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Abstract: The main focus of this paper is to introduce the notion of single valued pentapartitioned 

neutrosophic off set / over set / under set. Besides, we establish several operations on single valued 

pentapartitioned neutrosophic off sets / over sets / under sets. Besides, we furnish some suitable 

examples to validate the results established in this article. Further, we establish some interesting 

results on single valued pentapartitioned neutrosophic off set / over set / under set. 
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________________________________________________________________________________________ 

1. Introduction: In 1965, Zadeh [33] grounded the concept of fuzzy set, where every element has 

membership values between 0 and 1. Afterwards, Atanassov [1] introduced the notion of 

intuitionistic fuzzy set as an extension of fuzzy set. In 1998, Smarandache [27] presented the concept 

of neutrosophic set (in short N-S) by extending the idea of fuzzy set and intuitionistic fuzzy set to 

deal with the uncertainty events having indeterminacy. In every N-S, each member has three 

independent components namely truth, indeterminacy and false membership values. Later on, 

Wang et al. [32] grounded the notion of single valued neutrosophic set (in short SV-N-S), which is 

basically a subclass of N-S. One can use SV-N-S to represent indeterminate and incomplete 

information which makes trouble to take decision (or in selection) in the real world. Thereafter, 

many researchers of different countries used the notion of SV-N-S in their model (or algorithm) in 

the different branches of real world such as medical diagnosis, educational problem, social 

problems, decision-making problems, conflict resolution, image processing, etc. In 2013, 

Smarandache [28] introduced the idea of n-valued refined neutrosophic logic, and applied this 

notion in physics. In 2016, Smarandache [29] grounded a new concept of neutrosophic over-set, 

neutrosophic under-set, neutrosophic off-set, and studied their various properties. 

In the year 2020, Mallick and Pramanik [25] grounded the idea of single valued pentapartitioned 

neutrosophic set by splitting the indeterminacy into three independent components namely 

contradiction, ignorance and unknown-membership, and studied several properties of them. In 

2021, Das and Tripathy [17] grounded the notion of pentapartitioned neutrosophic topological space 

and formulated several results on it. Afterwards, Das et al. [12] established an MADM strategy based 
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on tangent similarity measure. Later on, Majumder et al. [24] presented a cosine similarity measure 

based MADM strategy under the single valued pentapartitioned neutrosophic set environment. 

Recently, Das et al. [13] established a MADM strategy using grey relational analysis method under 

the single valued pentapartitioned neutrosophic set environment. 

In this article, we introduce the notion of single valued pentapartitioned neutrosophic off set / 

over set / under set. Besides, we establish several operations on single valued pentapartitioned 

neutrosophic off sets / over sets / under sets. Besides, we furnish some suitable examples to validate 

the results established in this article. Further, we establish some interesting results on single valued 

pentapartitioned neutrosophic off set / over set / under set. 

Research gap: No investigation on single valued pentapartitioned neutrosophic over-set / 

under-set / off-set has been reported in the recent literature. 

Motivation: To fill the research gap, we introduce and study the notion of single valued 

pentapartitioned neutrosophic over-set/under-set/off-set. 

 

The remaining part of this article has been divided into following three sections: 

In section 2, we recall some basic definitions and properties related to N-Ss, single valued 

neutrosophic over-sets / under-sets / off-sets and single valued pentapartitioned neutrosophic sets. 

In section 3, we introduce the notion of single valued pentapartitioned neutrosophic over-set / 

under-set / off-set, and study some of their basic properties. In this section, we also formulated 

several interesting results on single valued pentapartitioned neutrosophic over-set / under-set / 

off-set. In section 4, we conclude the word done in this article. 

 

2. Some Relevant Results: 

In this section, we give some relevant definitions and results for our study of the main results of 

this paper. 

The notion of N-S was defined by Smarandache [27] in the following way: 

Assume that L be a non-empty set. Then D, an N-S over L is defined by: 

D={(,TD(),ID(),FD()):L}, where TD, ID, FD are the truth, indeterminacy and false membership 

functions from the whole set L to [0, 1] respectively. So, 0  TD() + ID() + FD()  3, for each L. 

 

The notions of neutrosophic over-set, neutrosophic under-set, and neutrosophic off-set was also 

grounded by Smarandache [29] in the year 2016, and defined as follows: 

Let L be a universal set. Then, a single valued neutrosophic over set D over L is defined by: 

D={(,TD(),ID(),FD()):L}, such that at least one member in D has at least one of the neutrosophic 

component that is greater than 1. Here, TD, ID, FD : L[0, Ň] are the truth, indeterminacy, and false 

membership functions respectively such that 0 < 1 < Ň, and Ň is the over-limit of D. 

For example, D={(a,0.2,0.3,1.5), (b,0.9,1.3,0.2), (c,0.2,0.1,0.6)} is an neutrosophic over set defined over 

L. But K={(a,0.3,0.5,0.9), (b,0.8,0.4,0.9), (c,0.2,0.5,0.5)} is not an neutrosophic over set defined over L. 

 

Let L be a universal set. Then, a single valued neutrosophic under set Y over L is defined by: 
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Y={(,TY(),IY(),FY()):L}, such that at least one member in Y has at least one of the neutrosophic 

component that is smaller than 0. That is, the truth, indeterminacy, and false membership functions 

TY, IY, FY are defined from L to [Ň, 1] such that Ň < 0 < 1, and Ň is said to be the under-limit of Y. 

For example, Y={(a,0.2,-0.3,0.9), (b,-0.5,0.2,-0.2), (c,0.2,-0.1,0.6)} is an neutrosophic under-set defined 

over L. But Z={(a,0.3,0.5,0.9), (b,0.8,0.4,0.9), (c,0.2,0.5,0.5)} is not an neutrosophic under-set defined 

over L. 

 

A single valued neutrosophic off-set K over a fixed set L is defined by: 

K={(,TK(),IK(),FK()):L}, such that some members of K has at least one of the neutrosophic 

component that is smaller than 0 and at least one of the neutrosophic component that is greater than 

1. That is, the truth, indeterminacy, and false membership functions TK, IK, FK are defined from L to 

[Ň, Ñ] such that Ň < 0 < 1 < Ñ. Here, Ň and Ñ are said to be the under-limit and over-limit of K 

respectively. 

For example, K={(a,0.2,-0.3,1.6), (b,-0.5,0.2,0.2), (c,1.3,0.1,0.6)} is an neutrosophic off set defined 

over L. But L={(a,0.3,1.5,0.9), (b,0.8,0.4,0.9), (c,0.2,0.5,-0.5)} is not an neutrosophic off set defined over 

L. 

Recently, Mallick and Pramanik [14] grounded the idea of pentapartitioned neutrosophic set (in 

short PNS) by extending the notions of N-S. 

Suppose that L be a fixed set. Then D, a PNS over L is defined as follows: 

D={(,TD(),CD(),RD(),UD(),FD()):L}, where TD, CD, RD, UD, FD: L[0, 1] are the truth, 

contradiction, ignorance, unknown and false membership functions respectively. So, 

0TD()+CD()+RD()+UD()+FD()5. 

Let X={(,TX(),CX(),RX(),UX(),FX()):L} and Y={(,TY(),CY(),RY(), UY(),FY()):L} be 

two PNSs over L. Then, 

(i) XY  TX()TY(), CX()CY(), RX()RY(), UX()UY(), FX()FY(), for all L. 

(ii) XY={(, max{TX(), TY()}, max{CX(), CY()}, min{RX(), RX()}, min{UX(), UX()}, min{FX(), 

FX()}):L}. 

(iii) Xc={(,TX(),CX(),1-RX(),UX(),FX()):L}. 

(iv) XY={(, min{TX(), CY()}, min{CX(), CY()}, max{RX(), RX()}, max{UX(), UX()}, max{FX(), 

FX()}):L}. 

 

3. Pentapartitioned Neutrosophic Off-set / Over-set / Under-set: 

In this section, we introduce the notions of pentapartitioned neutrosophic off-set (in short 

PN-off-S) / pentapartitioned neutrosophic under-set (in short PN-under-S) / pentapartitioned 

neutrosophic over-set (in short PN-over-S). Then, we formulate and study some interesting results 

on them. 

Definition 3.1. Let L be a universal set. Then D, a PN-over-S over L is defined by: 

D={(,TD(),CD(),GD(),UD(),FD()):L}, such that at least one member in D has at least one of the 

pentapartitioned neutrosophic component that is greater than 1 and no member has 

pentapartitioned neutrosophic components that are less than zero. Here, TD, CD, GD, UD, FD : L[0, 
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Ň] are the truth, contradiction, ignorance, unknown and false membership functions respectively 

such that 1 < Ň, and Ň is said to be the over-limit of D. 

Example 3.1. Assume that L={a, b, c} be a fixed set. Then, D={(a,0.3,0.6,1.2,0.5,0.3), (b,1.1,1.3,0.2,0.3, 

0.5), (c,1.2,0.6,0.9,0.3,0.4)} is a PN-over-S defined over L. But K={(a,0.1,0.4,0.4,0.6,0.8), (b,0.9,0.5,0.8,0.6, 

0.8), (c,0.1,0.6,0.7,0.8,0.9)} is not a PN-over-S defined over L. 

The pictorial representation of Example 3.1 is given as follows: 

 

 

 

Definition 3.2. Suppose that L be a fixed universal set. Then Y, a PN-under-S over L is defined by: 

Y={(,TY(),CY(),GY(),UY(),FY()):L}, such that at least one member in Y has at least one of the 

neutrosophic component that is smaller than 0 and no member has pentapartitioned neutrosophic 

components that are greater than one. That is, the truth, contradiction, ignorance, unknown, and 

false membership functions TY, CY, GY,UY, FY are defined from L to [Ň,1] such that Ň<0, and Ň is said 

to be the under-limit of Y. 

Example 3.2. Assume that L={a, b, c} be a fixed set. Then, Y={(a,0.6,0.2,0.5,-0.3,-0.9), (b,-0.3,0.5,-0.2, 

0.5,0.2), (c,0.5,-0.2,0.3,0.1,-0.6)} is a PN-under-S over L. But Z={(a,0.3,0.2,0.8,0.5,0.9), (b,0.9,0.8,0.5,0.4, 

0.9), (c,0.2,0.5,0.3,0.5,0.5)} is not a PN-under-S over L. 

The pictorial representation of Example 3.2 is given as follows: 
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Definition 3.3. Assume that L be a fixed non-empty set. Then K, a PN-off-S over L is defined by: 

K={(,TK(),CK(),GK(),UK(),FK()):L}, such that some members of K has at least one of the 

pentapartitioned neutrosophic component that is smaller than 0 and at least one of the 

pentapartitioned neutrosophic component that is greater than 1. That is, the truth, contradiction, 

ignorance, unknown, and false membership functions TK, CK, GK, UK, FK are defined from L to [Ň, Ñ] 

such that Ň < 0 < 1 < Ñ. Here, Ň and Ñ are called the under-limit and over-limit of K respectively. 

Example 3.3. Assume that L={a, b, c} be a fixed set. Then, K={(a,1.3,0.5,0.2,-0.6,1.1), (b,-0.4,1.2,0.6, 

0.3,-0.5), (c,-0.9,0.5,1.3,-0.1,0.6)} is a PN-off-S defined over L. But L={(a,0.3,0.3,0.4,0.4, 0.9), 

(b,0.9,0.4,0.1,0.2,0.3), (c,0.6,0.4,0.4,0.3,0.3)} is not a PN-off-S defined over L. 

The pictorial representation of Example 3.3 is given as follows: 

 

 

 

Definition 3.4. Assume that L be a fixed set. Then, null PN-over-S (0P) and the absolute PN-over-S 

(1P) over L is defined by: 

(i) 0P = {(,0,Ñ,Ñ,Ñ,0): L}; 

(ii) 1P = {(,Ñ,0,0,0,Ñ): L}. 

Definition 3.5. Assume that L be a fixed set. Then, null PN-under-S (0P) and the absolute 

PN-under-S (1P) over L is defined by: 

(i) 0P = {(,Ň,1,1,1,Ň): L}; 

(ii) 1P = {(,1,Ň,Ň,Ň,1): L}. 

Definition 3.6. Assume that L be a fixed set. Then, null PN-off-S (0P) and the absolute PN-off-S (1P) 

over L is defined by: 

(i) 0P = {(,Ň,Ñ,Ñ,Ñ,Ň): L}; 

(ii) 1P = {(,Ñ,Ň,Ň,Ň,Ñ): L}. 

Definition 3.7. Assume that K={(,TK(),CK(),RK(),UK(),FK()):L} and Y={(,TY(),CY(),RY(), 

UY(),FY()):L} be two PN-over-Ss / PN-under-Ss / PN-off-Ss. Then, the intersection and union of 

K and Y is defined by 

(i) KY={(, min{TK(),TY()}, max{CK(), CY()}, max{RK(), RY()}, max{UK(), UY()}, min{FK(), 

FY()): L}; 
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(ii) KY={(, max{TK(), TY()}, min{CK(), CY()}, min{RK(), RY()}, min{UK(), UY()}, max{FK(), 

FY()): L}. 

Example 3.4. Assume that, L={c, d} be a fixed set. Suppose that K={(c,0.9,0.8,1.3,0.4,1.5), (d,0.2,1.3,1.7, 

0.2,0.9)} and Y={(c,0.6,0.3,1.6,1.2,0.8), (d,0.8,0.3,0.8,1.5,0.7)} be two PN-over-Ss over L. Then, 

(i) KY={(c,0.6,0.8,1.6,1.2,0.8), (d,0.2,1.3,1.7,1.5,0.7)}; 

(ii) KY={(c,0.9,0.3,1.3,0.4,1.5), (d,0.8,0.3,0.8,0. 2,0.9)}. 

Example 3.5. Assume that, L={c, d} be a fixed set. Suppose that K={(c,0.6,0.6,-0.2,0.5,-0.9), (d,0.5,-0.5, 

0.4,0.6,-0.1)} and Y={(c,-0.4,0.7,0.5,0.4,-0.8), (d,0.8,-0.5,-0.3,0.5,0.8)} be two PN-under-Ss over L. Then, 

(i) KY={(c,-0.4,0.7,0.5,0.5,-0.9), (d,0.5,-0.5,0.4,0.6,-0.1)}; 

(ii) KY={(c,0.6,0.6,-0.2,0.4,-0.8), (d,0.8,-0.5,-0.3,0.5,0.8)}. 

Example 3.6. Assume that, L={c, d} be a universe of discourse. Let K={(c,0.8,-0.6,0.7,0.6,1.1), 

(d,1.5,-0.2, 0.9,0.7,0.4)} and Y={(c,1.8,0.9,-0.9,0.7,1.2), (d,0.1,0.7,1.5,-0.6,0.9)} be two PN-off-Ss. Then, 

(i) KY={(c,0.8,0.9,0.7,0.7,1.1), (d,0.1,0.7,1.5,0.7,0.4)}; 

(ii) KY={(c,1.8,-0.6,-0.9,0.6,1.2), (d,1.5,-0.2,0.9,-0.6,0.9)}. 

Definition 3.8. Let K and Y be two PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

(i) KY if and only if TK()TY(), CK()CY(), RK()RY(), UK()UY(), FK()FY(),L; 

(ii) Kc={(,1-TK(),1-CK(),1-RK(),1-UK(),1-FK()):L}. 

Example 3.7. Suppose that L={c, d} be a non-empty set. Assume that K={(c,1.5,1.9,0.9,0.9,0.5), (d,1.7, 

1.3,1.3,0.4,0.3)} and Y={(c,1.6,1.2,0.8,0.3,0.6), (d,1.8,0.8,1.2,0.3,0.9)} be two  PN-over-Ss. Then, KY, 

and Kc={(c,-0.5,-0.9,0.1,0.1,0.5), (d,-0.7,-0.3,-0.3,0.6,0.7)} and Yc={(c,-0.6,-0.2,0.2,0.7,0.4), (d,-0.8,0.2,-0.2, 

0.7,0.1)}. 

Example 3.8. Suppose that L={c, d} be a non-empty set. Assume that K={(c,0.8,0.7,-0.8,0.3,0.9) (d,-0.9, 

0.8,-0.2,0.3,-0.1)} and Y={(c,0.9,-0.5,-0.9,0.1,0.9), (d,0.7,0.5,-0.3,-0.5,0.1)}  be two PN-under-Ss over L. 

Then, KY, and Kc={(c,0.2,0.3,1.8,0.7,0.1), (d,1.9,0.2,1.2,0.7,1.1)} and Yc={(c,0.1,1.5,1.9,0.9,0.1), (d,0.3, 

0.5,1.3,1.5,0.9)}. 

Example 3.9. Suppose that L={c, d} be a non-empty set. Assume that K={(c,0.8,-0.7,1.5,0.6,1.5), (d,1.7, 

0.5,-0.1,0.3,0.5)} and Y={(c,0.8,-0.8,0.9,0.5,1.7), (d,1.8,0.2,-0.5,0.2,0.8)} be two PN-off-Ss over L. Then, 

KY, and Kc={(c,0.2,1.7,-0.5,0.4,-0.5), (d,-0.7,0.5,1.1,0.7,0.5)} and Yc={(c,0.2,1.8,0.1,0.5,-0.7), (d,-0.8,0.8, 

1.5,0.8,0.2)}. 

Proposition 3.1. Assume that K and Y be two PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

(i) KY=YK; 

(ii) KY=YK. 

Proof. It is known that, KY = {(, max(TK(), TY()), min(CK(), CY()), min(RK(), RY()), 

min(UK(), UY()),max(FK(), FY()): L} = {(, max(TY(), TK()), min(CY(), CK()), min(RY(), 

RK()), min(UY(), UK()), max(FY(), FK()): L} = YK. 

Therefore, KY = YK. 

Similarly, it can be established that KY = YK. 

Proposition 3.2. Let K1, K2 and K3 be three PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

K1(K2K3) = (K1K2)K3 and K1(K2K3) = (K1K2)K3. 
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Proof. Suppose that, iK1(K2K3). Therefore, 

i K1  {(i, max(TK2(i),TK3(i)), min(CK2(i),CK3(i)), min(RK2(i),RK3(i)), min(UK2(i), UK3(i)), 

max(FK2(i), FK3(i)): i L} 

i {(i, max(TK1 (i),TK2 (i),TK3 (i)), min(CK1 (i),CK2 (i),CK3 (i)), min(RK1 (i),RK2 (i),RK3 (i)), 

min(UK1(i),UK2(i),UK3(i)), max(FK1(i),FK2(i),FK3(i)): i L}  

i {(i, max(TK1 (i),TK2 (i)), min(CK1 (i),CK2 (i)), min(RK1 (i),RK2 (i)), min(UK1 (i),UK2 (i)), 

max(FK1(i),FK2(i)): i L}  K3 

i(K1  K2) K3 

K1(K2  K3) (K1  K2)K3                                                                                                            (1) 

Assume that, i (K1K2) K3. Therefore, 

i {(i, max( TK1 (i),TK2 (i)), min( CK1 (i), CK2 (i)), min(RK1 (i),RK2 (i)), min(UK1 (i),UK2 (i)), 

max(FK1(i),FK2(i)): i L}  K3 

i {(i, max(TK1 (i),TK2 (i),TK3 (i)), min(CK1 (i),CK2 (i),CK3 (i)), min(RK1
(i),RK2 (i),RK3 (i)), 

min(UK1(i),UK2(i),UK3(i)), max(FK1(i),FK2(i),FK3(i)) : i L}  

i K1  {(i, max(TK2(i),TK3(i)), min(CK2(i),CK3(i)), min(RK2(i),RK3(i)), min(UK2(i),UK3(i)), 

max(FK2(i),FK3(i)) : i L}  

i K1  (K2 K3) 

(K1K2) K3 K1  (K2 K3)                         (2) 

From eqs (1) and (2), we have, K1(K2  K3)=(K1  K2) K3. 

Similarly, it can be established that, K1(K2K3)= (K1K2) K3. 

Proposition 3.3. Let K1, K2 and K3 be three PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

K1(K2K3) = (K1K2)(K1K3) and K1(K2K3) = (K1K2)(K1K3). 

Proof. Suppose that i K1(K2K3). Therefore, 

i K1  {(i, min(TK2(i),TK3(i)), max(CK2(i),CK3(i)), max(RK2(i),RK3(i)), max(UK2(i), UK3(i)), 

min(FK2(i), FK3(i)): i L} 

 i {(i, max(TK1 (i), min(TK2 (i),TK3 (i))), min(CK1 (i), max(CK2 (i),CK3 (i))), min(RK1 (i), 

max(RK2(i),RK3(i))), min(UK1(i), max(UK2(i),UK3(i))), max(FK1(i), min(FK2(i), FK3(i))): i L} 

 i {(i, max(TK1 (i),TK2 (i)), min(CK1 (i),CK2 (i)), min(RK1 (i),RK2 (i)), min(UK1 (i), UK2 (i)), 

max(FK1(i), FK2(i)): i L}  {(i, max(TK1(i),TK3(i)), min(CK1(i),CK3(i)), min(RK1(i),RK3(i)), 

min(UK1(i), UK3(i)), max(FK1(i), FK3(i)): i L} 

 i(K1K2)(K1K3) 

 K1(K2  K3)  (K1K2)(K1K3)                                                            (1) 

Assume that, i(K1K2)(K1K3). Therefore, 

i {(i, max( TK1 (i),TK2 (i)), min( CK1 (i),CK2 (i)), min(RK1 (i),RK2 (i)), min(UK1 (i), UK2 (i)), 

max(FK1(i), FK2(i)): i L}  {(i, max(TK1 (i),TK3 (i)), min(CK1(i),CK3 (i)), min(RK1 (i),RK3 (i)), 

min(UK1(i), UK3(i)), max(FK1(i), FK3(i)): i L} 

 i {(i, max(TK1 (i), min(TK2 (i),TK3 (i))), min(CK1 (i), max(CK2 (i),CK3 (i))), min(RK1 (i), 

max(RK2(i),RK3(i))), min(UK1(i), max(UK2(i),UK3(i))), max(FK1(i), min(FK2(i), FK3(i))): i L} 

i K1(K2  K3) 
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(K1K2)(K1K3)  K1(K2  K3)                           (2) 

From eqs. (1) and (2), we have K1(K2  K3) = (K1K2)(K1K3). 

Similarly, it can be established that, K1(K2K3) = (K1K2)(K1K3). 

Proposition 3.4. Let K1 be a PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, K1 K1
c  = 0PN. 

Proof: Suppose that, iK1K1
c . This implies, 

i{(i, TK1 (i), CK1 (i), RK1 (i), UK1 (i), FK1 (i)): iL}  {(i, 1-TK1 (i), 1-CK1 (i), 1-RK1 (i), 

1-UK1(i), 1-FK1(i)): iL} 

 i{(i, min(TK1 (i), 1-TK1 (i)), max(CK1 (i), 1-CK1 (i)), max(RK1 (i), 1-RK1 (i)), max(UK1 (i), 

1-UK1(i)), min(FK1(i), 1-FK1(i))): iL} 

 i 0PN 

Therefore, K1K1
c 0PN                  (3) 

Again, consider i 0PN 

i {min(TK1 (i),(1-TK1 (i)), max(CK1 (i),UK1 (i)), max(RK1 (i),(1-RK1 (i)), max(UK1 (i),CK1 (i)), 

min(FK1(i),(1-FK1(i))} 

i {TK1(i),CK1(i),RK1(i),UK1(i),FK1(i)}{(1-TK1(i)),UK1(i),(1-RK1(i)),CK1(i),(1-FK1(i))} 

i K1 K1
c . 

Therefore, 0PN  K1 K1
c                   (4) 

From the equation (3) and (4) we can conclude that, 

K1 K1
c  = 0PN 

Proposition 3.5. Let K1 and K2 be two PN-off-Ss / PN-under-Ss / PN-over-Ss over L. Then, 

(i) (K1K2)
c=K1

CK2
C 

(ii) (K1K2)
c=K1

CK2
C 

Proof: Suppose that, i((K1K2)
c  

i {max(TK1(i),TK2(i)), min(CK1(i),CK2(i)), min(RK1(i),RK2(i)), min(UK1(i),UK2(i)), max  

(FK1(i),FK2(i))}c  

i {min((1-TK1 (i)),(1-TK2 (i))), max(UK1 (i),UK2 (i)), max((1-RK1 (i)),(1-RK2 (i))), max(CK1 (i), 

CK2(i)), min((1-FK1(i)),(1-FK2(i)))} 

i {(1-TK1 (i)), CK1 (i),(1-RK1 (i)),UK1 (i),(1- FK1 (i))}{(1-TK2 (i)), CK2 (i),(1-RK2 (i)),UK2 (i), 

(1-FK1(i))}. 

i K1
CK2

C 

(K1K2)
cK1

CK2
C                                                                            (5) 

Assume that, i K1
CK2

C 

i {(1- TK1 (i)), CK1 (i),(1- RK1 (i)), UK1 (i),(1- FK1 (i))}{(1- TK2 (i)), CK2 (i),(1- RK2 (i)), UK2 (i), 

(1-FK1(i))} 

i {min((1-TK1 (i)),(1-TK2 (i))), max(UK1 (i),UK2 (i)), max((1-RK1 (i)),(1-RK2 (i))), max(CK1 (i), 

CK2(i)), min ((1-FK1(i)),(1-FK2(i)))} 

i {max(TK1(i),TK2(i)), min(CK1(i),CK2(i)), min(RK1(i),RK2(i)), min(UK1(i),UK2(i)), max  

(FK1(i),FK2(i))}c  

i (K1K2)
c
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Therefore, (K1K2)
cK1

CK2
C.                                                                  (6) 

From the equation (5) and (6) we can conclude that, 

(K1K2)
c= K1

CK2
C. 

Assume that, i (K1K2)
c  

i {min(TK1 (i),TK2 (i)), max(CK1 (i),CK2 (i)), max(RK1 (i),RK2 (i)), max(UK1 (i),UK2 (i)), min  

(FK1(i),FK2(i))}c 

i {max((1-TK1 (i)),(1-TK2 (i))), min(UK1 (i),UK2 (i)), min((1-RK1 (i)),(1-RK2 (i))), max(CK1 (i), 

CK2(i)), max((1-FK1(i)),(1-FK2(i)))} 

i {(1-TK1 (i)),UK1 (i),(1-RK1 (i)), CK1 (i),(1- FK1 (i))}{(1-TK2 (i)),UK2 (i),(1-RK2 (i)), CK2 (i), 

(1-FK1(i))} 

i (K1
CK2

C) 

Therefore, (K1K2)
cK1

CK2
C                                                                   (7) 

Assume that, i (K1
CK2

C) 

i {(1- TK1 (i)), UK1 (i),(1- RK1 (i)), CK1 (i),(1- FK1 (i))}{(1- TK2 (i)), UK2 (i),(1- RK2 (i)), CK2 (i), 

(1-FK1(i))} 

i {max((1-TK1 (i)),(1-TK2 (i))), min(UK1 (i),UK2 (i)), min((1-RK1 (i)),(1-RK2 (i))), max(CK1 (i), 

CK2(i)), max((1-FK1(i)),(1-FK2(i)))} 

i {min(TK1 (i),TK2 (i)), max(CK1 (i),CK2 (i)), max(RK1 (i),RK2 (i)), max(UK1 (i),UK2 (i)), min  

(FK1(i),FK2(i))}c 

i (K1K2)
c  

Therefore, (K1
CK2

C)  (K1K2)
c                                                                                                            (8) 

From eq. (7) and eq. (8), we can conclude that (K1K2)
c= K1

CK2
C. 

 

6. Conclusions: In this article, we have introduced the notion of single valued pentapartitioned 

neutrosophic over-set / under-set / off-set. Besides, we have studied several properties on them. In 

the future, we hoped that the notion of some algebraic structures like Groups, Field, etc. can be easily 

applied to the proposed sets. Furthermore, the notion of proposed sets can also be applied to real life 

decision making problems [5, 12, 13, 19, 22, 24, etc.]. 
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