pillar of construction 

is proximity spaces by . A. Naimpally and . D. Warrack [16], where we combined the proximity 

space with the i-topological space by Al Talkany, A.Y.K.M., AL-Swidi, L.A.A [ 17]  to produce the 

i-topological proximity space in 2020 [ 18, 19 ]. These ideas can be generalized on the topic of 

neutrosophic. 

2. The Neutrosophic Axial Set theory 
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2.1. Definition Let X be any set , the set of the form ƝĄA =  { < 𝐴, A 1, A2 > ;  𝐴 ∩  Ai = ∅ , i = 1,2 } is 

called neutrosophic axial set , where A be any subset of X , and the sets A 1, A2  are called the parts 

of < 𝐴, A 1, A2 > For example , if we take 𝑋 =  𝑅  the real numbers ,then ƝĄ𝐴 =  { <

 ( 1 , 2 ), 𝐴1 , 𝐴2 > ;  (1 , 2 )  ∩  𝐴𝑖 = ∅ , 𝑖 = 1,2 } where  

𝐴𝑖 = {

∅  𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡 𝑠𝑒𝑡 𝑖𝑛 𝑅
(1,2)⁄

[2, 𝑥)                        𝑓𝑜𝑟  𝑥 ≥ 2 

(𝑦 , 1]                     𝑓𝑜𝑟  𝑦 ≤ 1

 

2.2. Definition 

I- Let 𝑋 be any non-empty set , the neutrosophic point (ƝĄ-point ) are of the forms ƝPA
∅ = <

 𝐴 , ∅ , ∅ > , Ɲ𝑃𝐴 = <  ∅ , 𝐴 , ∅ > and  

Ɲ𝑃𝐴 = <  ∅ , ∅ , 𝐴 > , for any proper non-empty subset 𝐴 of  . 

 

II- The singular neutrosophic point (𝑆ƝĄ-point )  of any  ƝĄ-set ƝĄ𝐴  is denoted by 𝑆𝐴 = <

 𝐴 , 𝐴 1, 𝐴2 > , where 𝐴 ∩  𝐴𝑖 = ∅ where 𝑖 = 1,2 , so 𝑆𝐴 ∈  ƝĄ𝐴 ( where ∈  is the notion of classical 

belongs to ) . 

So we can claim the number of ƝĄ-points of any non-empty universal set 𝑋 is |X|. (|P(X)/{∅, X}| 

where |𝑋| the number of elements of 𝑋.  

 

Also from |𝑋| of above definition any ƝĄ-set is the classical union of its 𝑆ƝĄ-points and any 

𝑆ƝĄ-point of any  ƝĄ-set is neutrosophic set , but the converse is not true . 

 

2.3. Definition 

I- The empty ƝĄ-set with respect to the subset A of X is denoted by ƝĄA
∅   is of the form 

ƝĄA
∅ = { <  ∅ , A1, A2 > ;  𝑤ℎ𝑒𝑟𝑒 𝐴 ∩  𝐴𝑖 = ∅  𝑖 = 1,2  } .  

For example , if 𝑋 =  { 𝑎 , 𝑏  , 𝑐 } , then ƝĄ{a,b}
∅ =  { <  ∅ , ∅ , ∅ >  , <  ∅, {𝑐}, {𝑐}  > , <  ∅ , {𝑐} , ∅ >  , <

 ∅ , ∅ , {𝑐}  >  }. 

 

II- The null ƝĄ-set with respect to a subset 𝐴 of  , which denoted by ƝƝĄ𝐴 is of form ƝƝĄ𝐴 =

 { <  𝐴 , ∅ , ∅ >  } . 

 

2.4. Definition 

I- The ƝĄ-sum between two  𝑆ƝĄ-points 𝑆𝐴 and 𝑆𝐵  is denoted by the notion ⨁Ɲ  which is 

defined by 𝑆𝐴⨁Ɲ𝑆𝐵 = {< 𝐴 ∪ 𝐵, 𝐶1 ∪ 𝐷1, 𝐶2 ∪ 𝐷2 > , where 𝐶𝑖 ∩ 𝐴 = ∅    𝑎𝑛𝑑 𝐷𝑖 ∩ 𝐵 = ∅ , 𝑖 = 1,2 } . So 

from this definition we claim that every 𝑆ƝĄ-point is ƝĄ-sum of two or more than two  , but every   

ƝĄ-point is 𝑆ƝĄ-point . 
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II- The 𝑆ƝĄ-point 𝑆𝐴 is called interlaced with respect to ƝĄ-set ƝĄ𝐵 , if 𝑆𝐴 ∈  ƝĄ𝐵  there exist 

𝑆𝐵 ∈  ƝĄ𝐵   such that Ai ⊑  Bi , SA =< 𝐴, A1, A2 >   , SB =< 𝐵, B1, B2 > 𝑖 =  1 , 2 .If any ƝĄ-point of 

the forms ƝPA
∅  , Ɲ𝑃𝐴  and Ɲ𝑃𝐴  belong to ƝĄ-set ƝĄ𝐵 , if 𝐴 is a part of some 𝑆ƝĄ-point of 

ƝĄ𝐵 .So that we easily show that , 𝑆𝐵 ∈  ƝĄ𝐵   iff 𝑆𝐵 ∈Ɲ  ƝĄ𝐵 . 

 

III- The   ƝĄ-set ƝĄ𝐴 is said to be interlaced set with one of the ƝĄ-set ƝĄ𝐵 which is denoted by 

ƝĄ𝐴 <Ɲ  ƝĄ𝐵  iff  for each SA =< 𝐴, A1, A2 >     ∈ ƝĄ𝐵  there exist 𝑆𝐵 =< 𝐵, 𝐵1, 𝐵2>∈  ƝĄ𝐵  with 

the condition  Ai ⊑  Bi, 𝑖 =  1 , 2 . Clearly every ƝĄ -set is interlaced set of ƝĄ∅  , also  ƝĄ𝑋  is 

interlaced set of any ƝĄ-set. 

 

2.5. Note 

If A ⊏ B , then  ƝĄB <Ɲ ƝĄA . Because , for every  𝑆ƝĄ-point𝑆𝐵 =< 𝐵, B1, B2 >∈ƝĄB  that is B ∩

Bi = ∅  and A ⊏ B  imply that A ∩ Bi = ∅  for 𝑖 =  1 , 2  , thus 𝑆𝐵  ∈  ƝĄ𝐴  , which satisfy the 

condition of interlaced set .Two ƝĄ-sets ƝĄA and ƝĄBare called intertwind sets which is denoted 

by ƝĄA ≈Ɲ ƝĄB  iff  ƝĄ𝐴 <Ɲ  ƝĄ𝐵  and ƝĄ𝐵 <Ɲ  ƝĄ𝐴 .  

 

2.6. Proposition 

Let 𝑋 be any sets and 𝐴 , 𝐵 are subsets of 𝑋. 𝐴 = 𝐵 iff ƝĄA ≈Ɲ ƝĄB . 

Proof . 

Assume that  =  𝐵 , so by (Note 2.5) , we get that ƝĄA ≈Ɲ ƝĄB. Conversely , if possible that 𝐴 ≠  𝐵  

. 

Case 1 . If  𝐴 ∩  𝐵 =  ∅ , then each 𝑆𝐴 =< 𝐴, 𝐴1, 𝐴2 >     ∈ ƝĄ𝐴 and since each subset 𝐶 of 𝑋 with 

𝐶 ∩  𝐵 =  ∅ there is no 𝑆ƝĄ-points in ƝĄ𝐵 which satisfy the condition of interlaced set , so ƝĄ𝐴 is 

not interlaced set of ƝĄ𝐵 . Similarly that ƝĄ𝐵 is not interlaced set of ƝĄ𝐴 , which contradiction 

with  ƝĄ𝐴 ≈Ɲ ƝĄ𝐵 . 

 

Case 2. If 𝐴 ∩  𝐵 ≠  ∅ , that is there exist a point 𝑥 in 𝐴 and not in 𝐵 or the point 𝑦 in 𝐵 but not 

in  𝐴  , so 𝑆𝐵 = <  𝐵 , { 𝑥 } , { 𝑥 }  > ∈  ƝĄ𝐵  imply that no 𝑆ƝĄ -points in ƝĄ𝐴  which satisfy the 

condition of interlaced set , hence ƝĄ𝐵 , similarly if we take 𝑦 ∈ 𝐵 and 𝑦 is not in 𝐴 , which 

contradiction with ƝĄA ≈Ɲ ƝĄB . Therefore we get =  𝐵 . 

 

2.7.Definition 

The ƝĄ- complement of any ƝĄ-set ƝĄA which is denoted by (ƝĄA)𝑐 and of the form (ƝĄA)𝑐 =

 ƝĄ𝐴𝑐. Now we give the notions of union , intersection of ƝĄ - sets . 
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2. 8. Definition 

The ƝĄ – union of two ƝĄ-sets ƝĄA and ƝĄB , which is denoted by ƝĄA ∪Ɲ ƝĄB and is of the 

form ƝĄA ∪Ɲ ƝĄB = { < 𝐴 ∪ 𝐵, A1 ∩ B1, A2 ∩ B2 > ; ∀< 𝐴, A1, A2 >∈ ƝĄA, < 𝐵, B1, B2 >∈ ƝĄB }  .Also 

for the same away we defined that  for any collection{ƝĄAi
; i ∈ II } of ƝĄ - sets , the ƝĄ-union of 

this collection is of form (⋃ Ai∈II i
)Ɲ = { < ⋃ Ai, Cj1

∩ Cj2i∈II , Dj1
∩ Dj2

>; ∀j1 , j2 ∈ II} where SAj1
=<

Aj1
, Cj1

, Dj1
>and  SBj2

=< Bj2
, Cj2

, Dj2
> . 

 

The ƝĄ – intersection of two ƝĄ-sets ƝĄA and ƝĄB , which is denoted by ƝĄA ∩Ɲ ƝĄB and is of 

the form ƝĄA ∩Ɲ ƝĄB = { < 𝐴 ∩ 𝐵, A1 ∩ B1, A2 ∩ B2 > ; ∀< 𝐴, A1, A2 >∈ ƝĄA, < 𝐵, B1, B2 >∈ ƝĄB } . 

Also for the same away we defined that  for any collection {ƝĄAi
; i ∈ II }  of ƝĄ  – sets , the 

ƝĄ-intersection of this collection is of form (⋂ Ai∈II i
)Ɲ = { < ⋂ Ai∈II i

, Ci1
∩ Ci2

, Di1
∩ Di2

>; ∀i1 , i2 ∈ II} 

where SAi1
=< Ai1

, Ci1
, Di1

>and  SBi2
=< Bi2

, Ci2
, Di2

> . 

The ƝĄ –participating of two ƝĄ-sets ƝĄA and ƝĄB , which is denoted by ƝĄA  ⋒ ƝĄB = ƝĄA∩B. 

 

It is easy to show that the commutative and associative properties for the ƝĄ – union, ƝĄ – 

intersection and ƝĄ –participating are satisfied . 

 

2.9. Proposition 

For any set 𝑋 and any subsets 𝐴 , 𝐵 , that is ƝĄA ∪Ɲ ƝĄB =  ƝĄA∪B. 

Proof .  

For any  𝑆ƝĄ-point S𝐷 ∈  ƝĄ𝐴 ∪Ɲ ƝĄ𝐵 , which of the form 𝑆𝐷 =< 𝐴 ∩ 𝐵, A1 ∩ B1, A2 ∩ B2 > , with 

SA =< 𝐴, A1, A2 > ∈ ƝĄA, SB =< 𝐵, B1, B2 > ∈ ƝĄB  . Thus  𝑆𝐷 ∈ ƝĄA∪B  , because that  (A ∪ B) ∩

(Ai ∩ Bi) =( A ∩ (Ai ∩ Bi))  ∪( B ∩ (Ai ∩ Bi)) = ∅ . 

Conversely , now let SA∪B  ∈ ƝĄA∪B  , if possible that SA∪B ∉ ƝĄA ∪Ɲ ƝĄB  , since SA∪B = < A ∪

B, 𝐷1 , 𝐷2 > with (A ∪ B) ∩ 𝐷𝑖 = ∅ , 𝑓𝑜𝑟 𝑖 =  1 , 2. But ∅ =(A ∪ B) ∩ 𝐷𝑖 = ( 𝐴 ∩  𝐷𝑖 )  ∪ (𝐵 ∩  𝐷𝑖) , 

imply that 𝐴 ∩ 𝐷𝑖 = ∅ , B ∩ 𝐷𝑖 = ∅ , so we have <  𝐴 , 𝐷1  , 𝐷2 > ∈ ƝĄ𝐴 and <  𝐵 , 𝐷1  , 𝐷2 > ∈ ƝĄ𝐵  

, also SA∪B =< A ∪ B , 𝐷1 , 𝐷2 > = <  𝐴 ∪ 𝐵 , 𝐷1 ∩  𝐷1 , 𝐷2 ∩ 𝐷2 >∈ ƝĄA ∪Ɲ ƝĄB  , which is a 

contradiction .  

From this proposition we can prove easily the following corollary. 

 

2.10 .Corollary 

1. ƝĄA ∪Ɲ ƝĄAc =  ƝĄX . 

2. ƝĄA ∪Ɲ ƝĄA =  ƝĄA . 

3. ƝĄA ∪Ɲ ƝĄX = ƝĄX. 
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2.11. Remark 

For any set 𝑋 and subset 𝐴 of 𝑋 we have  ƝĄA ∩Ɲ ƝĄX = ƝƝĄA = { ƝPA
∅} , because  ƝĄA ∩Ɲ ƝĄX =

 { <  𝐴 ∩ X, ∅ ∩ A1 , ∅ ∩ A2 > ; for each < 𝐴, A1, A2 > ∈ ƝĄA} = { <  𝐴 , ∅ , ∅ > }  = { Ɲ𝑃𝐴
∅}  =  ƝƝĄ𝐴. 

 

2.12. Remark 

Let 𝑋  be any set with ƝĄA  and ƝĄB  are  ƝĄ  – sets on 𝑋 . If ƝĄA <Ɲ ƝĄB  , then 

( ƝĄ𝐴 ∩Ɲ ƝĄ𝐵 )  <Ɲ ƝĄA  also ( ƝĄ𝐴 ∩Ɲ ƝĄ𝐵 )  <Ɲ ƝĄ𝐵 because for any < 𝐴 ∩ 𝐵, C1 ∩ D1,C2 ∩ D2 > ∈

ƝĄA from the fact <  𝐴 , 𝐶1 , 𝐶2 > ∈ ƝĄ𝐴and  A ∩ Ci ∩ Di = ∅  , for 𝑖 =  1 , 2.from above (Remark 

2.12.) and( Note 2.5.) we have the following proposition . 

 

2. 13. proposition 

1-  ( ƝĄA ∩Ɲ ƝĄB) <Ɲ ƝĄA∩B . 

2- ( ƝĄA ∩Ɲ ƝĄB) ≈Ɲ ƝĄA. 

3-  If ƝĄA <Ɲ ƝĄB and ƝĄB <Ɲ ƝĄC , then ƝĄA <Ɲ ƝĄC . 

4- If ⊑  𝐵 , then ƝĄA ∩Ɲ ƝĄB ≈Ɲ ƝĄB . 

 

Proof (4). 

By (Note 2 . 5) and Remark (2 .12) we have  (ƝĄA ∩Ɲ ƝĄB) <Ɲ ƝĄB . Now let us < 𝐵, D1,D2 > ∈ ƝĄB 

, so 𝐵 ∩ 𝐷𝑖 = ∅  , but 𝐴 ⊑  𝐵 , then 𝐴 ∩ 𝐷𝑖 = ∅for 𝑖 =  1,2 , then < 𝐴, D1,D2 >=< 𝐴 ∩ 𝐵, D1,D2 >∈

 ƝĄA ∩Ɲ ƝĄB . So we get  the result . 

 

2. 14. Proposition 

For any ƝĄ – points  ƝPD , ƝpD ∈Ɲ ƝĄA which satisfy that , there exist a part 𝐶 of some 𝑆 ƝĄ – 

point of ƝĄB such that 𝐷 ⊑ 𝐶  iff ƝĄA <Ɲ ƝĄB . 

 

Proof. 

Let 𝑆𝐴 = <  𝐴 , 𝐶1 , 𝐶2 > ∈ ƝĄ𝐴 , then ƝĄ – points  ƝPC1
 and ƝPC2 are in ƝĄA , so by assumption 

, there exist  parts  𝐷1  , 𝐷2 of 𝑆 ƝĄ – points in  ƝĄB with 𝐶𝑖 ⊑  𝐷𝑖 and  𝐵 ∩ Di = ∅   , 𝑖 =  1 , 2  

, so < 𝐵, D1,D2 > ∈ ƝĄB , this imply that ƝĄA <Ɲ ƝĄB . 

Conversely , let ƝĄA <Ɲ ƝĄB   and let  ƝPD ∈Ɲ ƝĄA  , then the 𝑆 ƝĄ  – point <  𝐴, 𝐷 , ∅ > , <

 𝐴 , ∅ , 𝐷 >  or <  𝐴 , 𝐷 , 𝐷 >  are in ƝĄA , then there exist <  𝐵 , 𝐶1 , ∅ >. Such that 𝐷 ⊑  𝐶1 with 

ƝPC1
∈ ƝĄB or <   𝐵, ∅ , 𝐶2 >  such that 𝐷 ⊑  𝐶2 with ƝPC2 ∈ ƝĄB or <  𝐵 , 𝐻1 , 𝐻2 > ∈ ƝĄ𝐵 with 

𝐷 ⊑  𝐻𝑖 , so ƝPD1
 and ƝPD2 ∈ ƝĄB . 

 

3. Conclusions 
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1.  After an extensive study of these sets and spaces , we did this research establishing the basic 

structures for generalizing the neutrosophic sets , and under the name neutrosophicsets  . Therefore 

, we can put the identification of the topological spaces on it , by taking a family of these  ƝĄ – sets 

that achieve the following ; ƝĄ𝑋  , ƝĄ∅  belong it , second is closed under the finite ƝĄ  – 

intersection , finally is must be closed under  ƝĄ – union for any subfamily of it . 

2. Also we can study their properties and characteristics , as well as define the functions on there to 

give as a good suggestions to work . Then , we can modify the various open sets and further study 

can be continued with this concept. For example , we can modify in the papers [ 20- 28] . 

 

Acknowledgments:The authors remain thankful to the referee for his helpful suggestions and comments. 
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