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Abstract: Clustering research is an important field in machine learning, pattern recognition and 

other fields. The neutrosophic set characterizes the data through true membership functions, 

indeterminate membership functions and false membership functions. Data clustering using 

neutrosophic set has become one of the current research hotspots. In this paper, first, a new 

definition of data uncertainty in a neutrosophic set is proposed in this paper based on the density 

of data. Next, a clustering model based on the uncertainty value of neutrosophic set data is 

proposed by considering the main cluster (true membership) and the noise cluster (false 

membership) in the data set. The model takes into account the distance of the data points to the 

cluster centers and the indeterminacy value of each data point, and then minimizes the proposed 

cost function by the method of Lagrangian multipliers. The true membership value and false 

membership value of each data point can be obtained. Finally, the effectiveness of the method is 

demonstrated by experiments on the various datasets. Experimental results show that the cost 

function has more accurate membership degree when dealing with boundary points and outliers, 

and outperforms existing clustering methods on datasets. 
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1. Introduction 

Clustering is to divide data into disjoint groups, each of which satisfies two rules: Objects are 

similar (or related) to each other within the same group (minimizing intra-cluster distance), and at 

the same time different (or unrelated) to other groups (maximizing inter-cluster distance). Data 

clustering is an important field in machine learning and has a wide range of applications in 

computer vision, image processing, medicine, geology, and pattern recognition [1-6]. 

In k-type clustering, the clustering method represented by k-means [7] is hard clustering, and 

k-means makes each data point belong to exactly one cluster. It divides the data into k clusters by 

minimizing the intra-cluster squared distance and the main disadvantage is that it cannot ensure a 

global minimum variance. K-medoid is a variant of k-means that computes the median of each 

cluster for its cluster center. One of the strongest assumptions in median-based clustering models is 

that objects must belong to one (and only one) cluster. However, Krishnapuram proposed the fuzzy 

k-center clustering algorithm (FKM) [8]. The essential difference between FKM and k-means is that 

FKM allows each data point to have membership in all clusters, rather than a single cluster with 

different memberships. Kannan [9] proposed a robust kernel-based FKM by combining normed 
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kernel function and center initialization algorithm. Reference[10] introduced adaptive spatial 

information theory fuzzy clustering into traditional FKM to improve robustness. 

Different from the hard clustering, the fuzzy clustering allows each object to be assigned to all 

clusters with different degrees of membership. FCM [11] is the most typical fuzzy clustering 

algorithm. But FCM has four major problems: 1) It just minimizes the variance within the class and 

does not consider the variance between clusters like the k-means algorithm does. 2) The result of 

clustering depends largely on the initialization. 3) It is sensitive to noise, and the membership degree 

of noise points may be high. 4) It is also sensitive to the type of distance metric and cannot 

distinguish between equally likely and equally less likely data points. Krishnapuram and Keller 

proposed a new possibility c-means (PCM) [12]. However, it is sensitive to cluster center 

initialization, requires additional parameters to be tuned, and may generate overlapping clusters. 

Reference [13] proposed a robust sparse fuzzy k-means algorithm (RSFKM), which introduced a 

robust function to deal with outliers and noise points to enhance the robustness and sparsity of the 

FCM algorithm. Reference [14] proposed a variant of fuzzy clustering and hard clustering called 

relational fuzzy c-means. In recent years, many clustering methods have been developed based on 

different theories [15-17]. 

The neutrosophic theory [18] was first proposed by Smarandache in 1995. Picture fuzzy set is a 

standardized form of neutrosophic set. Thong [19] proposed an picture fuzzy clustering 

algorithm(FC-PFS). This algorithm needs to calculate three matrices of the same scale, and the 

clustering effect is not good for high-dimensional data. Li [20] proposed a single-valued 

neutrosophic clustering algorithm based on Tsallis entropy maximization in the framework of 

picture fuzzy set clustering and single-valued neutropenic set. The algorithm showed good results 

in image segmentation. Another the algorithms are based on the original neutrosophic set 

framework. For example, Guo [21] proposed the neutrosophic c-means clustering algorithm (NCM) 

based on the neutrosophic set and FCM, which can effectively distinguish the sample points, 

boundary points and outliers in the cluster. The true membership is not affected by noise, which 

effectively solves the problem that the FCM algorithm cannot detect abnormal data points. Rashno 

[22] proposed a neutrosophic clustering algorithm based on data indeterminacy, which can 

effectively separate boundary points and noise points. Ye [23] proposed a single-valued 

neutrosophic minimum spanning tree clustering algorithm (SVNMST) by defining a generalized 

single-valued neutrosophic set distance measure, which showed great superiority in the clustering 

of single-valued neutrosophic observation data. Kandasamy [24] proposed a dual-valued 

neutrosophic minimum spanning tree clustering algorithm (DVNMST) to cluster data represented 

by dual-valued neutrosophic information. All previous methods deal with boundaries and outliers 

directly in the cost function. This paper mainly deals with boundary points and outliers by 

proposing an indeterminate set (I) in the NS set, and expressing this set as a new clustering cost 

function. The rest of the paper is organized as follows. Section II reviews the FKM algorithm and the 

NS set. Section III presents the proposed method(INCA). Section IV presents the experimental 

results of the method on scatter and real datasets. Finally, Section V concludes the paper. 

2. Related Algorithms  

2.1 Definition of NS 

X is a set of objects, x is an element in X, and the neutrosophic set A on X can be expressed as 

 [ ,( ( ), ( ), ( ))] |A A AA x T x I x F x x X  , (1) 

where  
A

T x is the true value of the object,  
A

I x is the indeterminate value,  
A

F x is the false 

value. They belongs to the standard and non-standard subsets in ]0 ,1 [  , namely 
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( ), ( ), ( ) : ]0 ,1 [A A AT x I x F x X   . The sum of ( ), ( ), ( )A A AT x I x F x has no limit, so there is 

0 sup ( ) sup ( ) sup ( ) 3A A AT x I x F x      . 

2.2 FKM 

The FKM algorithm is a clustering algorithm based on the median of objects, and its objective 

function is as follows 

 
1 1
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n n

h

FKM ij ij

i j
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(3) 

where
ije is the representation of the data object 

io  to the cluster center
jo (if 

jo is not the cluster 

center, then 
ije ), and h is the fuzzy factor. The fuzzy factor is a hyperparameter that represents the 

expected degree of overlap between the clusters to be found. When h → 1+, data objects are often 

assigned to a cluster, the clustering is very clear. When h → ∞, objects tend to be evenly distributed 

in each cluster. The final membership value for each non-cluster center and each cluster center is 1/k. 

Given a set of known cluster centers (selected from sample points), the membership of each 

object to the selected cluster center can be found by computing the following expression: 

 1/ 1

| 1

1

tt

hij

ij

t e it

e
d

d






 
 
 


, 

(4) 

2.3 NCM 

The neutrosophic c-means (NCM) [10] defines the true membership, false membership and  

indeterminate membership of the data. NCM can handle boundary points and outliers contained in 

the dataset itself . Solve the following convex optimization problem: 

       
2 2 2

1 2  max 3

1 1 1 1

, ,
N C N N

m m m

ij i j i i i i

i j i i

J T I F T x c I x c F   
   

       , (5) 

where m is a constant. , ,ij i iT I F
 

are the membership value belongs to the determinate clusters, 

boundary regions and noise datasets. Define 0 , , 1ij i iT I F   , satisfying the following constraints:                  

1

1
C

ij i i

j

T I F


   , (6) 

For each data point i, the cluster centeris ci max calculated using
ijT with the largest and second 

largest value:     
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max
2

pi qi

i

c c
c


 , (7) 

1,2,...

1,2,...

arg max( )

arg max( )

i ij

j C

j ij

j pi j C

p T

q T



  






  

(8) 

3. INCA  

3.1 Characterization of indeterminacy 

A new clustering method is proposed in this paper, which can cluster data containing outliers 

and boundary points. The basic idea is to combine the FCM algorithm with the neutrosophic set. 

First, we define the indeterminate for each data point through Euclidean distance, and use the 

uncertainty in the neutrosophic set to describe it. 
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I
 


 (12) 

where
i is the local density of the i-th data sample and

i is the distance attribute of the i-th data 

sample. If a point is denser than its neighbors and has a relatively large distance from the more 

dense point, the point is considered to be within the main cluster and should have less uncertainty. 

Instead, the point has a larger indeterminate value. This idea makes the uncertainty close to 1 for 

noise points and close to 0 for the points within the main cluster. Lower uncertainty is assigned to 

the points in dense regions and not vice versa. As shown in Figure 1, points 1 and 18 in the left figure 

are the cluster centers of the two clusters. It can be seen from the right figure that the values 

of
i and

i of the two points are large, so the indeterminate value is small. The indeterminate values 

of 11, 14 and 16 points are relatively large. 

 
(a) 

 
(b) 

Figure 1. The distribution of data points, 
i and

i (a) data points; (b)
i and

i  
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3.2 Model 

In INCA, the determinate and indeterminate membership of the main cluster and noise points is 

considered. Set A is the union of determinate clusters and indeterminate clusters, 

; 1,2, ,iA C R i k  ; where
iC and R represent determinate clusters and indeterminate clusters I, 

and is the union operator. In clustering applications,
iC and R represent the membership degree of 

the true set and the false set. Therefore,
iC and R are the union of true and false set in the NS set. We 

hope that a smaller distance
2

i jx c corresponds to a larger true membership
ijT and a smaller false 

membership
iF . It indicates that the data points

ix are easily divided into the corresponding 

clusters
jc . A larger distance

2

i jx c corresponds to a smaller true membership
ijT and a larger false 

membership
iF . It indicates that the data points are not easily divided into the corresponding 

clusters
jc . The objective function of the proposed algorithm is: 

      
2

2

1 22
1 1 1 1

, 1 i j

n n n n
m m x x

i j i ij i i

i j i j

L T F x x I T I F e 
 

   

     , (13) 

where
ijT and

iF are the membership of the data i to the main cluster j and the membership of the 

noise cluster. For each data point, the following conditions are simultaneously met: 

 
1

. .  1,    1, ,
n

ij i

j

s t T F i n


    , (14) 

The decision variable   , 1,2,ijT i j n is the membership degree that assigns the data object i 

to the cluster center j (if the data point j is not a cluster center, 0ijT  ). To comply with the constraints 

of NS theory, constraints (14) are defined. As can be seen from the above model, there are two 

conditions for data point i to have the highest membership degree to the cluster j: a) the distance of 

data point i to cluster center j is less than the distance to other cluster centers. b) The data point i 

should have a small indeterminacy. Similarly, there are two conditions for data point i to have the 

highest membership to a noisy cluster: a) it has the largest sum distance from all main clusters. b) 

The data point i should have a large indeterminacy. 

3.3 Model solution 

The Lagrangian function of the model is: 

      
2

2

1 22
1 1 1 1

1 1
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 

, (15) 

To minimize the Lagrange objective function, we use the following operations: 

 
2

1

1 ' ' 2
'

m m

i ij i j i

ij

L
m I T x c

T
 
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

, (16) 

 

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                              560



 

Dan Zhang, Yingcang Ma, Florentin Smarandache, Xuezhen Dai, Yaqin Qiao, Clustering Algorithm Based on Data 

indeterminacy in Neutrosophic Set 

  
2

' 21

2

' 1

1
i j

c
x cm m

i i i

ji

L
m I F e

F
 

 




  


 ,

 

(17) 

The norm is specifified as the Euclidean norm. Let
'

0
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Let
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Therefore: 
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(22) 

The above equations allow the formulation of INCA algorithm. It can be summarized in the 

following steps: 

INCA algorithm: 

input：X、n、k、D 

output：T, F; 

1：randomly select k centers; 

2：Calculate T using Equation (21); 

3：Calculate F using Equation(22); 

4：Calculate the value of the objective function
1;Z  

5：Select k centers by exhaustive method; 

6：Calculate T2; 

7：Calculate F2; 

8：Calculate the value of the objective function
2 ;Z  

      9：Compare the values of
1Z and

2Z , if
2 1Z Z , go back to step 5. 

If 
2 1Z Z , assign the center of

1Z to
2Z ,

2T to T,
2F to F and 

the end. 

The time complexity of INCA is divided into two parts. The first part is the calculation of the 

memberships T and F. It is related to the sample dimension, the number of samples and the number 
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of categories, and needs to traverse all the data points in the data. If the dimension of the given 

dataset is m, the number of sample points is n, and the number of clusters is c, the algorithm 

complexity is O(n2mc+n2m). The second part is the exhaustive optimization process, which needs to 

iteratively calculate the memberships T and F, so the complexity of this part of the algorithm is 

O[n!(n2mc+n2m)]. The overall algorithm complexity of this paper is O[n!(n2mc+n2m)]. We can see that 

the computational complexity is very high when m and n are large. 

4. Results  

4.1. Datasets 

The performance of INCA is evaluated on artificial datasets and real datasets. The proposed 

method is compared with INCM [22], FC-PFS [19], RFKM [13], NCM [21], and FKM [8] methods. In 

the experiment of the exhaustive clustering center, we only extract the same proportion of sample 

points from each class, and appropriately reduce the running time of the algorithm. 

The parameter dc of the uncertainty calculation part is set by the method in the article [25]. In 

the cost function of INCA, the parameters are configured as
1 21.3, 1, 2.m      

In this section, three types of datasets are used to evaluate the performance of INCA. The first is 

the diamond dataset, including the X19 and X24 scatter datasets proposed by Guo [25], and a scatter 

dataset we designed. In these datasets, border points between the main clusters and outliers far from 

the main clusters are considered. It is easy to see how the clustering method is affected by the main 

points in each dataset. The second is the UCI dataset, which includes higher-dimensional and 

larger-scale datasets. There are mainly dermatology, pima, TOX-171, votel, ecoli, iris, ionosphere 

and vote.  

4.2. Results 

4.2.1. Artificial datasets 

The X19 dataset has three clusters in Figure 2, points 1-5, 7-11 and 13-17 are points in the main 

cluster, points 6 and 12 are boundary points, points 18 and 19 are noise points. Figure 3 shows the 

clustering results of INCA. The memberships calculated by INCA and the FKM are counted in Table 

1. Although INCA and FKM assign the same cluster label to all points, INCA assigns the points(e.g. 

5, 7, 11, 12) with higher indeterminate membership in their corresponding clusters. Data point 5 has 

the same distance between the main and border clusters, but it belongs to the main cluster. FKM 

cannot distinguish point 5 as a boundary or a main cluster. INCA solves this problem, and the 

membership of point 5 assigned to the main cluster is 0.67, while the FKM is 0.36. Figure 4 visually 

depicts the membership of INCA and the FKM algorithm. 
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          Figure 2. X19                              Figure 3. Clustering results of INCA on X19 

 
(a) 

 
(b) 

Figure 4. Membership calculated by FKM and INCA on X19 

Table 1.  Clustering results of X19 

 FKM INCA 

U1 U2 U3 T1 T2 T3 F  

1 0.2844 0.3259 0.3897 0.8122 0.0478 0.1400 0  

2 0.2974 0.3469 0.3556 0.5882 0.1176 0.2941 0  

3 0.2821 0.3313 0.3865 0.7944 0.0467 0.1589 0  

4 0 0 1 1 0 0 0  

5 0.2843 0.3462 0.3695 0.6762 0.0638 0.2601 0  

6 0.2868 0.3704 0.3429 0.4545 0.0910 0.4545 0 boundary  

7 0.2819 0.4099 0.3082 0.2470 0.1107 0.6422 0  

8 0.3068 0.3865 0.3068 0.25 0.25 0.5 0  

9 0 1 0 0.1429 0.1429 0.7143 0  

10 0.3158 0.3684 0.3158 0 0 0 1  

11 0.3082 0.4099 0.2819 0.1107 0.2470 0.6422 0  

12 0.3429 0.3704 0.2868 0.0910 0.4545 0.4545 0 boundary 

13 0.3695 0.3462 0.2843 0.0638 0.6762 0.2601 0  

14 0.3556 0.3469 0.2974 0.1176 0.5882 0.2941 0  

15 0.3865 0.3313 0.2821 0.0467 0.7944 0.1589 0  

16 1 0 0 0 1 0 0  

17 0.3897 0.3259 0.2844 0.0478 0.8122 0.1400 0  

18 0.3304 0.3287 0.3409 0 0 0 1  

19 0.3437 0.3289 0.3274 0 0 0 1  

We also conduct more experiments, using the four-class X24 shown in Fig. 5 to compare INCA 

and FKM. Data points 6, 12 and 18 are boundaries and 24 is an outlier. Fig. 6 presents the clustering 

results of INCA. Table 2 lists the results of INCA and FKM. The first five data points belong to a 

main cluster because their T4 values are higher for the other clusters (T2, T3 and T4). It can also be 

inferred that similar observations data points 6, 12 and 18 are ambiguous because there are two 

highest T values. The last data point 24 was inferred as an outlier. Fig. 7 visually depicts the degree 

of membership. 
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Figure 5. X24Figure 6. Clustering results of INCA on X24 

 
(a) 

 
(b) 

Figure 7. Membership calculated by FKM and INCA on X24 

Table 2. Clustering results of X24 

 FKM INCA 

U1 U2 U3 U4 T1 T2 T3 T4 F  

1 0.0106 0.0687 0.0279 0.8929 0.0106 0.0219 0.0691 0.8984 0  

2 0 0    0 1 0 0 0 1 0  

3 0.0064 0.0542 0.0188 0.9207 0.0064 0.0142 0.0544 0.9250 0  

4 0.0203 0.1842 0.0589 0.7366 0.0216 0.0457 0.1554 0.7772 0  

5 0.0130 0.1572 0.0437 0.7861 0.0130 0.0318 0.1592 0.7959 0  

6 0.0222 0.4444 0.0889 0.4444 0.0227 0.0619 0.4577 0.4577 0 boundary 

7 0.0183 0.7409 0.0926 0.1482 0.0187 0.0591 0.7685 0.1537 0  

8 0.0360 0.5843 0.2337 0.1461 0 0 1 0 0  

9 0.0132 0.8435 0.0937 0.0496 0.0136 0.0519 0.8826 0.0519 0  

10 0 1 0 0 0.0427 0.1368 0.6838 0.1368 0  

11 0.0252 0.6181 0.3091 0.0476 0.0304 0.1519 0.7593 0.0584 0  

12 0.0221 0.1594 0.7969 0.0215 0.0595 0.4405 0.4405 0.0595 0 boundary 

13 0 0 1 0 0.0584 0.7593 0.1519 0.0304 0  

14 0.0942 0.0801 0.8007 0.0250 0 1 0 0 0  

15 0.0550 0.0517 0.8797 0.0135 0.0519 0.8826 0.0519 0.0136 0  

16 0.0925 0.0983 0.7861 0.0231 0.1657 0.6628 0.1325 0.0340 0  

17 0.2698 0.0934 0.6071 0.0296 0.1537 0.7685 0.0591 0.0187 0  

18 0.6281 0.0679 0.2791 0.0249 0.4577 0.4577 0.0619 0.0227 0 boundary 

19 0.9168 0.0183 0.0573 0.0075 0.7959 0.1592 0.0318 0.0130 0  
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20 1 0 0 0 0.9250 0.0544 0.0142 0.0064 0  

21 0.9433 0.0139 0.0363 0.0065 0.7461 0.1865 0.0467 0.0207 0  

22 0.9426 0.0147 0.0363 0.0064 1 0 0 0 0  

23 0.9562 0.0117 0.0266 0.0056 0.8984 0.0691 0.0219 0.0106 0  

24 0.6499 0.1098 0.1805 0.0597 0 0 0 0 1  

In this paper, a dataset is constructed as shown in Fig. 8. The dataset contains 83 data points, 

including 2 outliers and 3 boundary points. INCA can accurately distinguish main cluster points, 

boundary points and outlier points, as shown in Fig. 9. Data points 41 and 42 are outliers (blue 

circles in Figure 8), data points 61, 69 and 70 are boundary points (magenta circles in Figure 8), and 

the rest belong to the main cluster. Figure 10 visually depicts membership. 

 

   Figure 8. dataset 1                 Figure 9. Clustering results of INCA on dataset 1 

 
 

Figure 10. Membership calculated by FKM and INCA on dataset 1 

4.2.2. Real dataset 

To further evaluate the proposed clustering method, the UCI dataset is considered a standard 

dataset in the field of machine learning. In this study, the "dermatology", "pima", "TOX-171", "vowel", 

"ecoli", "iris" and "vote" datasets were selected among other UCI datasets. Table 3 summarizes the 

number of features, classes, and samples in each data. These datasets are used for traditional 

clustering methods such as FKM, RSFKM, FC-PFS, NCM and INCM. 

Table 3. Datasets 

Datasets No. of instance No. of feature No. of class 

dermatology 366 34 6 

pima 768 8 2 

TOX-171 171 5748 4 

 

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                              565



 

 

Dan Zhang, Yingcang Ma, Florentin Smarandache, Xuezhen Dai, Yaqin Qiao, Clustering Algorithm Based on Data 

indeterminacy in Neutrosophic Set 

vowel 528 10 11 

ecoli 336 343 8 

iris 150 4 3 

vote 435 16 2 

Table 4 summarizes the accuracy of the proposed method and the FKM, RSFKM, FC-PFS, INCM 

and NCM methods. The accuracy rates of the proposed method on the "dermatology", "pima", 

"TOX-171", "vowel", "ecoli", "iris" and "vote" datasets were 82.24%, 74.35%, 51.46%, 40.15%, 76.79%, 

98.00% and 84.60%. The accuracy of INCA is higher or second than other comparison algorithms. 

Table 5 summarizes the mutual information of INCA and FKM, RSFKM, FC-PFS, INCM and NCM 

methods. The mutual information of INCA is higher or second than other comparison algorithms. 

Table 4. ACC of the different datasets 

 dermatology pima TOX-171 vowel ecoli iris vote 

INCM 0.5314 0.6510 0.3918 0.2708 0.6875 0.9466    0.8000 

FC-PFS 0.5027 0.6589 0.3977 0.2321 0.6250 0.8933 0.8138 

RSFKM 0.8689  0.6602 0.2632 0.2746  0.6518 0.9267 0.8253 

NCM 0.5000 0.6302   0.2865 0.2348  0.6280  0.9000   0.8138 

FKM  0.6995    0.6563 0.4912 0.3655 0.6280  0.8933 0.8230 

INCA 0.8224 0.7435 0.5146 0.4015 0.7679 0.9800 0.8460 

Table 5. NMI of the different datasets 

 dermatology pima TOX-171 vowel ecoli iris vote 

INCM 0.0117 0.0022 0.0685 0.2341 0.4867 0.8081 0.2918 

FC-PFS 0.3193 0.0317 0.0722 0.2063 0.2614 0.7501 0.3333 

RSFKM 0.8477 0.0267  0.0000 0.3027   0.3247 0.7933 0.3644 

NCM 0.1998   0.0521 0.0231 0.2168   0.2711 0.7540 0.3297 

FKM 0.6070 0.0294  0.2178 0.3915 0.4625 0.7515  0.3359 

INCA 0.7240 0.0092 0.2248 0.3933 0.5895 0.9187 0.3636 

Figure 11 shows the average accuracy of different algorithms. It can be seen that the average 

accuracy of INCA is higher than that of other comparison algorithms. 

 

Figure 11. Average accuracy of different algorithms 
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4.3. Parameter analysis 

In this section, the influence of parameters on the clustering results is analyzed. For this task, the 

Iris was selected for parameter evaluation. In each step, one parameter is changed and the others are 

fixed. Table 6 reports the results of the clustering methods for different parameter values. In each 

column, one parameter is considered to have 7 different quantities, while the other parameters are 

considered to be fixed and the quantities are in the fourth row. Each row in the table is a combination 

of parameters, and the fourth row is the best combination we chose in our experiments. The reasons 

for this choice will be discussed in detail in the following chapters. 

Based on (13) each data point depends on two factors, namely the distance from the data to the 

cluster center and the uncertainty of the data, both of which influence each other. The parameter m 

determines the weighting effect of these factors. If m increases, 
1 i ijI T and  2 1 i iI F  are used more 

for membership assignments for main clusters and boundary points, respectively, and vice versa. By 

reducing m, the distance to the cluster center is a more important factor for membership assignment, 

which is almost the same as FKM. This parameter is 2 in this paper.  

The parameters
1 and

2  are based on equation (18), on the one hand an increase in
1 leads to a 

decrease in
ijT and an increase in

iF , which means that the cost function pays more attention to the F 

set (boundary points) and reduces the accuracy. On the other hand, a smaller number of
1 has 

positive and negative effects on the main and border clusters, respectively.
1 1  is configured, 

which is the best balance between the main cluster and the border cluster. The parameter
2 has the 

same effect in equation (19). Figure 12 shows the effect of different parameter combinations on the 

clustering results. 

Table 6. Parameter sensitivity analysis 

m 1  2  

m=1.3 

ACC=0.9667 

1 0.3   

ACC=0.9533 

2 0.5   

ACC=0.9667 

m=1.5 

ACC=0.9533 

1 0.6   

ACC=0.9267 

2 1.1   

ACC=0.9400 

m=1.8 

ACC=0.8800 

1 0.7   

ACC=0.9533 

2 1.5   

ACC=0.9400 

m=2 

ACC=0.9800 

1 1   

ACC=0.9667 

2 2   

ACC=0.9800 

m=2.5 

ACC=0.9300 

1 1.5   

ACC=0.9200 

2 3   

ACC=0.9567 

m=3 

ACC=0.9600 

1 2   

ACC=0.9600 

2 4   

ACC=0.9600 

m=4 

ACC=0.9400 

1 3   

ACC=0.9600 

2 5   

ACC=0.9400 
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Figure 12. Parameter sensitivity analysis 

In this section, the advantages and disadvantages of the proposed method are discussed. Border 

points and outliers are not considered in methods such as FKM. For example X19: 5, 7, 11, 13 and X24: 

5, 7, 11, 13, 17, 19 are not assigned to the main cluster with a high degree of certainty. The reason is 

that such points are located at the same distance from the center of the main cluster and the center of 

the boundary cluster.For boundary points, such as X19: 6, 12 and X24: 6, 12, 18, the distances 

between the two main clusters are equal, but they are forcibly divided into one of the main clusters, 

which does not meet the actual situation and requirements. 

From the above experiments, it can be seen that INCA is robust and the main cluster centers are 

not forced away from the boundary points. The experimental results show that INCA is more 

suitable for partitioning data, especially fuzzy and unclear data. Traditional methods only describe 

the degree of each cluster. For some samples in the boundary between different clusters, it is difficult 

to determine which group it belongs to. The method proposed in this paper aims to deal with these 

shortcomings of traditional partitioning methods. 

5. Conclusions 

The cost function in the neutrosophic set is proposed. Two types of clusters are considered in 

the proposed cost function, including main clusters and noise clusters. Experiments on different 

datasets show that INCA can not only deal with outliers and boundary points, but also outperform 

the comparative methods in both scatter data clustering and real datasets with these shortcomings of 

traditional partitioning methods. 
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